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Introduction

RT(X,Z) € D°(Z[W]) and equivariant cellular structures

discrete group W C X topological space
~ W C H*(X,Z) = H*(RI'(X,Z2)).
Also, RT(X,Z) € DP(Z[W]), but how to compute RI(X,Z)?
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Introduction

RT(X,Z) € D°(Z[W]) and equivariant cellular structures

discrete group W C X topological space
~ W & H*(X,Z) = H*(RT(X,Z)).
Also, RT(X,Z) € DP(Z[W]), but how to compute RI(X,Z)?

Definition

A CW-structure on X is W-equivariant if

@ W acts on cells

@ Forec X acelland w € W, if we = e then We = ide.
Associated cellular chain complex: CS (X, W;Z) € Ch(Z[W]).
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Introduction

RT(X,Z) € D°(Z[W]) and equivariant cellular structures

discrete group W C X topological space
~ W C H*(X,Z) = H*(RI'(X,Z2)).
Also, RT(X,Z) € DP(Z[W]), but how to compute RI(X,Z)?

Definition

A CW-structure on X is W-equivariant if

@ W acts on cells

@ Forec X acelland w € W, if we = e then We = ide.
Associated cellular chain complex: C&(X, W;Z) € Cp(Z[W])

v

The complex C},,(X, W;Z) is well-defined up to homotopy and
C:y(X, W, Z) = RI(X,Z) in DP(Z[W]).

cell

v

™ = = -
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Introduction

llustration: {£1} ¢ S? C R?

G = {1, s} acts on S? via the antipode s : x — —x. We construct
a (y-equivariant cellular structure as follows:
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Introduction

llustration: {£1} ¢ S? C R?

G = {1, s} acts on S? via the antipode s : x — —x. We construct
a (y-equivariant cellular structure as follows:

€

Chain complex given by

Cel(S?, G Z) = ( Z[Co] (e2) — > Z[Go] (1) —= Z[Co] (eo) )
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Introduction

llustration: {£1} ¢ S? C R?

G = {1, s} acts on S? via the antipode s : x — —x. We construct
a (y-equivariant cellular structure as follows:

€2

Cochain complex

Cen(8?. Coi2) = ( ZICal(e5) S ZICal (ef) <= ZICal () )
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Introduction

llustration: {£1} ¢ S? C R?

G = {1, s} acts on S? via the antipode s : x — —x. We construct
a (y-equivariant cellular structure as follows:

s " €

s-e
Cochain complex

* x\ L+ wy _1—$ *
Cen(8?. Coi2) = ( ZICal(e5) S ZICal (ef) <= ZICal () )

so RI(S?,Q) ~ 1 & ¢[—2] and RI(S?,F2) has cohomology
H*(S?,F,) = 1 @ 1[-2], however, RT(S?,F,) is indecomposable...
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Maximal tori of simple compact Lie groups

Position of the problem

Notation:

@ G simple compact connected Lie group of rank n,
o T ~ (S')" maximal torus of G,
@ W := Ng(T)/T the Weyl group.
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@ G simple compact connected Lie group of rank n,
o T ~ (S')" maximal torus of G,
@ W := Ng(T)/T the Weyl group.

Natural action W C T. Example: &, acts on diagonal matrices...
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Maximal tori of simple compact Lie groups

Position of the problem

Notation:

@ G simple compact connected Lie group of rank n,
o T ~ (S')" maximal torus of G,
@ W := Ng(T)/T the Weyl group.

Natural action W C T. Example: &, acts on diagonal matrices...

Problem (A)

Exhibit a W-equivariant triangulation of T.
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Maximal tori of simple compact Lie groups

Position of the problem

Notation:

@ G simple compact connected Lie group of rank n,
o T ~ (S')" maximal torus of G,
@ W := Ng(T)/T the Weyl group.

Natural action W C T. Example: &, acts on diagonal matrices...

Problem (A)

Exhibit a W-equivariant triangulation of T.

o Natural method: Describe T as a W-equivariant simplicial
complex.

e Reduction: use the exponential t := Lie(T) — T and work
with t.

