Equivariant cellular models in Lie theory Ph.D. thesis

Arthur Garnier

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée Université de Picardie Jules Verne ED STS 585

December 10th, 2021

 $R\Gamma(X,\underline{\mathbb{Z}}) \in \mathcal{D}^{b}(\mathbb{Z}[W])$ and equivariant cellular structures

discrete group $W \odot X$ topological space

$$\rightsquigarrow W \odot H^*(X,\mathbb{Z}) = H^*(R\Gamma(X,\underline{\mathbb{Z}})).$$

Also, $R\Gamma(X,\underline{\mathbb{Z}}) \in \mathcal{D}^{b}(\mathbb{Z}[W])$, but how to compute $R\Gamma(X,\underline{\mathbb{Z}})$?

 $R\Gamma(X,\underline{\mathbb{Z}}) \in \mathcal{D}^{b}(\mathbb{Z}[W])$ and equivariant cellular structures

discrete group $W \odot X$ topological space

$$\rightsquigarrow W \odot H^*(X,\mathbb{Z}) = H^*(R\Gamma(X,\underline{\mathbb{Z}})).$$

Also, $R\Gamma(X,\underline{\mathbb{Z}}) \in \mathcal{D}^b(\mathbb{Z}[W])$, but how to compute $R\Gamma(X,\underline{\mathbb{Z}})$?

Definition

A CW-structure on X is W-equivariant if

- W acts on cells
- For $e \subset X$ a cell and $w \in W$, if we = e then $w_{|e} = id_e$.

Associated **cellular chain complex**: $C^{\text{cell}}_*(X, W; \mathbb{Z}) \in \mathcal{C}_b(\mathbb{Z}[W]).$

 $R\Gamma(X,\underline{\mathbb{Z}}) \in \mathcal{D}^{b}(\mathbb{Z}[W])$ and equivariant cellular structures

discrete group $W \odot X$ topological space

$$\rightsquigarrow W \odot H^*(X,\mathbb{Z}) = H^*(R\Gamma(X,\underline{\mathbb{Z}})).$$

Also, $R\Gamma(X,\underline{\mathbb{Z}}) \in \mathcal{D}^b(\mathbb{Z}[W])$, but how to compute $R\Gamma(X,\underline{\mathbb{Z}})$?

Definition

A CW-structure on X is W-equivariant if

- W acts on cells
- For $e \subset X$ a cell and $w \in W$, if we = e then $w_{|e} = id_e$.

Associated cellular chain complex: $C^{\text{cell}}_*(X, W; \mathbb{Z}) \in \mathcal{C}_b(\mathbb{Z}[W]).$

Theorem

The complex $C^*_{\text{cell}}(X, W; \mathbb{Z})$ is well-defined up to homotopy and $C^*_{\text{cell}}(X, W; \mathbb{Z}) \cong R\Gamma(X, \underline{\mathbb{Z}})$ in $\mathcal{D}^b(\mathbb{Z}[W])$.

Illustration: $\{\pm 1\} \oplus \mathbb{S}^2 \subset \mathbb{R}^3$

 $C_2 = \{1, s\}$ acts on \mathbb{S}^2 via the antipode $s : x \mapsto -x$. We construct a C_2 -equivariant cellular structure as follows:

Illustration: $\{\pm 1\} \oplus \mathbb{S}^2 \subset \mathbb{R}^3$

 $C_2 = \{1, s\}$ acts on \mathbb{S}^2 via the antipode $s : x \mapsto -x$. We construct a C_2 -equivariant cellular structure as follows:

Chain complex given by

$$C^{\operatorname{cell}}_{*}(\mathbb{S}^{2}, C_{2}; \mathbb{Z}) = \left(\mathbb{Z}[C_{2}] \langle e_{2} \rangle \xrightarrow{1+s} \mathbb{Z}[C_{2}] \langle e_{1} \rangle \xrightarrow{1-s} \mathbb{Z}[C_{2}] \langle e_{0} \rangle \right)$$

Illustration: $\{\pm 1\} \oplus \mathbb{S}^2 \subset \mathbb{R}^3$

 $C_2 = \{1, s\}$ acts on \mathbb{S}^2 via the antipode $s : x \mapsto -x$. We construct a C_2 -equivariant cellular structure as follows:

