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The problem
Notation

G a connected reductive complex algebraic group,
B a Borel subgroup of G .
Flag manifold is the homogeneous space FℓC(G) := G/B.
The Weyl group W acts freely on it.
T maximal torus in G , then G/T ⟲ W and G/T is homotopy
equivalent to G/B.
In fact, if K maximal compact subgroup of G and
TK := K ∩ T ≃ U(1)r , then

FℓC(G) := G/B diff≃ K/TK ⟲ W = NK (TK )/TK ≃ NG(T )/T

Question: Describe RΓ(G/B,Z) ∈ Db(ZW ).
More precisely: Describe G/B = K/TK as a W -equivariant
cellular/simplicial complex.
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Example: type A

G = SLn(C), K = SU(n), T = S(U(1)n) and W = Sn,

B =


∗ ∗ ... ∗

0 ∗
...

... . . . . . . ∗
0 ... 0 ∗

 Borel subgroup,

G/B = {flags (0 = V0 ⊆ V1 ⊆ . . . ⊆ Vn = Cn)},

K/T = {decompositions Cn = L1
⊥
⊕ · · ·

⊥
⊕ Ln} ⟲ Sn,

G/TC = {decompositions Cn = L1 ⊕ · · · ⊕ Ln} ⟲ Sn.
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The example of SL2

Fℓ(SL2) ≃ SU(2)/T ≃ CP1 ⟲ S2 = ⟨s⟩ , s(L1
⊥
⊕ L2) = (L2

⊥
⊕ L1).

s · [1 : z ] = [−z : 1] = [1 : −1/z ] antipode map!

s · e0 e0

e1

s · e1

e2

s · e2

C• := Z[S2] ⟨e2⟩ 1+s // Z[S2] ⟨e1⟩ 1−s // Z[S2] ⟨e0⟩

EndDb(ZS2)(C•) = Z[S2]
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The Borel picture for H∗(G/B,Q)
Action of W on H∗(G/B,Q) is well-known:

H∗(G/B,Q) ≃ Q[x1, . . . , xn]W = Q[x1, . . . , xn]
Q[x1, . . . , xn]W+

,

Isomorphism induced by xi 7→ c1(Li), with Li line bundle
associated to the i th fundamental weight.
The ungraded Q[W ]-module H∗(G/B,Q) is the regular one.

The Bruhat decomposition
G/B =

⊔
w∈W

BwB/B

is cellular and
dimR(G/B) = dimR(Bw0B/B) = 2ℓ(w0) = 2|Φ+|, with
w0 ∈ W the longest element and Φ the root system.
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The Goresky-Kottwitz-MacPherson graph
{vertices} ↔ {T -fixed points}, {edges} ↔ {T -orbits of dim 1},
each edge ↔ T -orbit = CP1

w0

sαsβ sβsα

sα sβ

1

(a) The GKM graph

w0

sαsβ sβsα

sα sβ

1

(b) Many SL2 situations

⇝ 1-skeleton and part of the 2-skeleton, like for SL2.
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Educated guess/hope
Hope the complex has nice general combinatorial description.
Hard to find a CW-structure. Try to guess ranks of free
modules. Let

PC
W (q) :=

∑
i

#{W -orbits of k-cells of FℓC(G)}qi

and similarly consider PR
W for the real points. Constraints:

deg(PC
W ) = 2|Φ+| and PC

W (−1) = 1.
Parametrization

{k-cells of FℓR(G)} ↔ {k-subsets of positive roots}.

k-cells parametrized by k real parameters (one for each root).
This would give PR

W (q) = [2]|Φ
+|

q .
Recall that [k]q = 1 + q + · · · + qk−1.
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Educated guess/hope

Missing cells in FℓC(G): allow some parameters to take
complex values.
Compatible with GKM.
Each positive root would have a multiplicity 0, 1 or 2
⇝ multiset of positive roots with multiplicity.
This gives PC