Arthur Garnier Hyperbolic tori for finite non-crystallographic Coxeter groups 17 mars 2022 4 /22



Maximal tori of simple compact Lie groups

Position of the problem

Notation:

® C it* =: V root system of (G, T) (Bourbaki), ®V C V*,
M c &t C ® positive and simple roots, with M~ {1,...,n},
Q :=7Zd (resp. QY :=Zd") (co)root lattice,

P (resp. PV) (co)weight lattice,

Finally, X(T):={d\:t— iR ; A € Hom (T,S')} c V
character lattice of T and Y(T) := X(T)" cocharacters.

(]
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Maximal tori of simple compact Lie groups

Position of the problem

Notation:
e & C it* =: V root system of (G, T) (Bourbaki), ®¥ C V*,
e 1 C * C @ positive and simple roots, with M~ {1,..., n},
o Q:=7Z9 (resp. Q' :=7Zd") (co)root lattice,
@ P (resp. PV) (co)weight lattice,
e Finally, X(T) :={d\:t— iR ; A € Hom(T,SY)} c V
character lattice of T and Y(T) := X(T)" cocharacters.

There is an isomorphism W-Lie groups:
exp: V¥/Y(T) = T.

We also have
P/X(T) ~ m1(G).
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Maximal tori of simple compact Lie groups

(Extended) affine Weyl groups

We work with an irreducible root datum R := (X, ®, Y, ®V) with
Weyl group W and V := R ® Zo.
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Maximal tori of simple compact Lie groups

(Extended) affine Weyl groups

We work with an irreducible root datum R := (X, ®, Y, ®V) with
Weyl group W and V := R ® Zo.

We want a Wy-triangulation of V*, where Wy =Y x W, an
element y € Y being viewed as the translation t, by y. This
depends on the fundamental group P/X of R.

X = P ~~ simply connected group and X = Q@ ~- adjoint group.
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Maximal tori of simple compact Lie groups

(Extended) affine Weyl groups

We work with an irreducible root datum R := (X, ®, Y, ®V) with
Weyl group W and V := R ® Zo.

We want a Wy-triangulation of V*, where Wy =Y x W, an
element y € Y being viewed as the translation t, by y. This
depends on the fundamental group P/X of R.

X = P ~~ simply connected group and X = Q@ ~- adjoint group.

Example: the type A,_1:

Simply conneted In between Adjoint
G SU(C)
T ~§r1 To = {diagonal mat.} < SU,

w S,

X = X(T) P

Y = Y(T) QY

m(G) = P/X 1
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Maximal tori of simple compact Lie groups

(Extended) affine Weyl groups

We work with an irreducible root datum R := (X, ®, Y, ®V) with
Weyl group W and V := R ® Zo.

We want a Wy-triangulation of V*, where Wy =Y x W, an
element y € Y being viewed as the translation t, by y. This
depends on the fundamental group P/X of R.

X = P ~~ simply connected group and X = Q@ ~- adjoint group.

Example: the type A,_1:

Simply conneted In between Adjoint
G SU(C) PSU,(C)
T~s§! To = {diagonal mat.} < SU, [Tolun
w S, n
X = X(T) P Q
Y :=Y(T) QY PV
m(G) = P/X 1 Z/nZ
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Maximal tori of simple compact Lie groups

(Extended) affine Weyl groups

We work with an irreducible root datum R := (X, ®, Y, ®V) with
Weyl group W and V := R ® Zo.

We want a Wy-triangulation of V*, where Wy =Y x W, an
element y € Y being viewed as the translation t, by y. This
depends on the fundamental group P/X of R.

X = P ~~ simply connected group and X = Q@ ~- adjoint group.
Example: the type A,_1:

Simply conneted In between Adjoint
G SUn(C) SUn(C)/pa, (d|n) PSU,(C)
T~s§! To = {diagonal mat.} < SU, [Tolu [Tolun
w G, G, G,
X :=X(T) P QCXCP;[P:X]=d Q
Y :=Y(T) Qv PYDOYDQY PV
m(G) = P/X 1 Z/dZ Z/nZ
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Maximal tori of simple compact Lie groups

The simply-connected case

If 71(G) =1 then Y = Q¥ and QY x W ~ W, is the affine Weyl
group, a Coxeter group.
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Maximal tori of simple compact Lie groups

The simply-connected case

If 71(G) =1 then Y = Q¥ and QY x W ~ W, is the affine Weyl
group, a Coxeter group.