Cochain complex

$$C^*_{\text{cell}}(\mathbb{S}^2, C_2; \mathbb{Z}) = \left(\mathbb{Z}[C_2] \langle e_2^* \rangle \stackrel{1+s}{\longleftarrow} \mathbb{Z}[C_2] \langle e_1^* \rangle \stackrel{1-s}{\longleftarrow} \mathbb{Z}[C_2] \langle e_0^* \rangle \right)$$

Illustration: $\{\pm 1\} \bigcirc \mathbb{S}^2 \subset \mathbb{R}^3$

 $C_2 = \{1, s\}$ acts on \mathbb{S}^2 via the antipode $s : x \mapsto -x$. We construct a C_2 -equivariant cellular structure as follows:

Cochain complex

$$C^*_{\text{cell}}(\mathbb{S}^2, C_2; \mathbb{Z}) = \left(\mathbb{Z}[C_2] \langle e_2^* \rangle \stackrel{1+s}{\longleftarrow} \mathbb{Z}[C_2] \langle e_1^* \rangle \stackrel{1-s}{\longleftarrow} \mathbb{Z}[C_2] \langle e_0^* \rangle \right)$$

so $R\Gamma(\mathbb{S}^2, \underline{\mathbb{Q}}) \simeq \mathbb{1} \oplus \varepsilon[-2]$ and $R\Gamma(\mathbb{S}^2, \underline{\mathbb{F}}_2)$ has cohomology $H^*(\mathbb{S}^2, \mathbb{F}_2) = \mathbb{1} \oplus \mathbb{1}[-2]$, however, $R\Gamma(\mathbb{S}^2, \underline{\mathbb{F}}_2)$ is indecomposable...

Tori: the simply-connected case

K simple compact Lie group of rank *n* such that $\pi_1(K) = 1$, $T \simeq (\mathbb{S}^1)^n$ maximal torus, $W := N_K(T)/T$ Weyl group. $W \odot T$, e.g. $\mathfrak{S}_{n+1} \odot S(U(1)^{n+1}) < SU(n+1)$.

Tori: the simply-connected case

K simple compact Lie group of rank *n* such that $\pi_1(K) = 1$, $T \simeq (\mathbb{S}^1)^n$ maximal torus, $W := N_K(T)/T$ Weyl group. $W \odot T$, e.g. $\mathfrak{S}_{n+1} \odot S(U(1)^{n+1}) < SU(n+1)$.

Problem (A)

Exhibit a W-equivariant triangulation of T.

Tori: the simply-connected case

K simple compact Lie group of rank *n* such that $\pi_1(K) = 1$, $T \simeq (\mathbb{S}^1)^n$ maximal torus, $W := N_K(T)/T$ Weyl group. $W \odot T$, e.g. $\mathfrak{S}_{n+1} \odot S(U(1)^{n+1}) < SU(n+1)$.

Problem (A)

Exhibit a W-equivariant triangulation of T.

$$\mathfrak{t}/\Lambda \xrightarrow[\exp]{} T$$
 where $\mathfrak{t} := \operatorname{Lie}(T)$ and $\Lambda = \operatorname{cocharater}$ lattice.
 $\rightsquigarrow W_{\Lambda}$ -triangulation for $W_{\Lambda} := \Lambda \rtimes W \odot \mathfrak{t}$.
 $\pi_1(K) = 1 \Rightarrow \Lambda = \mathbb{Z}\Phi^{\vee}$ and $W_{\Lambda} = W_{\mathrm{a}}$ is the affine Weyl group.

Tori: the simply-connected case

K simple compact Lie group of rank *n* such that $\pi_1(K) = 1$, $T \simeq (\mathbb{S}^1)^n$ maximal torus, $W := N_K(T)/T$ Weyl group. $W \odot T$, e.g. $\mathfrak{S}_{n+1} \odot S(U(1)^{n+1}) < SU(n+1)$.

