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Introduction

RT(X,Z) € D°(Z[W]) and equivariant cellular structures

discrete group W C X topological space
~ W C H*(X,Z) = H*(RI'(X,Z2)).
Also, RT(X,Z) € DP(Z[W]), but how to compute RI(X,Z)?
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RT(X,Z) € D°(Z[W]) and equivariant cellular structures

discrete group W C X topological space
~ W & H*(X,Z) = H*(RT(X,Z)).
Also, RT(X,Z) € DP(Z[W]), but how to compute RI(X,Z)?

Definition

A CW-structure on X is W-equivariant if

@ W acts on cells

@ Forec X acelland w € W, if we = e then We = ide.
Associated cellular chain complex: CS (X, W;Z) € Ch(Z[W]).
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Introduction

RT(X,Z) € D°(Z[W]) and equivariant cellular structures

discrete group W C X topological space
~ W C H*(X,Z) = H*(RI'(X,Z2)).
Also, RT(X,Z) € DP(Z[W]), but how to compute RI(X,Z)?

Definition

A CW-structure on X is W-equivariant if

@ W acts on cells

@ Forec X acelland w € W, if we = e then We = ide.
Associated cellular chain complex: C&(X, W;Z) € Cp(Z[W])

v

The complex C},,(X, W;Z) is well-defined up to homotopy and
C:y(X, W, Z) = RI(X,Z) in DP(Z[W]).

cell

v

™ = = -
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Introduction

llustration: {£1} ¢ S? C R?

G = {1, s} acts on S? via the antipode s : x — —x. We construct
a (y-equivariant cellular structure as follows:
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Introduction

llustration: {£1} ¢ S? C R?

G = {1, s} acts on S? via the antipode s : x — —x. We construct
a (y-equivariant cellular structure as follows:

€

Chain complex given by

Cel(S?, G Z) = ( Z[Co] (e2) — > Z[Go] (1) —= Z[Co] (eo) )
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Introduction

llustration: {£1} ¢ S? C R?

G = {1, s} acts on S? via the antipode s : x — —x. We construct
a (y-equivariant cellular structure as follows:

€2

Cochain complex

Cen(8?. Coi2) = ( ZICal(e5) S ZICal (ef) <= ZICal () )
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Introduction

llustration: {£1} ¢ S? C R?

G = {1, s} acts on S? via the antipode s : x — —x. We construct
a (y-equivariant cellular structure as follows:

€2

s " €

s-e
Cochain complex

* x\ _Lts xy _L1—S *
Cen(8?. Coi2) = ( ZICal(e5) S ZICal (ef) <= ZICal () )
so RI(S?,Q) ~ 1 & ¢[—2] and RI(S?,F2) has cohomology

H*(S?,F,) = 1 @ 1[-2], however, RT(S?,F,) is indecomposable...
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Maximal tori and extensions

Tori: the simply-connected case

K simple compact Lie group of rank n such that 71(K) =1,
T ~ (SY)" maximal torus, W := Nk(T)/T Weyl group.
WcT, eg G, CSUQ)™Y <SU(n+1).
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T ~ (SY)" maximal torus, W := Nk(T)/T Weyl group.
WcT, eg G, CSUQ)™Y <SU(n+1).

Problem (A)

Exhibit a W-equivariant triangulation of T.

t/N\ ?N[; T where t := Lie(T) and A = cocharater lattice.
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Maximal tori and extensions

Tori: the simply-connected case

K simple compact Lie group of rank n such that 71(K) =1,
T ~ (SY)" maximal torus, W := Nk(T)/T Weyl group.
WcCT, eg G,1CSUQ)™L) < SU(n+1).

Problem (A)

Exhibit a W-equivariant triangulation of T.

t/N\ ?N[; T where t := Lie(T) and A = cocharater lattice.

~>  Wh-triangulation for Wy :=Ax W C t.
m(K)=1 = A=Z®" and W) = W, is the affine Weyl group.

