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Introduction
Maximal tori and extensions

Flag manifolds

RΓ(X ,Z) ∈ Db(Z[W ]) and equivariant cellular structures

discrete group W ⟳ X topological space

⇝ W ⟳ H∗(X ,Z) = H∗(RΓ(X ,Z)).
Also, RΓ(X ,Z) ∈ Db(Z[W ]), but how to compute RΓ(X ,Z)?

Definition
A CW-structure on X is W -equivariant if

W acts on cells
For e ⊂ X a cell and w ∈ W , if we = e then w|e = ide .

Associated cellular chain complex: C cell
∗ (X , W ;Z) ∈ Cb(Z[W ]).

Theorem
The complex C∗

cell(X , W ;Z) is well-defined up to homotopy and
C∗

cell(X , W ;Z) ∼= RΓ(X ,Z) in Db(Z[W ]).
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Illustration: {±1} ⟳ S2 ⊂ R3

C2 = {1, s} acts on S2 via the antipode s : x 7! −x . We construct
a C2-equivariant cellular structure as follows:

s · e0 e0

e1

s · e1

e2

s · e2

Cochain complex

C∗
cell(S2, C2;Z) =

(
Z[C2] ⟨e∗

2⟩ Z[C2] ⟨e∗
1⟩1+soo Z[C2] ⟨e∗

0⟩1−soo
)

so RΓ(S2,Q) ≃ 1⊕ ε[−2] and RΓ(S2,F2) has cohomology
H∗(S2,F2) = 1⊕ 1[−2], however, RΓ(S2,F2) is indecomposable...
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Maximal tori and extensions

Flag manifolds

Tori: the simply-connected case
K simple compact Lie group of rank n such that π1(K ) = 1,
T ≃ (S1)n maximal torus, W := NK (T )/T Weyl group.
W ⟳ T , e.g. Sn+1

⟳ S(U(1)n+1) < SU(n + 1).

Problem (A)
Exhibit a W -equivariant triangulation of T .

t/Λ ∼
−!
exp

T where t := Lie(T ) and Λ = cocharater lattice.
⇝ WΛ-triangulation for WΛ := Λ ⋊ W ⟳

t.
π1(K ) = 1 ⇒ Λ = ZΦ∨ and WΛ = Wa is the affine Weyl group.

Theorem (A1)
The fundamental alcove induces a Wa-triangulation of t, yielding a
W -triangulation of T . The W -dg-ring C cell

∗ (T , W ;Z) is described
in terms of parabolic cosets of Wa and deflation DefWa

W .

Arthur Garnier December 10th, 2021 4 / 23
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Example in type A2

α∨

β∨ α∨
0

2

21121

12

1

(a) Fundamental chamber (in
blue) and its S3-translates.

α∨

β∨ α∨
0

2

21121

12

1

(b) What if we add a wall?

α∨

β∨ α∨
0

1

2

21

12

121

0

(c) Alcoves for
(S3)a = ⟨1, 2, 0⟩.

Figure: Chambers subdivided into alcoves.

1 2

0

(a) Dynkin diagram of Ã2.

α∨

β∨ α∨
0

1

2

21

12

121

010

20120

2101210

01101

102

1020

1201

12101

21020 2102

2101

201

020

02

(b) Fundamental alcove and
some of its (S3)a-translates.

(c) Resulting S3-triangulation
of S(U(1)3) ≃ (S1)2.

Figure: Triangulation of the torus S(U(1)3) of SU(3).