Problem (A)

Exhibit a W-equivariant triangulation of T.

$$\mathfrak{t}/\Lambda \xrightarrow[\exp]{} \mathcal{T}$$
 where $\mathfrak{t} := \operatorname{Lie}(\mathcal{T})$ and $\Lambda = \operatorname{cocharater}$ lattice.
 $\rightsquigarrow W_{\Lambda}$ -triangulation for $W_{\Lambda} := \Lambda \rtimes W \odot \mathfrak{t}$.
 $\pi_1(\mathcal{K}) = 1 \Rightarrow \Lambda = \mathbb{Z} \Phi^{\vee}$ and $W_{\Lambda} = W_{\mathrm{a}}$ is the affine Weyl group

Theorem (A1)

The fundamental alcove induces a $W_{\rm a}$ -triangulation of t, yielding a W-triangulation of T. The W-dg-ring $C_*^{\rm cell}(T, W; \mathbb{Z})$ is described in terms of **parabolic cosets** of $W_{\rm a}$ and **deflation** $\operatorname{Def}_W^{W_{\rm a}}$.

Example in type A_2

Figure: Chambers subdivided into alcoves.

Example in type A_2

Figure: Triangulation of the torus $S(U(1)^3)$ of SU(3).

The complex $C^{\text{cell}}_*(S(U(1)^3),\mathfrak{S}_3;\mathbb{Z})$ is given by

$$\mathbb{Z}[\mathfrak{S}_3] \xrightarrow{(1\,1\,-1)} \mathbb{Z}[\mathfrak{S}_3/\langle s_\beta \rangle] \oplus \mathbb{Z}[\mathfrak{S}_3/\langle s_\alpha s_\beta s_\alpha \rangle] \oplus \mathbb{Z}[\mathfrak{S}_3/\langle s_\alpha \rangle] \xrightarrow{\begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}} \mathbb{Z}^3.$$

Arthur Garnier

Туре	Affine Dynkin diagram	Fundamental group $\Omega \simeq P/Q$
$\widetilde{A_1}$		$\mathbb{Z}/2\mathbb{Z}$
$\widetilde{A_n}$ $(n \ge 2)$	0 0 1 2 0 $n-1$ n	$\mathbb{Z}/(n+1)\mathbb{Z}$
$\widetilde{B_n}$ $(n \ge 3)$	$10 \\ 0 \\ 2 \\ 3 \\ \cdots \\ n-1 \\ n$	$\mathbb{Z}/2\mathbb{Z}$
$\widetilde{C_n}$ $(n \ge 2)$	0 1 2 \cdots n	$\mathbb{Z}/2\mathbb{Z}$
$\widetilde{D_n}$ $(n \ge 4)$	$10 \\ 0 \\ 2 \\ 3 \\ 0 \\ n-2 \\ 0 \\ n-1$	$\left\{\begin{array}{ll} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } n \text{ even} \\ \mathbb{Z}/4\mathbb{Z} & \text{if } n \text{ is odd} \end{array}\right.$
$\widetilde{E_6}$		$\mathbb{Z}/3\mathbb{Z}$
$\widetilde{E_7}$	0 1 3 4 5 6 7	$\mathbb{Z}/2\mathbb{Z}$
$\widetilde{E_8}$		1
$\widetilde{F_4}$		1
$\widetilde{G_2}$		

э.

The general case: barycentric subdivision

Other extreme case: the adjoint group, i.e. $Y = P^{\vee}$ is the *coweight lattice* and $\widehat{W}_{a} = P^{\vee} \rtimes W$ is the **extended affine Weyl group**.

The general case: barycentric subdivision

Other extreme case: the adjoint group, i.e. $Y = P^{\vee}$ is the *coweight lattice* and $\widehat{W}_{a} = P^{\vee} \rtimes W$ is the **extended affine Weyl group**.

Theorem (A2)

The barycentric subdivision of the fundamental alcove induces a $\widehat{W_{a}}$ -equivariant triangulation of t. The same holds for any W-lattice $Q^{\vee} \subset \Lambda \subset P^{\vee}$ and the intermediate group W_{Λ} .

The general case: barycentric subdivision

Other extreme case: the adjoint group, i.e. $Y = P^{\vee}$ is the *coweight lattice* and $\widehat{W}_{a} = P^{\vee} \rtimes W$ is the **extended affine Weyl group**.

Theorem (A2)

The barycentric subdivision of the fundamental alcove induces a $\widehat{W_{a}}$ -equivariant triangulation of t. The same holds for any W-lattice $Q^{\vee} \subset \Lambda \subset P^{\vee}$ and the intermediate group W_{Λ} .