Theorem (A1)

The fundamental alcove induces a W,-triangulation of t, yielding a
W -triangulation of T. The W-dg-ring C"(T, W;Z) is described
in terms of parabolic cosets of W, and deflation Def wa.

™ (il = =
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Maximal tori and extensions

Example in type A,

(C) Alcoves for
(63)a = (1,2,0).

(a) Fundamental chamber (in

i ?
blue) and its G3-translates. (b) What if we add a wall?

Figure: Chambers subdivided into alcoves.
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Maximal tori and extensions

Example in type A,

1 2

Resultlng S3-triangulation
~ (')

1( 2101 i
(a) Dynkin diagram of :4\;
of S

(b) Fundamental alcove and
some of its (S3),-translates.

Figure: Triangulation of the torus S(U(1)3) of SU(3).

The complex Ce(S(U(1)3), &3;7Z) is given by
(11-1) - (E1731}> 3
Z]&s] ——————> Z[&3/ (55 )] ® Z[G3/ ( saspsa )| D L[G3/ (50 )] — = Z°.
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Maximal tori and extensions

Type Affine Dynkin diagram Fundamental group Q ~ P/Q
— )
o—e
At 2 H ZJ2Z
_ 0
An(n>2) . = Z/(n+1)Z
1 2 n—1 n
~ 1
B, (n>3 i>0—0— 2/22
o (n ) 0 2 3 n— n /
~ (=
G (n>2) =13 ] 7/22
1 n Z/2Z & ZJ27 if n even
>
e e T
2 0
Es Z/3L
o I 3 1 /
5 6
2
E 7.)2Z.
0 1 3 4 5 6 7
2
Es 1
1 3 4 5 6 7 8 0
= o o> o
Fa 0 I 273 4 1
G =3 1
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Maximal tori and extensions

The general case: barycentric subdivision

Other extreme case: the adjoint group, i.e. Y = PV is the coweight
lattice and W, = PY x W is the extended affine Weyl group.
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Maximal tori and extensions

The general case: barycentric subdivision

Other extreme case: the adjoint group, i.e. Y = PV is the coweight
lattice and W, = PY x W is the extended affine Weyl group.

Theorem (A2)

The barycentric subdivision of the fundamental alcove induces a
W, -equivariant triangulation of t. The same holds for any
W-lattice @ C A C PV and the intermediate group Wh.
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Maximal tori and extensions

The general case: barycentric subdivision

Other extreme case: the adjoint group, i.e. Y = PV is the coweight
lattice and W, = PY x W is the extended affine Weyl group.

Theorem (A2)

The barycentric subdivision of the fundamental alcove induces a
W, -equivariant triangulation of t. The same holds for any
W-lattice @ C A C PV and the intermediate group Wh.

Stabi- (A) = {1, wa,ws} = Z/3Z with wg rotation of the triangle
with angle 27/3. The complex for P(S(U(1)3)) < PSU(3) is

Arthur Garnier December 10th, 2021 7/23



Maximal tori and extensions

Compact hyperbolic extensions

The combinatorics of the complex in the case m1(K) = 1 makes
sense for any (irreducible) Coxeter system (W, S), with an
additional reflection ry € W. Geometric meaning?
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sense for any (irreducible) Coxeter system (W, S), with an
additional reflection ry € W. Geometric meaning?

Find a reflection giving a “nice” Coxeter extension (W, SU{s})?
“True tori": W Weyl, rny = s (highest root), W= W,.

“Non-crystallographic tori": ry s.t. W is compact hyperbolic.
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Maximal tori and extensions

Compact hyperbolic extensions

The combinatorics of the complex in the case m1(K) = 1 makes
sense for any (irreducible) Coxeter system (W, S), with an
additional reflection ry € W. Geometric meaning?

Find a reflection giving a “nice” Coxeter extension (W, SU{s})?
“True tori": W Weyl, rny = s (highest root), W= W,.