The complex C cell
∗ (S(U(1)3),S3;Z) is given by

Z[S3]
( 1 1 −1 ) // Z[S3/ ⟨ sβ ⟩ ] ⊕ Z[S3/ ⟨ sαsβsα ⟩ ] ⊕ Z[S3/ ⟨ sα ⟩ ]

(
−1 1 0
0 −1 1

−1 0 1

)
// Z3.
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Type Affine Dynkin diagram Fundamental group Ω ≃ P/Q

Ã1 1 0
∞

Z/2Z

Ãn (n ≥ 2)
1 2

· · ·
n − 1 n

0
Z/(n + 1)Z

B̃n (n ≥ 3) 1
0 2 3

· · ·
n − 1 n Z/2Z

C̃n (n ≥ 2) 0 1 2
· · ·

n − 1 n Z/2Z

D̃n (n ≥ 4) 1
0 2 3

· · ·
n − 2

n
n − 1

{
Z/2Z ⊕ Z/2Z if n even

Z/4Z if n is odd

Ẽ6 1 3 4
5 6

2 0
Z/3Z

Ẽ7

1 3 4 5 6

2

70
Z/2Z

Ẽ8

1 3 4 5 6

2

7 08
1

F̃4 0 1 2 3 4 1

G̃2 1 2 0 1

Arthur Garnier December 10th, 2021 6 / 23
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The general case: barycentric subdivision
Other extreme case: the adjoint group, i.e. Y = P∨ is the coweight
lattice and Ŵa = P∨ ⋊ W is the extended affine Weyl group.

Theorem (A2)
The barycentric subdivision of the fundamental alcove induces a
Ŵa-equivariant triangulation of t. The same holds for any
W -lattice Q∨ ⊂ Λ ⊂ P∨ and the intermediate group WΛ.

ϖ∨
α

ϖ∨
β

0

StabŴa
(A) = {1, ωα, ωβ} ≃ Z/3Z with ωβ rotation of the triangle

with angle 2π/3. The complex for P(S(U(1)3)) < PSU(3) is

Z[S3]2

( 1 0 −1 1
0 1 −1 sβ sα

)
// Z[S3/ ⟨ sβ ⟩ ] ⊕ Z[S3/ ⟨ sα ⟩ ] ⊕ Z[S3]2

(
−1 1 0
−1 sβ sα 0
−1 0 1
0 −1 1

)
// Z ⊕ Z[S3/ ⟨ sβ ⟩ ] ⊕ Z[S3/ ⟨ sαsβ ⟩ ].

Arthur Garnier December 10th, 2021 7 / 23
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lattice and Ŵa = P∨ ⋊ W is the extended affine Weyl group.

Theorem (A2)
The barycentric subdivision of the fundamental alcove induces a
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Compact hyperbolic extensions
The combinatorics of the complex in the case π1(K ) = 1 makes
sense for any (irreducible) Coxeter system (W , S), with an
additional reflection rW ∈ W . Geometric meaning?

Find a reflection giving a “nice” Coxeter extension (Ŵ , S ∪ {ŝ0})?
“True tori”: W Weyl, rW = sα̃ (highest root), Ŵ = Wa.

“Non-crystallographic tori”: rW s.t. Ŵ is compact hyperbolic.
Extension Coxeter graph

Î2(m) (m ≡ 1[2])
m

mm

Î2(m) (m ≡ 0[4]) m m

Î2(m) (m ≡ 2[4]) m/2 m

Ĥ3 5 5

Ĥ4 5 5

Arthur Garnier December 10th, 2021 8 / 23
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Î2(m) (m ≡ 0[4]) m m
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The non-commutative lattice Q and the manifold T(W )
Sending ŝ0 ∈ Ŵ to rW ∈ W induces a surjection π : Ŵ −↠W
and we have Ŵ = Q ⋊ W , where the torsion-free subgroup

Q := ker(π) =
〈

(ŝ0rW )Ŵ
〉
◁ Ŵ

is ZΦ∨ in the crystallographic case and a non-commutative
analogue otherwise.

Consider the Coxeter complex

Σ(Ŵ ) :=

 ⋃
w∈Ŵ

w(C \ {0})

 /R∗
+,

where C is the fundamental chamber of Ŵ . We define

T(W ) := Σ(Ŵ )/Q.

This is a maximal torus in the crystallographic case and an
“analogue” otherwise.