For a; € M let §; :=s,, and for g € 7 the highest root,
S0 = Sap + O, then

W, ~ <§0,§1,...,§,, VO < i,j < n, (575)°0%) = 1>.

i
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Maximal tori of simple compact Lie groups

The simply-connected case

If 71(G) =1 then Y = Q¥ and QY x W ~ W, is the affine Weyl
group, a Coxeter group.

For a; € M let §; :=s,, and for g € 7 the highest root,
S0 = Sap + O, then

Wa:<so,51,...,s,,

VO < i,j < n, (575)°0%) = 1>.

Fundamental domain for W, ¢ V*? the fundamental alcove:

A={AeV*; Vaecd 0< \a) <1}~ A"
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Maximal tori of simple compact Lie groups

The associated chain complex

The face lattice of A ~ A" induces a W,-triangulation of V*
whose associated cellular complex CSN(V*, W,; Z) is

- —— DByj=n— kZ[W]HEBM ki1 ZIW]] ——- -

where W! .= {w € W, ; l(ws;) > l(w), Vi€ I} =~ W,/(W,), is
the set of minimal length coset representatives and
k+1
{0,....,n\/ ={ih < ... <ikg1} = @)z = D_(=1)"Plugi
u=1

Lw! — W for 1 J.
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Maximal tori of simple compact Lie groups

The associated W,-dg-ring

The product on the Z[W,]-dg-ring C},,(V*, Wa; Z) is induced by
the cup product

Z['W,] @7 Z[’ Wa] == Z['™ W]
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Maximal tori of simple compact Lie groups

The associated W,-dg-ring

The product on the Z[W,]-dg-ring C},,(V*, Wa; Z) is induced by
the cup product

Z['W,] @7 Z[’ Wa] == Z['™ W]
defined by

INJ( (o, —1 |
Io d. ((xy=)ay) ifxy= € (Wa)i(Wa)y,
XUY = Omax(1),min(J<) { 0 otherwise.

We have denoted 'W, ~ (W,)\W, and, if w € (W,)(W,),, then

w can be uniquely written as w = uv with u € (W,)",

ve (W,)y and b(w) = £(u) + £(v) and we let wy :=v.
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Maximal tori of simple compact Lie groups

Consequences for T

Corollary (A1)
The Z[W]-dg-ring C%,(V*/QY, W;Z) is given by

C(Tell(v*/Qv7 w; Z) = Defwd( cell(V>|< Wa; Z))

with Def |\ : Z[W,]—dgRing — Z[W]—dgRing the functor
induced by the deflation.
Abusing the notation, W := (s,,, i € I) < W, we have

k>0, Chy(VIQL Wi = @ ZIWAW]
1c{0,...,n} ; |l|=n—k

The cohomology algebra is H*(V*/QY,Z) ~ N},(P).
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Maximal tori of simple compact Lie groups

Example in type A,

(C) Alcoves for
(63)a = (1,2,0).

(a) Fundamental chamber (in

i ?
blue) and its G3-translates. (b) What if we add a wall?

Figure: Chambers subdivided into alcoves.
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Maximal tori of simple compact Lie groups

Example in type A,

1 2

Resultlng S3-triangulation
~ (')

1( 2101 i
(a) Dynkin diagram of :4\;
of S

(b) Fundamental alcove and
some of its (S3),-translates.

Figure: Triangulation of the torus S(U(1)3) of SU(3).

The complex Ce(S(U(1)3), &3;7Z) is given by

-110
0 —11
(11-1) —-101

Z[&3] —————> Z[&3/ ( 53) ] ® Z[G3/ ( sasgsa )| B Z[63/ ( 50 )| —————— 7.

Arthur Garnier Hyperbolic tori for finite non-crystallographic Coxeter groups 17 mars 2022 11 /22



Maximal tori of simple compact Lie groups

General case: barycentric subdivision of A

Problem: the group Q acts non-trivially on A. However, we have
the following comfortable result:

Let T be a discrete affine group acting on a polytope AA. Then the
barycentric subdivision SA(A) is a [-triangulation of A.
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Maximal tori of simple compact Lie groups

General case: barycentric subdivision of A

Problem: the group Q acts non-trivially on A. However, we have
the following comfortable result:

Let T be a discrete affine group acting on a polytope AA. Then the
barycentric subdivision SA(A) is a [-triangulation of A.