“Non-crystallographic tori": ry s.t. W is compact hyperbolic.

[ Extension | Coxeter graph \
o(m) (m = 1[2]) nﬁn
l2(m) (m = 0[4]) M o™ o
lo(m) (m = 2[4]) m/2 m
Hs 5 5
Ha 5 5

Arthur Garnier December 10th, 2021 8 /23



Maximal tori and extensions

The non-commutative lattice @ and the manifold T(W)

Sending 5 € ZV to ryy € W induces a surjection 7 : W— W
and we have W = @ x W, where the torsion-free subgroup

o~

Q = ker(w) = <(§orW)W> aw

is Z®" in the crystallographic case and a non-commutative
analogue otherwise.
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Maximal tori and extensions

The non-commutative lattice @ and the manifold T(W)

Sending 5 € ZV to ryy € W induces a surjection 7 : W— W
and we have W = @ x W, where the torsion-free subgroup

o~

Q = ker(w) = <(§orW)W> aw

is Z®" in the crystallographic case and a non-commutative
analogue otherwise. Consider the Coxeter complex

(W) := ( U w(C\ {0})) JR%,

wew
where C is the fundamental chamber of W. We define
T(W) = Z(W)/Q.

This is a maximal torus in the crystallographic case and an

“analogue” otherwise.
Arthur Garnier December 10th, 2021 9 /23



Maximal tori and extensions

The example of /(5)

For W = k(5), the simplicial structure of ¥(/(5)) induces a
tessellation of the hyperbolic plane H? (associated to the Tits
form of k(5)) which projects on the Poincaré disk as follows:

(a) The plane H? and (b) The tessellation

—

the Poincaré disk. Y (h(5)).
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Maximal tori and extensions

The example of /(5)

For W = k(5), the simplicial structure of ¥(/(5)) induces a
tessellation of the hyperbolic plane H? (associated to the Tits
form of k(5)) which projects on the Poincaré disk as follows:

(c) Fundamental (d) Q-orbit of the
domain for Q. fundamental triangle.

The surface T(/(5)) is obtained by gluing the triangles of a same
orbit e.g. the green ones in the last figure.
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Maximal tori and extensions

The example of /(5)

For W = k(5), the simplicial structure of ¥(/(5)) induces a
tessellation of the hyperbolic plane H? (associated to the Tits
form of k(5)) which projects on the Poincaré disk as follows:

(c) Fundamental (d) Q-orbit of the
domain for Q. fundamental triangle.

Let h(5) = <51752 | Sf = 522 = (5152)5 -1 > The complex Cfe“(T(b(S)), h(5);7) is
26() L 20n(5)/ ()] @ ZI6(5)/  2) @ ZlR(5)/ (51)] @ 73,
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Maximal tori and extensions

Properties of T(W)

Theorem (A3)

The space T(W) is a W-triangulated orientable compact
Riemannian manifold and T(W) ~ K(Q,1) ~ Bq. If W is a Weyl
group, then T(W) is a torus and otherwise, T(W) is hyperbolic.
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Maximal tori and extensions

Properties of T(W)

Theorem (A3)

The space T(W) is a W-triangulated orientable compact
Riemannian manifold and T(W) ~ K(Q,1) ~ Bq. If W is a Weyl
group, then T(W) is a torus and otherwise, T(W) is hyperbolic.

T(h(2g + 1)), T(h(4g)) and T(h(4g + 2)) are arithmetic
Riemann surfaces of genus g and rational elliptic curves for g = 1.
~> unusual point of view on tori!
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Maximal tori and extensions

Properties of T(W)

Theorem (A3)

The space T(W) is a W-triangulated orientable compact
Riemannian manifold and T(W) ~ K(Q,1) ~ Bq. If W is a Weyl
group, then T(W) is a torus and otherwise, T(W) is hyperbolic.