Arthur Garnier December 10th, 2021 9 / 23



Introduction
Maximal tori and extensions

Flag manifolds

The non-commutative lattice Q and the manifold T(W )
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The example of I2(5)
For W = I2(5), the simplicial structure of Σ( ̂I2(5)) induces a
tessellation of the hyperbolic plane H2 (associated to the Tits
form of ̂I2(5)) which projects on the Poincaré disk as follows:

(a) The plane H2 and
the Poincaré disk.

(b) The tessellation
Σ(Î2(5)).

(c) Fundamental
domain for Q.

(d) Q-orbit of the
fundamental triangle.

Let I2(5) =
〈

s1, s2
∣∣ s2

1 = s2
2 = (s1s2)5 = 1

〉
. The complex Ccell

∗ (T(I2(5)), I2(5);Z) is

Z[I2(5)]
( 1 1 −1 )// Z[I2(5)/ ⟨ s2 ⟩ ] ⊕ Z[I2(5)/ ⟨ ss2s1

1 ⟩ ] ⊕ Z[I2(5)/ ⟨ s1 ⟩ ]

(
−1 1 0
0 −1 1

−1 0 1

)
// Z3.

Arthur Garnier December 10th, 2021 10 / 23
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Flag manifolds

Properties of T(W )

Theorem (A3)
The space T(W ) is a W -triangulated orientable compact
Riemannian manifold and T(W ) ≃ K (Q, 1) ≃ BQ. If W is a Weyl
group, then T(W ) is a torus and otherwise, T(W ) is hyperbolic.

Example
T(I2(2g + 1)), T(I2(4g)) and T(I2(4g + 2)) are arithmetic
Riemann surfaces of genus g and rational elliptic curves for g = 1.
⇝ unusual point of view on tori!

We give a presentation of π1(T(W )) ≃ Q and describe the
W -dg-ring of T(W ), which is the one we want.
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Introduction
Maximal tori and extensions

Flag manifolds

Properties of T(W )

Theorem (A3)
The space T(W ) is a W -triangulated orientable compact
Riemannian manifold and T(W ) ≃ K (Q, 1) ≃ BQ. If W is a Weyl
group, then T(W ) is a torus and otherwise, T(W ) is hyperbolic.

Example
T(I2(2g + 1)), T(I2(4g)) and T(I2(4g + 2)) are arithmetic
Riemann surfaces of genus g and rational elliptic curves for g = 1.
⇝ unusual point of view on tori!

We give a presentation of π1(T(W )) ≃ Q and describe the
W -dg-ring of T(W ), which is the one we want.

Arthur Garnier December 10th, 2021 11 / 23



Introduction
Maximal tori and extensions

Flag manifolds

Properties of T(W )

Theorem (A3)
The space T(W ) is a W -triangulated orientable compact
Riemannian manifold and T(W ) ≃ K (Q, 1) ≃ BQ. If W is a Weyl
group, then T(W ) is a torus and otherwise, T(W ) is hyperbolic.

Example
T(I2(2g + 1)), T(I2(4g)) and T(I2(4g + 2)) are arithmetic
Riemann surfaces of genus g and rational elliptic curves for g = 1.
⇝ unusual point of view on tori!

We give a presentation of π1(T(W )) ≃ Q and describe the
W -dg-ring of T(W ), which is the one we want.
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Flag manifolds

Properties of T(W )
Proposition
H∗ := H∗(T(W ),Z) is torsion-free, with palindromic Betti numbers
(by Poincaré duality). We have H0 = 1, Hn = sgn and the
geometric representation of W is a direct summand of H1 ⊗ QW .

Remark
T(H4) is the Davis hyperbolic 4-manifold (1985) and T(H3) is the
Zimmermann hyperbolic 3-manifold (1993). Their Betti numbers
are b∗(T(H3)) = (1, 11, 11, 1) and b∗(T(H4)) = (1, 24, 72, 24, 1).