W (q) = [3]|Φ
+|

q .
⇝ combinatorial flavour of the DeConcini-Salvetti complex.
Recall that the DeConcini-Salvetti complex is a free resolution
of Z over Z[W ], with W finite Coxeter group, constructed
using increasing chains of subsets of simple reflections.
For SL3, PR

W (q) = [2]3q = q3 + 3q2 + 3q + 1 and
PC

W (q) = [3]3q = q63q5 + 6q4 + 7q3 + 6q2 + 3q + 1.
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Educated guess/hope
Another possible formula (involving only simple roots) for this
number of orbits:

∏
i [2di − 1]q, with (di)i the degrees of W .

Recall that the di ’s are the degrees of fundamental invariants
of W and satisfy∑

i
(di − 1) = |Φ+| and

∏
i

di = |W |.

Hence deg (
∏

i [2di − 1]q) =
∑

i(2di − 2) = 2|Φ+| and∏
i [2di − 1]−1 = 1.

Over R, similar considerations would give
∏

i [di ]q.
For SL3, gives PR

W (q) = [2]q[3]q = q3 + 2q2 + 2q + 1 and
PC

W (q) = [3]q[5]q = q6 + 2q5 + 3q4 + 3q3 + 3q2 + 2q + 1.

[3]|Φ
+|

q has a clear link with GKM and easier to pass from R to
C, but

∏
i [2di − 1]q yields fewer cells.
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Educated guess/hope

We summarize the guess for the polynomials PR
W and PC

W in the
following table

PC
W (q) [3]|Φ

+|
q

∏
i [2di − 1]q

PR
W (q) [2]|Φ

+|
q

∏
i [di ]q
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FℓR(SL3) ↪→ P(Omin)(R) ⊂ P(sl3(R)) = P7(R)

Easier on R because W -action is algebraic and dimR = 3 (not 6).
Starting with the GKM graph, we found an equivariant
decomposition of FℓR(SL3), with ranks 4, 6, 3, 1.
Doesn’t satisfy the hope and complex homotopy equivalent to a
smaller term with ranks 1, 3, 3, 1 and even 1, 2, 2, 1.
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New look at SL3/B
We look at FℓR(SL3) = SO(3)/S(O(1)3) = SO(3)/{±1}2 ⟲ S3.

S3

/Q8

!! !!

/{±1}
����

⟲ Q8 ⋊S3 = O

SO(3)

/{±1}2
����

⟲ {±1}2 ⋊S3 = W (D3) = S4

SO(3)/{±1}2

/S3����

⟲ S3

S3/O ⟲ 1

This last space is called a spherical space form.
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Finite groups acting freely on spheres
Theorem (Hopf 1925, Milnor 1957)
Any finite group acting freely and isometrically on S3 is isomorphic
to one of the following groups:

1 1, O, I, quaternion groups Q8n =
〈
x , y | x2 = (xy)2 = y2n〉

,
2 generalized dihedral groups

D2k (2n+1) =
〈

x , y | x2k
= y2n+1 = 1, xyx−1 = y−1

〉
, k ≥ 2, n ≥ 1,

3 generalized tetrahedral groups (including T = P ′
24)

P′
8·3k =

〈
x , y , z | x2 = (xy)2 = y2, zxz−1 = y , zyz−1 = xy , z3k

= 1
〉

, k ≥ 1,

4 The product of any of these groups with a cyclic group of
relatively prime order.
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Orbit polytopes
Free isometric action of a finite group G ⟳ Sn ∋ v0.
The orbit polytope of G is PG := conv(G · v0).
G acts on PG and on its faces.
This action is free and the projection

∂PG → Sn

is a G-homeomorphism.