T(h(2g + 1)), T(h(4g)) and T(h(4g + 2)) are arithmetic
Riemann surfaces of genus g and rational elliptic curves for g = 1.
~> unusual point of view on tori!

We give a presentation of m1(T(W)) ~ Q and describe the
W-dg-ring of T(W), which is the one we want.
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Maximal tori and extensions

Properties of T(W)

Proposition

H, := H.(T(W),Z) is torsion-free, with palindromic Betti numbers
(by Poincaré duality). We have Hy = 1, H, = sgn and the
geometric representation of W is a direct summand of H; @ Q.
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Maximal tori and extensions

Properties of T(W)

Proposition

H, := H.(T(W),Z) is torsion-free, with palindromic Betti numbers
(by Poincaré duality). We have Hy = 1, H, = sgn and the
geometric representation of W is a direct summand of H; @ Q.

T(Ha) is the Davis hyperbolic 4-manifold (1985) and T(H3) is the
Zimmermann hyperbolic 3-manifold (1993). Their Betti numbers
are b,(T(Hs)) = (1,11,11,1) and b,(T(Ha)) = (1,24,72,24,1).
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Maximal tori and extensions

Properties of T(W)

Proposition

H, := H.(T(W),Z) is torsion-free, with palindromic Betti numbers
(by Poincaré duality). We have Hy = 1, H, = sgn and the
geometric representation of W is a direct summand of H; @ Q.

T(Ha) is the Davis hyperbolic 4-manifold (1985) and T(H3) is the
Zimmermann hyperbolic 3-manifold (1993). Their Betti numbers
are b,(T(Hs)) = (1,11,11,1) and b,(T(Ha)) = (1,24,72,24,1).

Finally, if W(q) (resp. W(q)) is the Poincaré series of W (resp. of
W) then, as for tori,
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Flag manifolds

Second problem: flag manifolds

Notation

@ G a connected reductive complex algebraic group,

@ B a Borel subgroup of G, T® < G maximal torus such that
TC < B.

W := Ng(TC)/TC the Weyl group.

Flag manifold: the homogeneous space F¢(C) := G/B.

o If K maximal compact subgroup of G and
T:=KNTE~ (S, then

Fe(C) = 6/BL K/T O W = Ne(T)/T.
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Flag manifolds

Second problem: flag manifolds

Notation

@ G a connected reductive complex algebraic group,

@ B a Borel subgroup of G, T® < G maximal torus such that
TC < B.

W := Ng(TC)/TC the Weyl group.

Flag manifold: the homogeneous space F¢(C) := G/B.

If K maximal compact subgroup of G and
T:=KNTE~ (S, then

Fe(C) = 6/BL K/T O W = Ne(T)/T.

Problem (B)
Describe G/B = K/ T as a W-equivariant CW-complex.
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Flag manifolds

Example: type A
e G=S5L,(C), K=SU(n), T=5(U(1)") and W = &,

e B=|0~ - | Borel subgroup,
0 .. 0 %

G/B={flags(0=VCV;C...CV,=C")},

1
K/T = {decompositions C" = L1 & --- & Ly} O S,
G/T® = {decompositions C" = L1 & --- © L,} © &,,.

[
[
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Flag manifolds

Example: type A
e G=S5L,(C), K=SU(n), T=5(U(1)") and W = &,

e B=|0~ - | Borel subgroup,
0 .. 0 %

G/B={flags(0=VCV;C...CV,=C")},

1
K/T = {decompositions C" = L1 & --- & Ly} O S,
G/T® = {decompositions C" = L1 & --- © L,} © &,,.

[
[

Fo1a(C) = U(2)/UQ1)? = CPL © & = (s), (L1 ® Lp) = Lo & Ly.

l1:z]-s=[-z:1]=[1:-1/Z]

~+ antipode on S?, as in the example of the introduction.