Finally, if W (q) (resp. Ŵ (q)) is the Poincaré series of W (resp. of
Ŵ ) then, as for tori,

χ(T(W )) = W (q)
Ŵ (q)

∣∣∣∣∣
q=1

.
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Ŵ ) then, as for tori,

χ(T(W )) = W (q)
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Flag manifolds

Second problem: flag manifolds
Notation

G a connected reductive complex algebraic group,
B a Borel subgroup of G , TC < G maximal torus such that
TC < B.
W := NG(TC)/TC the Weyl group.
Flag manifold: the homogeneous space FG(C) := G/B.
If K maximal compact subgroup of G and
T := K ∩ TC ≃ (S1)r , then

FG(C) := G/B diff≃ K/T ⟲ W = NK (T )/T .

Problem (B)
Describe G/B = K/T as a W -equivariant CW-complex.
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Example: type A
G = SLn(C), K = SU(n), T = S(U(1)n) and W = Sn,

B =


∗ ∗ ... ∗

0 ∗
...

... . . . . . . ∗
0 ... 0 ∗

 Borel subgroup,

G/B = {flags (0 = V0 ⊆ V1 ⊆ . . . ⊆ Vn = Cn)},
K/T = {decompositions Cn = L1

⊥
⊕ · · ·

⊥
⊕ Ln} ⟲ Sn,

G/TC = {decompositions Cn = L1 ⊕ · · · ⊕ Ln} ⟲ Sn.

Example

FSL2(C) ≃ U(2)/U(1)2 ≃ CP1 ⟲ S2 = ⟨s⟩, s(L1
⊥
⊕ L2) = L2

⊥
⊕ L1.

[1 : z ] · s = [−z : 1] = [1 : −1/z ]

⇝ antipode on S2, as in the example of the introduction.
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Flag manifolds

A first decomposition of F3(R) := FSL3(R) = SL3(R)/B
Omin := SL3(C) ·

( · · 1
· · ·
· · ·

)
minimal nilpotent orbit, then

F3(C) = P(Omin) ⊂ P(sl3) ≃ CP7, so F3(R) ↪! RP7.

Using the
GKM graph of S3, construct an equivariant structure on F3(R).

w0

sαsβ sβsα

sα sβ

1

(a) GKM graph

w0

sαsβ sβsα

sα sβ

1

(b) SL2 situations (c) 3-cells of F3(R)

Theorem (B1)

F3(R) admits an S3-cellular structure whose cellular chain
complex has the shape Z[S3]4 ! Z[S3]6 ! Z[S3]3 ! Z[S3].
There is an S3-isomorphism F2[x , y , z ]S3 ! H∗(F3(R),F2)
sending x, y and z to irreducible real algebraic 1-cocycles.
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Maximal tori and extensions

Flag manifolds

New look at F3(R)
Recall F3(R) = SO(3)/S(O(1)3) = SO(3)/{±1}2 ⟲ S3.

S3 ⟲ Q8 ⋊S3 = O =
〈
i , 1√

2(1 + j)
〉

SO(3) ⟲ {±1}2 ⋊S3 = W (D3) = S4

SO(3)/{±1}2 ⟲ S3

S3/O ⟲ 1

where O is the binary octahedral group. This last space is called
a spherical space form. Construct an O-cellular structure on S3?
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The complex 1, 3, 3, 1 for F3(R)
Theorem (B2)
The real flag manifold F3(R) ≃ S3/Q8 admits an S3-equivariant
cell structure with cellular chain complex given by

Z[S3]

(
1 − sβ 1 − w0 1 − sα

)
∂3

// Z[S3]3

(
sαsβ 1 w0 − 1

sα − 1 sαsβ 1
1 sβ − 1 sαsβ

)
∂2

// Z[S3]3

(
1 − sβ
1 − w0
1 − sα

)
∂1
// Z[S3],

w0 = sαsβsα = sβsαsβ being the longest element of S3 = ⟨sα, sβ⟩.

