Equivariant cellular structures on spheres and flag manifolds

Algebra/Topology Seminar, University of Copenhagen

Arthur Garnier joint work with R. Chirivì and M. Spreafico

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée Université de Picardie Jules Verne

February 15, 2021

Menu

2 Spherical space forms

3 Application to $\mathcal{F}\ell_{\mathbb{R}}(SL_3)$

The problem

Notation

- G a connected reductive complex algebraic group,
- *B* a Borel subgroup of *G*.
- Flag manifold is the homogeneous space $\mathcal{F}\ell_{\mathbb{C}}(G) := G/B$.
- The Weyl group W acts freely on it.
- T maximal torus in G, then $G/T \odot W$ and G/T is homotopy equivalent to G/B.
- In fact, if K maximal compact subgroup of G and $T_K := K \cap T \simeq U(1)^r$, then

$$\mathcal{F}\ell_{\mathbb{C}}(G) := G/B \stackrel{\text{diff}}{\simeq} K/T_{K} \odot W = N_{K}(T_{K})/T_{K} \simeq N_{G}(T)/T$$

- Question: Describe $R\Gamma(G/B,\mathbb{Z}) \in D^b(\mathbb{Z}W)$.
- More precisely: Describe $G/B = K/T_K$ as a *W*-equivariant cellular/simplicial complex.

Arthur Garnier

Example: type A

•
$$G = SL_n(\mathbb{C}), K = SU(n), T = S(U(1)^n)$$
 and $W = \mathfrak{S}_n$,

•
$$B = \begin{pmatrix} * & * & \dots & * \\ 0 & * & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & * \end{pmatrix}$$
 Borel subgroup,

•
$$G/B = \{ \text{flags } (0 = V_0 \subseteq V_1 \subseteq \ldots \subseteq V_n = \mathbb{C}^n) \},$$

•
$$K/T = \{ \text{decompositions } \mathbb{C}^n = L_1 \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus} L_n \} \odot \mathfrak{S}_n,$$

•
$$G/T^{\mathbb{C}} = \{ \text{decompositions } \mathbb{C}^n = L_1 \oplus \cdots \oplus L_n \} \odot \mathfrak{S}_n.$$

The example of SL_2

$$\mathcal{F}\ell(\mathit{SL}_2)\simeq \mathit{SU}(2)/\mathit{T}\simeq\mathbb{CP}^1\odot\mathfrak{S}_2=\langle s
angle,\;s(\mathit{L}_1\stackrel{ dot}{\oplus} \mathit{L}_2)=(\mathit{L}_2\stackrel{ dot}{\oplus} \mathit{L}_1).$$

 $s \cdot [1:z] = [-\overline{z}:1] = [1:-1/\overline{z}]$ antipode map!

$$\mathcal{C}_{\bullet} := \mathbb{Z}[\mathfrak{S}_2] \langle e_2 \rangle \xrightarrow{1+s} \mathbb{Z}[\mathfrak{S}_2] \langle e_1 \rangle \xrightarrow{1-s} \mathbb{Z}[\mathfrak{S}_2] \langle e_0 \rangle$$

$$\operatorname{End}_{D^b(\mathbb{Z}\mathfrak{S}_2)}(\mathcal{C}_{\bullet}) = \mathbb{Z}[\mathfrak{S}_2]$$

The Borel picture for $H^*(G/B, \mathbb{Q})$

• Action of W on $H^*(G/B, \mathbb{Q})$ is well-known:

$$H^*(G/B,\mathbb{Q})\simeq \mathbb{Q}[x_1,\ldots,x_n]_W = \frac{\mathbb{Q}[x_1,\ldots,x_n]}{\mathbb{Q}[x_1,\ldots,x_n]_+^W},$$

Isomorphism induced by $x_i \mapsto c_1(\mathcal{L}_i)$, with \mathcal{L}_i line bundle associated to the *i*th fundamental weight.

The ungraded $\mathbb{Q}[W]$ -module $H^*(G/B, \mathbb{Q})$ is the regular one.