Theorem (Fêmina–Galves–Manzoli Neto–Spreafico (2013),
Chirivì–Spreafico (2017))
Assume that span(G · v0) = Rn+1. Then there is a system
F1, . . . , Fr of orbit representatives for the G-action on facets of PG
such that

⋃
i Fi is a fundamental domain for G on ∂PG .
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Binary polyhedral groups

Besides cyclic and (binary) dihedral groups, S3 has three finite
subgroups: the binary poyhedral groups. These are

T :=
〈

i , −1 + i + j + k
2

〉
, O :=

〈
T ,

1 + i√
2

〉
, I :=

〈
T ,

ϕ−1 + i + ϕj
2

〉
,

where ϕ = 1+
√

5
2 .

The polytopes PT , PO and PI are respectively known as the
24-cell, the disphenoidal 288-cell and the 600-cell.

Chirivì-Spreafico’s method to PO yields a polyhedral fundamental
domain for O on ∂PO = S3, which we have to decompose.
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The chain complexes

Theorem (Chirivì–G.–Spreafico, 2020)
The sphere S3 admits an O-equivariant cellular decomposition
whose associated cellular homology complex is

Z[O]

(
1 − τi 1 − τj 1 − τk

)
∂3

// Z[O]3

(
ωi 1 τj − 1

τk − 1 ωj 1
1 τi − 1 ωk

)
∂2

// Z[O]3

(
τi − 1
τj − 1
τk − 1

)
∂1

// Z[O] ,

where

ω0 =
1 − i − j − k

2
, ωi =

1 + i − j − k
2

, ωj =
1 − i + j − k

2
, ωk =

1 − i − j + k
2

,

τi =
1 − i
√

2
, τj =

1 − j
√

2
, τk =

1 − k
√

2
.
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The chain complexes

Theorem (Chirivì–G.–Spreafico, 2020)
The sphere S3 admits an I-equivariant cellular decomposition
whose associated cellular homology complex is

Z[I]

t


σ−

i − 1
σ−

j − 1
σ+

j − 1
σ+

i − 1
σk − 1


∂3

// Z[I]5


σ+

j 0 0 1 −1
−1 σ+

i 0 0 1
1 −1 σk 0 0
0 1 −1 σ−

i 0
0 0 1 −1 σ−

j


∂2

// Z[I]5


σk − 1
σ−

i − 1
σ−

j − 1
σ+

j − 1
σ+

i − 1


∂1

// Z[I] ,

where

σ
±
i =

ϕ − ϕ−1 i ± j
2

, σ
±
j =

ϕ ± ϕ−1j + k
2

, σk =
ϕ − i − ϕ−1k

2
.
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What does it look like?

1

ωiωj

ωk

τi τj

τk

ω0

e1
2ωj

e1
3τi

e1
3ωk e1

1τj

e1
1ωi

e1
2τk

e1
1 e1

2

e1
3

σ+
k

1

σ−
j

σ−
i

σ−
k σ+

j

σ+
i

e1
2 e1

3

e1
4

e1
5

e1
1

e2
1

e2
3

e2
2

1

ωiωj

ωk

τi τj

τk

ω0 e2
3τk

e2
2τj

e2
1τi

ωiωj

ωk

τi τj

τk

ω0

e2
1

e2
5

e2
4

e2
3

e2
2 e2

3σ+
j

e2
2σ−

j

e2
1σ−

i

e2
5σk

e2
4σ+

i
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Application to H∗(O,Z) and H∗(I,Z)
Corollary
With the notations of the previous result, for q ≥ 1 and
G ∈ {O, I}, we let

∂4q−3 := ∂1, ∂4d−2 := ∂2, ∂4q−1 := ∂3, ∂4q :=
(∑

g∈G g
)

.

The following complex is a 4-periodic resolution of Z over Z[G ]

· · ·
∂4q−2 // Z[G ]k

∂4q−3 // Z[G ]
∂4q−4 // · · · ∂2 // Z[G ]k ∂1 // Z[G ] ε // Z

where k = 3 for G = O and k = 5 for G = I.

Taking the direct limit S∞ = lim−→ S4n−1, we obtain an equivariant
cell decomposition of the universal G-bundle, built inductively
using “curved joins”, starting with S3.
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Application to H∗(O,Z) and H∗(I,Z)

We recover that S3/I is a homology sphere (the Poincaré sphere).
The 4-periodic resolutions found for O and I allow to compute
their cohomology.