Remark

We also treat the case of the binary icosahedral group I.
S3 = Spin(3) but other Spin(n) groups are complicated.
but the 1-cells of S3 and F3(R) are geodesics!
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Flag manifolds

Dirichlet-Voronoi fundamental domains in general
(M, g) complete, connected Riemannian N-manifold, d geodesic
distance and W ≤ Isom(M, g) discrete and x0 ∈ M regular point.
The Dirichlet-Voronoi domain (centered at x0) is

DV := {x ∈ M ; d(x0, x) ≤ d(wx0, x), ∀w ∈ W },

the w -dissecting hypersurface is Hw := {d(x0, x) = d(wx0, x)}.

Proposition

DV is a star-shaped fundamental domain for W ⟳ M.
If DV ⊂ Bg(x0, ρ) for 0 < ρ < injx0(M), where injx0(M) is the
injectivity radius of M at x0, then

◦
DV is a N-cell. Moreover

in this case, we have a homeomorphism ∂DV ≃ SN−1.

We hope to build an equivariant cell structure from DV, where the
lower cells should be intersections of walls DV ∩ Hw .
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The case of flag manifolds: first result
In general, K/T admits a normal homogeneous metric (i.e.
coming from a bi-invariant one on K , e.g. induced by the Killing
form κ). We consider the Dirichlet-Voronoi domain

DV := {x ∈ K/T ; d(1, x) ≤ d(w , x), ∀w ∈ W }.

Example
For Fn(C) := SU(n)/S(U(1)n) and X , Y ∈ su(n), we have
κ(X , Y ) = 2ntr (XY ).

Conjecture: DV ⊂ B(1, inj(K/T )). First step:

Lemma
inj(Fn(C), κ) ≥ π

√
n/2,

inj(Fn(R), κ) = π
√

n = d(1, sα) for any α ∈ Φ+.
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A new structure on F3(R)
Proposition
Let DV3 ⊂ F3(R) Dirichlet-Voronoi domain. Then

max
x∈DV3

d(1, x) = 4
√

3 arccos(1/2 +
√

2/4) ≈ 3.7969 < 5.4414 ≈ π
√

3 = inj(F3(R)).

Theorem (B3)
The walls of DV3 induce an S3-cell structure on F3(R) with chain
complex of the form Z[S3] ! Z[S3]7 ! Z[S3]12 ! Z[S3]6.

a

b

aba

ba

abba

ab

Figure: The 2-cells of F3(R)
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Summarizing

Problem A: Maximal tori Problem B: Flag manifolds
Theorem A1: Equivariant triangulation
of T < K and dg-ring in the case
π1(K ) = 1.

Theorem B1: Equivariant cell structure on
F3(R) := SO(3)/S(O(1)3) using P(Omin)
and the GKM graph.

Theorem A2: Equivariant triangulation
of T < K in the general case using
barycentric subdivision of alcoves.

Theorem B2: Equivariant cell structure on
F3(R) from the binary octahedral group
O < S3 of order 48.

Theorem A3: Construction of a
W -triangulated analogue of tori for all
finite irreducible Coxeter groups.

Theorem B3: Equivariant cell structure on
F3(R) from a normal homogeneous metric
and a Dirichlet-Voronoi fundamental domain.
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Perspectives

Work in progress: cell structure on Fn(R) using the domain DV.
Then extend to Fn(C) and to other types.

G ⟳ g ⊃ N nilpotent cone and Ñ := {(x , b) ∈ N × B ; x ∈ b}.
Springer resolution π : Ñ ↠ N and Springer fibers Bx := π−1(x).
W acts on RΓ(Bx ,Q) but not on Bx itself. B0 = G/B is an actual
W -space. Springer theory was a motivation for Problem B.

The étale case of tori? Take the Frobenius into account!

If W complex reflection group, possible to construct a (compact)
W -manifold generalizing T(W )?

Equivariant cell structure for W ⟳ BT ≃ (CP∞)n? Geometric
meaning of Koszul duality between H•(BT ,Q) = S•(t) and
H•(T ,Q) = Λ•(t∗)?
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Thank you !
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