• The Bruhat decomposition

$$G/B = \bigsqcup_{w \in W} BwB/B$$

is cellular and $\dim_{\mathbb{R}}(G/B) = \dim_{\mathbb{R}}(Bw_0B/B) = 2\ell(w_0) = 2|\Phi^+|, \text{ with } w_0 \in W \text{ the longest element and } \Phi \text{ the root system.}$

Arthur Garnier

The Goresky-Kottwitz-MacPherson graph

 $\{ \text{vertices} \} \leftrightarrow \{ \underline{T}\text{-fixed points} \}, \ \{ \text{edges} \} \leftrightarrow \{ \underline{T}\text{-orbits of dim 1} \}, \ \text{each edge} \leftrightarrow \ \overline{T}\text{-orbit} = \mathbb{CP}^1$

(a) The GKM graph

(b) Many SL₂ situations

 \rightsquigarrow 1-skeleton and part of the 2-skeleton, like for SL_2.

Arthur Garnier

Educated guess/hope

- Hope the complex has nice general combinatorial description.
- Hard to find a CW-structure. Try to guess ranks of free modules. Let

$${\mathcal P}^{\mathbb C}_W(q):=\sum_i \#\{W ext{-orbits of }k ext{-cells of }{\mathcal F}\ell_{\mathbb C}(G)\}q^i$$

and similarly consider $P_W^{\mathbb{R}}$ for the real points. Constraints: $\deg(P_W^{\mathbb{C}}) = 2|\Phi^+|$ and $P_W^{\mathbb{C}}(-1) = 1$.

Parametrization

 $\{k\text{-cells of } \mathcal{F}\ell_{\mathbb{R}}(G)\} \leftrightarrow \{k\text{-subsets of positive roots}\}.$

k-cells parametrized by *k* real parameters (one for each root). This would give $P_W^{\mathbb{R}}(q) = [2]_q^{|\Phi^+|}$. Recall that $[k]_q = 1 + q + \cdots + q^{k-1}$.

Educated guess/hope

 Missing cells in *Fℓ*_C(*G*): allow some parameters to take complex values.

Compatible with GKM.

Each positive root would have a multiplicity 0, 1 or 2

 \rightsquigarrow multiset of positive roots with multiplicity.

This gives
$${\mathcal P}_W^{\mathbb C}(q)=[3]_q^{|\Phi^+|}.$$

 \rightsquigarrow combinatorial flavour of the DeConcini-Salvetti complex.

Recall that the DeConcini-Salvetti complex is a free resolution of \mathbb{Z} over $\mathbb{Z}[W]$, with W finite Coxeter group, constructed using increasing chains of subsets of simple reflections.

For
$$SL_3$$
, $P_W^{\mathbb{R}}(q) = [2]_q^3 = q^3 + 3q^2 + 3q + 1$ and
 $P_W^{\mathbb{C}}(q) = [3]_q^3 = q^6 3q^5 + 6q^4 + 7q^3 + 6q^2 + 3q + 1.$

Educated guess/hope

 Another possible formula (involving only simple roots) for this number of orbits: ∏_i[2d_i − 1]_q, with (d_i)_i the degrees of W. Recall that the d_i's are the degrees of fundamental invariants of W and satisfy

$$\sum_i (d_i-1) = |\Phi^+|$$
 and $\prod_i d_i = |W|.$

Hence deg $(\prod_i [2d_i - 1]_q) = \sum_i (2d_i - 2) = 2|\Phi^+|$ and $\prod_i [2d_i - 1]_{-1} = 1$.

Over \mathbb{R} , similar considerations would give $\prod_i [d_i]_q$.

For SL_3 , gives $\mathcal{P}_W^{\mathbb{R}}(q) = [2]_q[3]_q = q^3 + 2q^2 + 2q + 1$ and $\mathcal{P}_W^{\mathbb{C}}(q) = [3]_q[5]_q = q^6 + 2q^5 + 3q^4 + 3q^3 + 3q^2 + 2q + 1$.