 $\operatorname{Stab}_{\widehat{W_a}}(\mathcal{A}) = \{1, \omega_{\alpha}, \omega_{\beta}\} \simeq \mathbb{Z}/3\mathbb{Z}$ with ω_{β} rotation of the triangle with angle $2\pi/3$. The complex for $P(S(U(1)^3)) < PSU(3)$ is

$$\mathbb{Z}[\mathfrak{S}_{3}]^{2} \xrightarrow{\begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & s_{\beta}s_{\alpha} \\ \end{array}} \mathbb{Z}[\mathfrak{S}_{3}/\langle s_{\beta} \rangle] \oplus \mathbb{Z}[\mathfrak{S}_{3}/\langle s_{\alpha} \rangle] \oplus \mathbb{Z}[$$

Compact hyperbolic extensions

The combinatorics of the complex in the case $\pi_1(K) = 1$ makes sense for any (irreducible) Coxeter system (W, S), with an additional reflection $r_W \in W$. Geometric meaning?

Compact hyperbolic extensions

The combinatorics of the complex in the case $\pi_1(K) = 1$ makes sense for any (irreducible) Coxeter system (W, S), with an additional reflection $r_W \in W$. Geometric meaning? Find a reflection giving a "nice" Coxeter extension $(\widehat{W}, S \cup \{\widehat{s}_0\})$? "True tori": W Weyl, $r_W = s_{\widetilde{\alpha}}$ (highest root), $\widehat{W} = W_a$.

"Non-crystallographic tori": r_W s.t. \widehat{W} is **compact hyperbolic**.

Compact hyperbolic extensions

The combinatorics of the complex in the case $\pi_1(K) = 1$ makes sense for any (irreducible) Coxeter system (W, S), with an additional reflection $r_W \in W$. Geometric meaning? Find a reflection giving a "nice" Coxeter extension $(\widehat{W}, S \cup \{\widehat{s}_0\})$? "True tori": W Weyl, $r_W = s_{\widetilde{\alpha}}$ (highest root), $\widehat{W} = W_a$.

"Non-crystallographic tori": r_W s.t. \widehat{W} is **compact hyperbolic**.

Extension	Coxeter graph	
$\widehat{l_2(m)} \ (m \equiv 1[2])$	m m m	
$\widehat{I_2(m)} \ (m \equiv 0[4])$	<u> </u>	
$\widehat{I_2(m)} \ (m \equiv 2[4])$	m/2 m	
\widehat{H}_3	5 5	
$\widehat{H_4}$	5 5	

The non-commutative lattice Q and the manifold $\mathbf{T}(W)$

Sending $\widehat{s}_0 \in \widehat{W}$ to $r_W \in W$ induces a surjection $\pi : \widehat{W} \longrightarrow W$ and we have $\widehat{W} = Q \rtimes W$, where the torsion-free subgroup

$$Q := \ker(\pi) = \left\langle (\widehat{s}_0 r_W)^{\widehat{W}} \right\rangle \lhd \widehat{W}$$

is $\mathbb{Z}\Phi^{\vee}$ in the crystallographic case and a non-commutative analogue otherwise.

The non-commutative lattice Q and the manifold $\mathbf{T}(W)$

Sending $\widehat{s}_0 \in \widehat{W}$ to $r_W \in W$ induces a surjection $\pi : \widehat{W} \longrightarrow W$ and we have $\widehat{W} = Q \rtimes W$, where the torsion-free subgroup

$$Q := \ker(\pi) = \left\langle (\widehat{s}_0 r_W)^{\widehat{W}} \right\rangle \lhd \widehat{W}$$

is $\mathbb{Z}\Phi^{\vee}$ in the crystallographic case and a non-commutative analogue otherwise. Consider the **Coxeter complex**

$$\Sigma(\widehat{W}) := \left(\bigcup_{w \in \widehat{W}} w(\overline{C} \setminus \{0\})\right) / \mathbb{R}^*_+,$$

where C is the fundamental chamber of \widehat{W} . We define

$$\mathsf{T}(W) := \Sigma(\widehat{W})/Q.$$

This is a maximal torus in the crystallographic case and an "analogue" otherwise.