Corollary (Tomoda–Zvengrowski 2008, Chirivì–G.–Spreafico 2020)
The integral group cohomology of O (resp. I) is as follows:

Hq(O, Z) = Z if q = 0,

Hq(O, Z) = Z/48Z if 0 < q ≡ 0[4],

Hq(O, Z) = Z/2Z if q ≡ 2[4],

Hq(O, Z) = 0 otherwise

resp.


Hq(I, Z) = Z if q = 0,

Hq(I, Z) = Z/120Z if 0 < q ≡ 0[4]

Hq(I, Z) = 0 otherwise
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The cellular complex of Z[S3]-modules of FℓR(SL3)
Theorem (Chirivì–G.–Spreafico, 2020)
The real flag manifold FℓR(SL3) admits an S3-equivariant cell
structure with cellular chain complex CR

• given by

Z[S3]

(
1 − sβ 1 − w0 1 − sα

)
∂3

// Z[S3]3

(
sαsβ 1 w0 − 1

sα − 1 sαsβ 1
1 sβ − 1 sαsβ

)
∂2

// Z[S3]3

(
1 − sβ
1 − w0
1 − sα

)
∂1
// Z[S3] ,

where w0 = sαsβsα = sβsαsβ is the longest element of S3.

Homotopic to a complex with ranks 1, 2, 2, 1, but we have found
no geometric model for it.
Using GAP4 and CAP, we compute

EndDb(ZS3)(CR
• ) = EndKb(ZS3)(CR

• ) ≃ Z/2Z × Z[X ]/(X 2 − 9).
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The Z[S3]-module structure on cohomology
We may dualize the above complex to obtain the action of S3 on
the cohomology of FℓR(SL3).
More precisely, we have the following result:

Corollary
The Z[S3]-module H i(FℓR(SL3),Z) is either

Z if i = 0, 3
2F2 if i = 2
0 otherwise

where Z is the trivial module and 2F2 is the irreducible
F2[S3]-module of degree 2.

cf Rabelo–San Martin for H∗(FℓR(G),Z) as a graded Z-module.
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Cells of FℓR(SL3) constructed from geodesics of S3 and in fact
(open) geodesic simplices in FℓR(SL3).
Plan for SLn(R): define geodesic simplices on SO(n).

Many constraints on the complex: ranks, torsion-free homology,
characters, Euler characteristic, maybe Poincaré duality... We could
directly guess the complex, using GAP and CAP for instance.
Package developed with S. Posur to deal with free Z[G ]-modules.
G/B is the 0-fiber of the Springer sheaf K. It is used in
Borho-MacPherson’s proof of End(K0) = Q[W ].
W acts on the cohomology of other Springer fibers. Once the
problem is solved for G/B, we could try with other fibers e.g. by
finding homotopy equivalent spaces on which W acts.

Work in progress: the Z[W ]-complex of the torus and generalization
to compact hyperbolic Coxeter groups.

Classifying space BT of the torus T : W ⟳ T implies
W ⟳ BT ≃ (CP∞)r . Equivariant cell structure on BT ?
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Thank you !
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The complex for the first decomposition is

Z[S3]4 d3 // Z[S3]6 d2 // Z[S3]3 d1 // Z[S3] ,

where

d1 = (1 − sα 1 − sβ 1 − w0), d3 =


0 sα 0 1

−sβ sα 0 −w0 0
0 sβ sα 1 0
1 0 0 sβ sα

−sαsβ sαsβ 0 0
0 0 sαsβ −sαsβ

 ,

d2 =
(

−1 1 1 sα w0 − sαsβ sβ − sβ sα

sβ sα − sβ sα − 1 −w0 w0 sαsβ sαsβ
sβ sβ sα sα − 1 sαsβ − w0 −sβ sβ sα

)
.
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