• $[3]_q^{|\Phi^+|}$ has a clear link with GKM and easier to pass from \mathbb{R} to \mathbb{C} , but $\prod_i [2d_i - 1]_q$ yields fewer cells.

Arthur Garnier

Educated guess/hope

We summarize the guess for the polynomials ${\cal P}_W^{\mathbb R}$ and ${\cal P}_W^{\mathbb C}$ in the following table

$P_W^{\mathbb{C}}(q)$	$[3]_{q}^{ \Phi^{+} }$	$\prod_i [2d_i - 1]_q$
$P^{\mathbb{R}}_W(q)$	$[2]_{q}^{ \Phi^{+} }$	$\prod_i [d_i]_q$

11 / 25

$\mathcal{F}\ell_{\mathbb{R}}(SL_3) \hookrightarrow \mathbb{P}(\mathcal{O}_{\min})(\mathbb{R}) \subset \mathbb{P}(\mathfrak{sl}_3(\mathbb{R})) = \mathbb{P}^7(\mathbb{R})$

Easier on \mathbb{R} because *W*-action is algebraic and dim_{\mathbb{R}} = 3 (not 6). Starting with the GKM graph, we found an equivariant decomposition of $\mathcal{F}\ell_{\mathbb{R}}(SL_3)$, with ranks 4, 6, 3, 1.

Doesn't satisfy the hope and complex homotopy equivalent to a smaller term with ranks 1, 3, 3, 1 and even 1, 2, 2, 1.

New look at SL_3/B

We look at $\mathcal{F}\ell_{\mathbb{R}}(SL_3) = SO(3)/S(O(1)^3) = SO(3)/\{\pm 1\}^2 \odot \mathfrak{S}_3.$

This last space is called a spherical space form.

Arthur Garnier

Finite groups acting freely on spheres

Theorem (Hopf 1925, Milnor 1957)

Any finite group acting freely and isometrically on \mathbb{S}^3 is isomorphic to one of the following groups:

• 1, \mathcal{O} , \mathcal{I} , quaternion groups $\mathcal{Q}_{8n} = \langle x, y \mid x^2 = (xy)^2 = y^{2n} \rangle$,

generalized dihedral groups

$$\mathcal{D}_{2^{k}(2n+1)} = \left\langle x, y \ | \ x^{2^{k}} = y^{2n+1} = 1, \ xyx^{-1} = y^{-1} \right\rangle, \ k \geq 2, \ n \geq 1,$$

3 generalized tetrahedral groups (including $T = P'_{24}$)

$$P_{8\cdot 3^{k}}' = \left\langle x, y, z \mid x^{2} = (xy)^{2} = y^{2}, \ zxz^{-1} = y, \ zyz^{-1} = xy, \ z^{3^{k}} = 1 \right\rangle, \ k \geq 1,$$

The product of any of these groups with a cyclic group of relatively prime order.

Arthur Garnier

Orbit polytopes

Free isometric action of a finite group $G \odot \mathbb{S}^n \ni v_0$.

The **orbit polytope** of *G* is $P_G := \operatorname{conv}(G \cdot v_0)$.

G acts on P_G and on its faces.

This action is free and the projection

$$\partial P_G \to \mathbb{S}^n$$

is a G-homeomorphism.

Theorem (*Fêmina–Galves–Manzoli Neto–Spreafico (2013), Chirivì–Spreafico (2017)*)

Assume that $\operatorname{span}(G \cdot v_0) = \mathbb{R}^{n+1}$. Then there is a system F_1, \ldots, F_r of orbit representatives for the G-action on facets of P_G such that $\bigcup_i F_i$ is a fundamental domain for G on ∂P_G .