Applying this to A = A and I' = Q gives the
Theorem (A2)

The barycentric subdivision of the fundamental alcove induces a
W, -equivariant triangulation of t. The same holds for any
W-lattice Q¥ C A C PV and the intermediate group Wj.
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Maximal tori of simple compact Lie groups

General case: barycentric subdivision of A

Problem: the group Q acts non-trivially on A. However, we have
the following comfortable result:

Let T be a discrete affine group acting on a polytope AA. Then the
barycentric subdivision SA(A) is a [-triangulation of A.

Applying this to A = A and I' = Q gives the

Theorem (A2)

The barycentric subdivision of the fundamental alcove induces a
W, -equivariant triangulation of t. The same holds for any
W-lattice Q¥ C A C PV and the intermediate group Wj.

We can compute differentials and cup-product, but the formulas
are not very enlightening. However, they are implemented in GAP.
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Maximal tori of simple compact Lie groups

Type Affine Dynkin diagram Fundamental group Q ~ P/Q
— )
AL — Z/2Z
0
Ay (n>2) A Z/(n+1)2
1 2 n—1 n
1
B, (n>3 .>0—0— 7.)27.
o (n ) 0 2 3 n— n /
G (n>2) =13 TS 7/22
1 n Z/2Z & ZJ27 if n even
>
Prlnz4) e I TS ST { Z/4L__ i nis odd
2 0
Es Z/3L
: . /
5 6
2
E 7.)2Z.
0 1 3 4 5 6 7
2
Es 1
1 3 4 5 6 7 8 0
= o o> o
Fa 0 I 273 4 1
G =3 1

Arthur Garnier
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Maximal tori of simple compact Lie groups

Example of A,
The homology chain complex in the case of SU(3

)
(11-1) ]<

ZIW] ——= Z[W/ (sg ) | ® ZIW/ ( sasgsa )| ® Z[W/ { sa )
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Maximal tori of simple compact Lie groups

Example of A,
The homology chain complex in the case of SU(3

( -1) <
2w 2T W (5501 ZIW/ C saspsa )] @ ZIW/ ( sa)]

ﬁ\/ a\/ +B\/

0 \%

Figure: The barycentric subdivision Sd(.A) for A,.
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Maximal tori of simple compact Lie groups

Example of A,

<—11o
0 —11
) —101
]

(11 -1
ZW] — Z[W/ (sg ) | ® Z[W/ ( sasgsa ) | ® ZW/ ( sa )

ﬁ\/ a\/ +/8\/

0 \

Figure: The barycentric subdivision Sd(.A) for A,.

We have Q = {1, wq,,wp} ~ Z/37Z, where wg the rotation with
center bar(A) and angle 27/3.
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Maximal tori of simple compact Lie groups

Example of A,

<—11o
0 —11
) —101
]

(11 -1
ZW] — Z[W/ (sg ) | ® Z[W/ ( sasgsa ) | ® ZW/ ( sa )

ﬁ\/ a\/ +/8\/

0 \

Figure: The barycentric subdivision Sd(.A) for A,.

We have Q = {1, wq,,wp} ~ Z/37Z, where wg the rotation with
center bar(A) and angle 27/3. The complex for PSU(3) is

-1 1 0

~1sg50 0

(3715 ( O
ZIWP ——ZW/ (s ) | © ZIW/ ( 50 )] © ZIW]? ——— Z @ ZIW/ (s5)] D ZIW/ ( sas5)] -
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Extension to non-crystallographic Coxeter groups

Compact hyperbolic extensions

The combinatorics of the complex for 71(G) = 1 makes sense for
any Coxeter system (W, S), with an additional reflection ryy € W.

Problem (B)

Geometric interpretation of this analogy?
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Extension to non-crystallographic Coxeter groups

Compact hyperbolic extensions

The combinatorics of the complex for 71(G) = 1 makes sense for
any Coxeter system (W, S), with an additional reflection ryy € W.

Problem (B)

Geometric interpretation of this analogy?

Find a reflection giving a “nice” Coxeter extension (W, SU{s})?
“True tori": W Weyl, rny = s; (highest root), W = W,.

“Non-crystallographic tori": ry s.t. W is compact hyperbolic.
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Extension to non-crystallographic Coxeter groups

Compact hyperbolic extensions

The combinatorics of the complex for 71(G) = 1 makes sense for
any Coxeter system (W, S), with an additional reflection ryy € W.