™7 mid = =
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Flag manifolds

A first decomposition of F3(R) := Fg,(R) = SL3(R)/B
Onmin := SL3(C) - ( 1) minimal nilpotent orbit, then
F3(C) = P(Opin) C P(s13) ~ CP’, so F3(R) — RP’.
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Flag manifolds

A first decomposition of F3(R) := Fg,(R) = SL3(R)/B
Onmin := SL3(C) - ( 1) minimal nilpotent orbit, then

F3(C) = P(Opin) C P(s13) ~ CP’, so F3(R) < RP’. Using the
GKM graph of &3, construct an equivariant structure on F3(R).

2N </ \)

(a) GKM graph (b) SL» situations (c) 3-cells of F3(R)
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Flag manifolds

A first decomposition of F3(R) := Fg,(R) = SL3(R)/B
Onmin := SL3(C) - ( 1) minimal nilpotent orbit, then

F3(C) = P(Opin) C P(s13) ~ CP’, so F3(R) < RP’. Using the
GKM graph of &3, construct an equivariant structure on F3(R).

O NN

(a) GKM graph (b) SL» situations (c) 3-cells of F3(R)
Theorem (B1)

e F3(R) admits an G3-cellular structure whose cellular chain
complex has the shape Z[&3]* — Z[G3]® — Z[S3]® — Z[&3].

@ There is an Sz-isomorphism Fa[x, y, z|lg, — H*(F3(R),F2)
sending x, y and z to irreducible real algebraic 1-cocycles.
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Flag manifolds

New look at F3(RR)
Recall F3(R) = SO(3)/S(0(1)%) = SO(3)/{+1}2 © &3

SO(3)/{£1}? 0 &3
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Recall F3(R) = SO(3)/S(0(1)%) = SO(3)/{+1}2 © &3

SO(3) D {£1}2 % &3 = W(D3) = &4
i/{ﬂ}ﬂ
SO(3)/{+1}? 0 63

Arthur Garnier December 10th, 2021 16 / 23



Flag manifolds

New look at F3(RR)
Recall F3(R) = SO(3)/S(0(1)%) = SO(3)/{+1}2 © &3

SO(3) D {£1}2 % &3 = W(D3) = &4
i/{ﬂ}ﬂ
SO(3)/{+1}? 0 63

Arthur Garnier December 10th, 2021 16 / 23



Flag manifolds

New look at F3(RR)
Recall F3(R) = SO(3)/S(0(1)%) = SO(3)/{+1}2 © &3

l/{il}
/Q|  SO(3) O {£1}2 x &3 = W(D3) = G4
i/{ﬂ}?
SO(3)/{+£1}? 0 &3
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Flag manifolds

New look at F3(RR)
Recall F3(R) = SO(3)/S(0(1)%) = SO(3)/{+1}2 © &3

S3 D Qg x &3
l/{ﬂ}

/9|  SO(3) O {£1}2 x &3 = W(D3) = &4
i/{ﬂ?

SO(3)/{£1}? 0 &3
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Flag manifolds

New look at F3(RR)
Recall F3(R) = SO(3)/S(0(1)%) = SO(3)/{+1}2 © &3

53 0 Qg% 63 =0=(i, H(1+)))
l/{ﬂ}

/9|  SO(3) O {£1}2 x &3 = W(D3) = &4
i/{ﬂ}?

SO(3)/{£1}? 0 &3
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Flag manifolds

New look at F3(RR)
Recall F3(R) = SO(3)/S(0(1)%) = SO(3)/{+1}2 © &3

53 0 Qg% 63 =0=(i, H(1+)))
/{£1}
/9|  SO(3) O {£1}2 x &3 = W(D3) = &4
/{1y
SO(3)/{£1}? O 63
/83
S3/0 D1

where O is the binary octahedral group. This last space is called

a spherical space form. Construct an O-cellular structure on S3?
Arthur Garnier December 10th, 2021 16 / 23



Flag manifolds

The complex 1,3, 3,1 for F3(R)

Theorem (B2)

The real flag manifold F3(R) ~ S3/Qg admits an G3-equivariant
cell structure with cellular chain complex given by