Binary polyhedral groups

Besides cyclic and (binary) dihedral groups, \mathbb{S}^3 has three finite subgroups: the **binary poyhedral groups**. These are

$$\mathcal{T} := \left\langle i, \frac{-1+i+j+k}{2} \right\rangle, \quad \mathcal{O} := \left\langle \mathcal{T}, \frac{1+i}{\sqrt{2}} \right\rangle, \quad \mathcal{I} := \left\langle \mathcal{T}, \frac{\phi^{-1}+i+\phi j}{2} \right\rangle,$$

where $\phi = \frac{1+\sqrt{5}}{2}$.

The polytopes P_T , P_O and P_I are respectively known as the 24-cell, the disphenoidal 288-cell and the 600-cell.

Chirivì-Spreafico's method to $P_{\mathcal{O}}$ yields a polyhedral fundamental domain for \mathcal{O} on $\partial P_{\mathcal{O}} = \mathbb{S}^3$, which we have to decompose.

The chain complexes

Theorem (*Chiriv*ì–*G.–Spreafico, 2020*)

The sphere \mathbb{S}^3 admits an \mathcal{O} -equivariant cellular decomposition whose associated cellular homology complex is

$$\mathbb{Z}[\mathcal{O}] \xrightarrow{\begin{pmatrix} 1-\tau_i & 1-\tau_j & 1-\tau_k \end{pmatrix}}{\partial_3} \mathbb{Z}[\mathcal{O}]^3 \xrightarrow{\begin{pmatrix} \omega_i & 1 & \tau_j - 1 \\ \tau_k - 1 & \omega_j & 1 \\ 1 & \tau_i - 1 & \omega_k \end{pmatrix}}{\partial_2} \mathbb{Z}[\mathcal{O}]^3 \xrightarrow{\begin{pmatrix} \tau_i - 1 \\ \tau_j - 1 \\ \tau_k - 1 \end{pmatrix}}{\partial_1} \mathbb{Z}[\mathcal{O}] ,$$

where

$$\begin{split} \omega_0 &= \frac{1-i-j-k}{2}, \ \omega_i = \frac{1+i-j-k}{2}, \ \omega_j = \frac{1-i+j-k}{2}, \ \omega_k = \frac{1-i-j+k}{2}, \\ \tau_i &= \frac{1-i}{\sqrt{2}}, \ \tau_j = \frac{1-j}{\sqrt{2}}, \ \tau_k = \frac{1-k}{\sqrt{2}}. \end{split}$$

The chain complexes

Theorem (*Chiriv*)–*G.–Spreafico*, 2020)

The sphere \mathbb{S}^3 admits an $\mathcal{I}\text{-equivariant}$ cellular decomposition whose associated cellular homology complex is

$$\mathbb{Z}[\mathcal{I}] \xrightarrow{t \begin{pmatrix} \sigma_{i}^{-} - 1 \\ \sigma_{j}^{-} - 1 \\ \sigma_{i}^{+} - 1 \\ \sigma_{i}^{+} - 1 \\ \sigma_{k}^{-} - 1 \end{pmatrix}}_{\partial_{3}} \mathbb{Z}[\mathcal{I}]^{5} \xrightarrow{(\sigma_{i}^{+} - 1 \sigma_{i}^{-} - 0)}{\partial_{2}} \mathbb{Z}[\mathcal{I}]^{5} \xrightarrow{(\sigma_{i}^{-} - 1)}{\partial_{2}} \mathbb{Z}[\mathcal{I}]^{5} \xrightarrow{(\sigma_{k}^{-} - 1)}{\partial_{1}} \mathbb{Z}[\mathcal{I}] ,$$

where

$$\sigma_i^{\pm} = \frac{\phi - \phi^{-1}i \pm j}{2}, \ \sigma_j^{\pm} = \frac{\phi \pm \phi^{-1}j + k}{2}, \ \sigma_k = \frac{\phi - i - \phi^{-1}k}{2}.$$

What does it look like?