Problem (B)

Geometric interpretation of this analogy?

Find a reflection giving a “nice” Coxeter extension (W, SU{s})?
“True tori": W Weyl, rny = s; (highest root), W = W,.

“Non-crystallographic tori": ry s.t. W is compact hyperbolic.

Extension Coxeter graph
b(m) (m=1[2)) ?éf
() (m = 0[4]) e,
B(m) (m=20) | m2 m
Hs 5 5
Ha 5 5
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Extension to non-crystallographic Coxeter groups

The non-commutative lattice @

If W= (s1,...,5n | (5i5))™ = 1), we let

—

W= <§0a§17 s agn ‘ VI,J > ]-7 (/s\i/stl')mi’j = (/S\O/S\i)O(rWSi) = gg = 1> ’
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Extension to non-crystallographic Coxeter groups

The non-commutative lattice @

If W= (s1,...,5n | (5i5))™ = 1), we let

—

W= <§07§17 s agn Vl,j > ]-7 (/s\i/stl')mi’j = (/S\O/S\i)O(rWSi) = gg = 1> ’

Sending 5y EIV to ryy € W induces a surjection 7 : W — W
and we have W = @ x W, where the torsion-free subgroup

o~

Q = ker(7) = <(§orW)W> aw

is Z®" in the crystallographic case and a non-commutative
analogue otherwise.
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Extension to non-crystallographic Coxeter groups

The non-commutative lattice @

If W= (s1,...,5n | (5i5))™ = 1), we let

—

W .= <50751,---,5n

Vij 21, (53)" = (38)% =8 =1).

Sending 5y EIV to ryy € W induces a surjection 7 : W — W
and we have W = @ x W, where the torsion-free subgroup

o~

Q = ker(7) = <(§orW)W> aw

is Z®" in the crystallographic case and a non-commutative
analogue otherwise. Key fact:

We have

VIC {50,...,%.}, WinQ=1.

Equivalently, Q is torsion-free.

™ = = =
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Extension to non-crystallographic Coxeter groups

Construction of T(W) from the Coxeter complex

Consider the Coxeter complex

(W)= U w(C\{0})] /R%,

wew
where C is the fundamental chamber of W. We define
T(W) := Z(W)/Q.

This is a maximal torus in the crystallographic case and an
“analogue” otherwise.
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Extension to non-crystallographic Coxeter groups

Construction of T(W) from the Coxeter complex

Consider the Coxeter complex

(W)= U w(C\{0})] /R%,

wew
where C is the fundamental chamber of W. We define
T(W) := Z(W)/Q.

This is a maximal torus in the crystallographic case and an
“analogue” otherwise.

(A1)

Figure: £(A;) = £(h(c0)) as an affine line.
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Extension to non-crystallographic Coxeter groups

The example of /(5)

For W = k(5), the simplicial structure of ¥(/(5)) induces a
tessellation of the hyperbolic plane H? (associated to the Tits
form of k(5)) which projects on the Poincaré disk as follows:

(a) The plane H? and (b) The tessellation

—

the Poincaré disk. Y (h(5)).
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Extension to non-crystallographic Coxeter groups

The example of /(5)

For W = k(5), the simplicial structure of ¥(/(5)) induces a
tessellation of the hyperbolic plane H? (associated to the Tits
form of k(5)) which projects on the Poincaré disk as follows:

(c) Fundamental (d) Q-orbit of the
domain for Q. fundamental triangle.

The surface T(/(5)) is obtained by gluing the triangles of a same
orbit e.g. the green ones in the last figure.
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Extension to non-crystallographic Coxeter groups

The example of /(5)

For W = k(5), the simplicial structure of ¥(/(5)) induces a
tessellation of the hyperbolic plane H? (associated to the Tits
form of k(5)) which projects on the Poincaré disk as follows:

(c) Fundamental (d) Q-orbit of the
domain for Q. fundamental triangle.