Sasg 1 wy — 1 1—sg
sa — 1 SaS3 1 1—wp
(1—5[3 1—wp 1—5a) 1 sg—1 Sasg 1 — sq

Z[&3] o 7[&3]° % 7]&3]° 8 Z[&3],

Wo = SaS3Sa = SgSaSp being the longest element of &3 = (sq, sg).

v
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Flag manifolds

The complex 1,3, 3,1 for F3(R)

Theorem (B2)

The real flag manifold F3(R) ~ S3/Qg admits an G3-equivariant
cell structure with cellular chain complex given by

Sasg 1 wy) — 1 1—sg
Sa — 1 Sasg 1 1—wp
(l—sﬁ 1—wy 1_5a) 1 sg— 1 Sasg3 1— sy

Z[&3] o 7[&3]° % 7]&3]° 8 Z[&3],

Wo = SaS3Sa = SgSaSp being the longest element of &3 = (sq, sg).

@ We also treat the case of the binary icosahedral group I.
o S3 = Spin(3) but other Spin(n) groups are complicated.
o but the I-cells of S* and F3(R) are geodesics!
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Flag manifolds

Dirichlet-Voronoi fundamental domains in general

(M, g) complete, connected Riemannian N-manifold, d geodesic
distance and W < Isom(M, g) discrete and xo € M regular point.
The Dirichlet-Voronoi domain (centered at xp) is

DY :={x e M; d(x,x) < d(wxo,x), Yw € W},

the w-dissecting hypersurface is H,, := {d(xo, x) = d(wxp, x)}.
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Flag manifolds

Dirichlet-Voronoi fundamental domains in general

(M, g) complete, connected Riemannian N-manifold, d geodesic
distance and W < Isom(M, g) discrete and xo € M regular point.
The Dirichlet-Voronoi domain (centered at xp) is

DY :={x e M; d(x,x) < d(wxo,x), Yw € W},

the w-dissecting hypersurface is H,, := {d(xo, x) = d(wxp, x)}.

Proposition

o DV is a star-shaped fundamental domain for W C M.
o IfDV C By(xo, p) for 0 < p < inj, (M), where inj, (M) is the

o

injectivity radius of M at xy, then DV is a N-cell. Moreover
in this case, we have a homeomorphism 0DV ~ sh-1,
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Flag manifolds

Dirichlet-Voronoi fundamental domains in general

(M, g) complete, connected Riemannian N-manifold, d geodesic
distance and W < Isom(M, g) discrete and xo € M regular point.
The Dirichlet-Voronoi domain (centered at xp) is

DY :={x e M; d(x,x) < d(wxo,x), Yw € W},

the w-dissecting hypersurface is H,, := {d(xo, x) = d(wxp, x)}.

Proposition

o DV is a star-shaped fundamental domain for W C M.
o IfDV C By(xo, p) for 0 < p < inj, (M), where inj, (M) is the

o

injectivity radius of M at xy, then DV is a N-cell. Moreover
in this case, we have a homeomorphism 0DV ~ sh-1,

We hope to build an equivariant cell structure from DV, where the

lower cells should be intersections of walls DY.N H,,.
Arthur Garnier December 10th, 2021 18 / 23



Flag manifolds

The case of flag manifolds: first result

In general, K/ T admits a normal homogeneous metric (i.e.
coming from a bi-invariant one on K, e.g. induced by the Killing
form k). We consider the Dirichlet-Voronoi domain

DY ={xeK/T; d(1,x) <d(w,x), Vw € W}.

For F,(C) := SU(n)/S(U(1)") and X, Y € su(n), we have
k(X,Y) = 2ntr (XY).
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Flag manifolds

The case of flag manifolds: first result

In general, K/ T admits a normal homogeneous metric (i.e.
coming from a bi-invariant one on K, e.g. induced by the Killing
form k). We consider the Dirichlet-Voronoi domain

DY ={xeK/T; d(1,x) <d(w,x), Vw € W}.