Arthur Garnier

Application to $H^*(\mathcal{O},\mathbb{Z})$ and $H^*(\mathcal{I},\mathbb{Z})$

Corollary

With the notations of the previous result, for $q\geq 1$ and ${\cal G}\in\{{\cal O},{\cal I}\},$ we let

$$\partial_{4q-3} := \partial_1, \quad \partial_{4d-2} := \partial_2, \quad \partial_{4q-1} := \partial_3, \quad \partial_{4q} := \left(\sum_{g \in G} g\right).$$

The following complex is a 4-periodic resolution of $\mathbb Z$ over $\mathbb Z[G]$

$$\cdots \xrightarrow{\partial_{4q-2}} \mathbb{Z}[G]^k \xrightarrow{\partial_{4q-3}} \mathbb{Z}[G] \xrightarrow{\partial_{4q-4}} \cdots \xrightarrow{\partial_2} \mathbb{Z}[G]^k \xrightarrow{\partial_1} \mathbb{Z}[G] \xrightarrow{\varepsilon} \mathbb{Z}$$

where k = 3 for G = O and k = 5 for G = I.

Taking the direct limit $\mathbb{S}^{\infty} = \varinjlim \mathbb{S}^{4n-1}$, we obtain an equivariant cell decomposition of the universal *G*-bundle, built inductively using "curved joins", starting with \mathbb{S}^3 .

Arthur Garnier

Application to $H^*(\mathcal{O},\mathbb{Z})$ and $H^*(\mathcal{I},\mathbb{Z})$

We recover that \mathbb{S}^3/\mathcal{I} is a homology sphere (the Poincaré sphere). The 4-periodic resolutions found for \mathcal{O} and \mathcal{I} allow to compute their cohomology.

Corollary (Tomoda–Zvengrowski 2008, Chirivi–G.–Spreafico 2020)

The integral group cohomology of \mathcal{O} (resp. \mathcal{I}) is as follows:

•	$H^q(\mathcal{O},\mathbb{Z})=\mathbb{Z}$	$ \ \ if \ \ q=0,$				
	$H^q(\mathcal{O},\mathbb{Z})=\mathbb{Z}/48\mathbb{Z}$	$\textit{if } 0 < q \equiv 0[4],$		$H^{q}(\mathcal{I},\mathbb{Z})=\mathbb{Z}$	$if \ q=0,$	
	$H^q(\mathcal{O},\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}$	if $q \equiv 2[4]$,	resp.	$H^q(\mathcal{I},\mathbb{Z})=\mathbb{Z}/120\mathbb{Z}$	if $0 < q \equiv 0[4]$	
	$H^q(\mathcal{O},\mathbb{Z})=0$	otherwise	($H^q(\mathcal{I},\mathbb{Z})=0$	otherwise	

The cellular complex of $\mathbb{Z}[\mathfrak{S}_3]$ -modules of $\mathcal{F}\ell_{\mathbb{R}}(SL_3)$

Theorem (*Chiriv*)–*G.–Spreafico*, 2020)

The real flag manifold $\mathcal{F}\ell_{\mathbb{R}}(SL_3)$ admits an \mathfrak{S}_3 -equivariant cell structure with cellular chain complex $\mathcal{C}_{\bullet}^{\mathbb{R}}$ given by

$$\mathbb{Z}[\mathfrak{S}_3] \xrightarrow{\begin{pmatrix} 1-s_\beta & 1-w_0 & 1-s_\alpha \\ & & \\$$

where $w_0 = s_\alpha s_\beta s_\alpha = s_\beta s_\alpha s_\beta$ is the longest element of \mathfrak{S}_3 .

Homotopic to a complex with ranks 1, 2, 2, 1, but we have found no geometric model for it.

Using GAP4 and CAP, we compute

$$\operatorname{End}_{D^{b}(\mathbb{Z}\mathfrak{S}_{3})}(\mathcal{C}^{\mathbb{R}}_{\bullet}) = \operatorname{End}_{\mathcal{K}^{b}(\mathbb{Z}\mathfrak{S}_{3})}(\mathcal{C}^{\mathbb{R}}_{\bullet}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}[X]/(X^{2}-9).$$

The $\mathbb{Z}[\mathfrak{S}_3]$ -module structure on cohomology

We may dualize the above complex to obtain the action of \mathfrak{S}_3 on the cohomology of $\mathcal{F}\ell_{\mathbb{R}}(SL_3)$.