Let h(5) = <51,52 | s2=s2=(s1%)° =1 > The complex CSW(T(h(5)), h(5);Z) is

2B =2 2b(5)/ (5)] @ Z[L(G)/ (s2)] & Z[b()/ (s1)] — > 73,
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Extension to non-crystallographic Coxeter groups

Properties of T(W)

Theorem (B)

The space T(W) is a W-triangulated orientable compact
Riemannian manifold and T(W) ~ K(Q,1) ~ Bq. If W is a Weyl
group, then T(W) is a torus and otherwise, T(W) is hyperbolic.

Arthur Garnier Hyperbolic tori for finite non-crystallographic Coxeter groups 17 mars 2022 19 / 22



Extension to non-crystallographic Coxeter groups

Properties of T(W)

Theorem (B)

The space T(W) is a W-triangulated orientable compact
Riemannian manifold and T(W) ~ K(Q,1) ~ Bq. If W is a Weyl
group, then T(W) is a torus and otherwise, T(W) is hyperbolic.

The manifold T(Ha) is the Davis hyperbolic 4-manifold (1985) and
T(H3) is the Zimmermann hyperbolic 3-manifold (1993). Their
Betti numbers are b.(T(Hs)) = (1,11,11,1) and

b (T(Ha)) = (1,24,72,24,1).
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Extension to non-crystallographic Coxeter groups

Properties of T(W)

Theorem (B)

The space T(W) is a W-triangulated orientable compact
Riemannian manifold and T(W) ~ K(Q,1) ~ Bq. If W is a Weyl
group, then T(W) is a torus and otherwise, T(W) is hyperbolic.

The manifold T(Ha) is the Davis hyperbolic 4-manifold (1985) and
T(H3) is the Zimmermann hyperbolic 3-manifold (1993). Their
Betti numbers are b.(T(Hs)) = (1,11,11,1) and

b (T(Ha)) = (1,24,72,24,1).

We give a presentation of m1(T(W)) ~ Q and describe the
W-dg-ring of T(W), which is the one we want.
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Extension to non-crystallographic Coxeter groups

Properties of T(W)
Let Qu be a splitting field for W. We can take

Qiy(m) = Q(cos(2m/m)) and Qp, = Qp, = Q(V5).
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Extension to non-crystallographic Coxeter groups

Properties of T(W)
Let Qu be a splitting field for W. We can take

Qiy(m) = Q(cos(2m/m)) and Qp, = Qp, = Q(V5).

Proposition

H. := H.(T(W),Z) is torsion-free, with palindromic Betti
numbers (by Poincaré duality). We decompose H, @ Q explicitly
as a sum of irreducibles. In particular, Hy = 1, H, = sgn and the
geometric representation of W is a direct summand of Hy ® Q.
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Extension to non-crystallographic Coxeter groups

Properties of T(W)
Let Qu be a splitting field for W. We can take

Qiy(m) = Q(cos(2m/m)) and Qp, = Qp, = Q(V5).

Proposition

H. := H.(T(W),Z) is torsion-free, with palindromic Betti
numbers (by Poincaré duality). We decompose H, @ Q explicitly
as a sum of irreducibles. In particular, Hy = 1, H, = sgn and the
geometric representation of W is a direct summand of Hy ® Q.

If W(q) (resp. W(q)) is the Poincaré series of W (resp. of W)
then, as for tori,

arwy= 8
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Extension to non-crystallographic Coxeter groups

Further details on the hyperbolic surfaces T(/h(m))

Let g € N*. Then T(h(2g + 1)), T(hk(4g)) and T(h(4g + 2)) are
arithmetic Riemann surfaces with the same genus g.

We have an isomorphism
T(h(4g +2)) ~ T(k(2g + 1)),

and these two are not isomorphic to T(h(4g)).

In particular, for g = 1, these are rational elliptic curves: the
orbifold points in the Dirichlet domain of PSLy(7Z).
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Extension to non-crystallographic Coxeter groups

Further details on the hyperbolic surfaces T(/h(m))

Let g € N*. Then T(h(2g + 1)), T(hk(4g)) and T(h(4g + 2)) are
arithmetic Riemann surfaces with the same genus g.

We have an isomorphism
T(h(4g +2)) ~ T(k(2g + 1)),

and these two are not isomorphic to T(h(4g)).

In particular, for g = 1, these are rational elliptic curves: the
orbifold points in the Dirichlet domain of PSLy(7Z).

~> unusual point of view on tori!
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Extension to non-crystallographic Coxeter groups

Thank you very much!
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