For F,(C) := SU(n)/S(U(1)") and X, Y € su(n), we have
k(X,Y) = 2ntr (XY).

Conjecture: DY C B(1,inj(K/T)).

Arthur Garnier December 10th, 2021 19 /23



Flag manifolds

The case of flag manifolds: first result

In general, K/ T admits a normal homogeneous metric (i.e.
coming from a bi-invariant one on K, e.g. induced by the Killing
form k). We consider the Dirichlet-Voronoi domain

DY ={xeK/T; d(1,x) <d(w,x), Vw € W}.

For F,(C) := SU(n)/S(U(1)") and X, Y € su(n), we have
k(X,Y) = 2ntr (XY).

Conjecture: DV C B(1,inj(K/T)). First step:

o inj(Fn(C),k) > m\/n/2,
o inj(F,(R), k) = my/n=d(1,s,) for any a € &+,
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Flag manifolds

A new structure on F3(R)

Proposition
Let DV3 C F3(R) Dirichlet-Voronoi domain. Then

max d(1,x) = 4v/3arccos(1/2 + V/2/4) = 3.7969 < 5.4414 ~ V3 = inj(F3(R)).
xX€ 3
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Flag manifolds

A new structure on F3(R)

Let DV3 C F3(R) Dirichlet-Voronoi domain. Then

max d(1,x) = 4v/3arccos(1/2 + V/2/4) = 3.7969 < 5.4414 ~ V3 = inj(F3(R)).
xX€ 3

\,

Theorem (B3)

The walls of DV3 induce an &3-cell structure on F3(R) with chain
complex of the form Z[&3] — Z[G3]" — Z[&3]'? — Z[&3]°.
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Flag manifolds

A new structure on F3(R)

Proposition
Let DV3 C F3(R) Dirichlet-Voronoi domain. Then

max d(1,x) = 4v/3arccos(1/2 + V/2/4) = 3.7969 < 5.4414 ~ V3 = inj(F3(R)).
xX€ 3

\,

Theorem (B3)

The walls of DV3 induce an &3-cell structure on F3(R) with chain
complex of the form Z[&3] — Z[G3]" — Z[&3]'? — Z[&3]°.

Figure: The 2-cells of F3(R)
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Summarizing

Problem A: Maximal tori

Problem B: Flag manifolds ‘

Theorem Al: Equivariant triangulation | Theorem B1l: Equivariant cell structure on

of T < K and dg-ring in the case F3(R) := SO(3)/5(0(1)?) using P(Omin)
m(K)=1. and the GKM graph.

Theorem A2: Equivariant triangulation | Theorem B2: Equivariant cell structure on
of T < K in the general case using F3(R) from the binary octahedral group
barycentric subdivision of alcoves. O < S? of order 48.

Theorem A3: Construction of a Theorem B3: Equivariant cell structure on
W-triangulated analogue of tori for all F3(R) from a normal homogeneous metric
finite irreducible Coxeter groups. and a Dirichlet-Voronoi fundamental domain.
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Perspectives

@ Work in progress: cell structure on F,(R) using the domain DV.
Then extend to F,(C) and to other types.

@ G C gD N nilpotent cone and N := {(x,b) e N x B ; x € b}.
Springer resolution 7 : N'— A and Springer fibers B, := 7~ 1(x).
W acts on RI (B, Q) but not on By itself. By = G/B is an actual
W-space. Springer theory was a motivation for Problem B.

@ The étale case of tori? Take the Frobenius into account!

o If W complex reflection group, possible to construct a (compact)
W-manifold generalizing T(W)?

@ Equivariant cell structure for W C By ~ (CP*°)"? Geometric
meaning of Koszul duality between H*(Bt,Q) = S*(t) and
H*(T,Q) = A*(t")?
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Thank you !

Arthur Garnier December 10th, 2
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