More precisely, we have the following result:

Corollary

The $\mathbb{Z}[\mathfrak{S}_3]$ -module $H^i(\mathcal{F}\ell_{\mathbb{R}}(SL_3),\mathbb{Z})$ is either

$$\left\{egin{array}{ccc} \mathbb{Z} & \textit{if} \;\; i=0,3\ \mathbf{2}_{\mathbb{F}_2} & \textit{if} \;\; i=2\ 0 & \textit{otherwise} \end{array}
ight.$$

where \mathbb{Z} is the trivial module and $\mathbf{2}_{\mathbb{F}_2}$ is the irreducible $\mathbb{F}_2[\mathfrak{S}_3]$ -module of degree 2.

cf Rabelo–San Martin for $H^*(\mathcal{F}\ell_{\mathbb{R}}(G),\mathbb{Z})$ as a graded \mathbb{Z} -module.

- Cells of *F*ℓ_ℝ(*SL*₃) constructed from geodesics of S³ and in fact (open) geodesic simplices in *F*ℓ_ℝ(*SL*₃).
 Plan for *SL_n*(ℝ): define geodesic simplices on *SO*(*n*).
- Many constraints on the complex: ranks, torsion-free homology, characters, Euler characteristic, maybe Poincaré duality... We could directly guess the complex, using GAP and CAP for instance. Package developed with S. Posur to deal with free Z[G]-modules.
- G/B is the 0-fiber of the Springer sheaf \mathcal{K} . It is used in Borho-MacPherson's proof of $\operatorname{End}(\mathcal{K}_0) = \mathbb{Q}[W]$.

W acts on the cohomology of other Springer fibers. Once the problem is solved for G/B, we could try with other fibers e.g. by finding homotopy equivalent spaces on which W acts.

- Work in progress: the ℤ[W]-complex of the torus and generalization to compact hyperbolic Coxeter groups.
- Classifying space B_T of the torus $T: W \odot T$ implies $W \odot B_T \simeq (\mathbb{CP}^{\infty})^r$. Equivariant cell structure on B_T ?

Thank you !

The complex for the first decomposition is

$$\mathbb{Z}[\mathfrak{S}_3]^4 \xrightarrow{d_3} \mathbb{Z}[\mathfrak{S}_3]^6 \xrightarrow{d_2} \mathbb{Z}[\mathfrak{S}_3]^3 \xrightarrow{d_1} \mathbb{Z}[\mathfrak{S}_3] ,$$

where

$$d_1 = \begin{pmatrix} 1 - s_{\alpha} & 1 - s_{\beta} & 1 - w_0 \end{pmatrix}, \ d_3 = \begin{pmatrix} 0 & s_{\alpha} & 0 & 1 \\ -s_{\beta}s_{\alpha} & 0 & -w_0 & 0 \\ 0 & s_{\beta}s_{\alpha} & 1 & 0 \\ 1 & 0 & 0 & s_{\beta}s_{\alpha} \\ -s_{\alpha}s_{\beta} & s_{\alpha}s_{\beta} & 0 & 0 \\ 0 & 0 & s_{\alpha}s_{\beta} & -s_{\alpha}s_{\beta} \end{pmatrix},$$

$$d_2 = \begin{pmatrix} -1 & 1 & 1 & s_\alpha & w_0 - s_\alpha s_\beta & s_\beta - s_\beta s_\alpha \\ s_\beta s_\alpha - s_\beta & s_\alpha - 1 & -w_0 & w_0 & s_\alpha s_\beta & s_\alpha s_\beta \\ s_\beta s_\beta s_\alpha & s_\alpha - 1 & s_\alpha s_\beta - w_0 & -s_\beta & s_\beta s_\alpha \end{pmatrix}.$$