Arthur Garnier

The example of $I_2(5)$

For $W = l_2(5)$, the simplicial structure of $\Sigma(\widehat{l_2(5)})$ induces a tessellation of the **hyperbolic plane** \mathbb{H}^2 (associated to the Tits form of $\widehat{l_2(5)}$) which projects on the Poincaré disk as follows:

(a) The plane \mathbb{H}^2 and the Poincaré disk.

(b) The tessellation $\Sigma(\widehat{I_2(5)})$.

The example of $I_2(5)$

For $W = l_2(5)$, the simplicial structure of $\Sigma(\widehat{l_2(5)})$ induces a tessellation of the **hyperbolic plane** \mathbb{H}^2 (associated to the Tits form of $\widehat{l_2(5)}$) which projects on the Poincaré disk as follows:

(c) Fundamental domain for *Q*.

(d) *Q*-orbit of the fundamental triangle.

The surface $T(I_2(5))$ is obtained by gluing the triangles of a same orbit e.g. the green ones in the last figure.

The example of $I_2(5)$

For $W = l_2(5)$, the simplicial structure of $\Sigma(\widehat{l_2(5)})$ induces a tessellation of the **hyperbolic plane** \mathbb{H}^2 (associated to the Tits form of $\widehat{l_2(5)}$) which projects on the Poincaré disk as follows:

(c) Fundamental domain for *Q*.

(d) *Q*-orbit of the fundamental triangle.

Let $l_2(5) = \langle s_1, s_2 \mid s_1^2 = s_2^2 = (s_1 s_2)^5 = 1 \rangle$. The complex $C_*^{\text{cell}}(\mathsf{T}(l_2(5)), l_2(5); \mathbb{Z})$ is

$$\mathbb{Z}[l_2(5)] \xrightarrow{(1\,1\,-1)} \mathbb{Z}[l_2(5)/\langle s_2 \rangle] \oplus \mathbb{Z}[l_2(5)/\langle s_1^{s_2s_1} \rangle] \oplus \mathbb{Z}[l_2(5)/\langle s_1 \rangle] \xrightarrow{\begin{pmatrix} -1&1&0\\ 0&-1\\ -1&0&1 \end{pmatrix}} \mathbb{Z}^3.$$

Properties of $\mathbf{T}(W)$

Theorem (A3)

The space $\mathbf{T}(W)$ is a W-triangulated orientable compact Riemannian manifold and $\mathbf{T}(W) \simeq K(Q, 1) \simeq B_Q$. If W is a Weyl group, then $\mathbf{T}(W)$ is a torus and otherwise, $\mathbf{T}(W)$ is hyperbolic.

Properties of $\mathbf{T}(W)$

Theorem (A3)

The space $\mathbf{T}(W)$ is a W-triangulated orientable compact Riemannian manifold and $\mathbf{T}(W) \simeq K(Q, 1) \simeq B_Q$. If W is a Weyl group, then $\mathbf{T}(W)$ is a torus and otherwise, $\mathbf{T}(W)$ is hyperbolic.

Example

T($I_2(2g + 1)$), **T**($I_2(4g)$) and **T**($I_2(4g + 2)$) are arithmetic Riemann surfaces of genus g and rational elliptic curves for g = 1. \rightarrow unusual point of view on tori!

Properties of $\mathbf{T}(W)$

Theorem (A3)

The space $\mathbf{T}(W)$ is a W-triangulated orientable compact Riemannian manifold and $\mathbf{T}(W) \simeq K(Q, 1) \simeq B_Q$. If W is a Weyl group, then $\mathbf{T}(W)$ is a torus and otherwise, $\mathbf{T}(W)$ is hyperbolic.

Example

T($l_2(2g + 1)$), **T**($l_2(4g)$) and **T**($l_2(4g + 2)$) are arithmetic Riemann surfaces of genus g and rational elliptic curves for g = 1. \rightarrow unusual point of view on tori!

We give a presentation of $\pi_1(\mathbf{T}(W)) \simeq Q$ and describe the *W*-dg-ring of $\mathbf{T}(W)$, which is the one we want.

< 回 > < 三 > < 三 > -

Properties of $\mathbf{T}(W)$

Proposition

 $H_* := H_*(\mathbf{T}(W), \mathbb{Z})$ is torsion-free, with palindromic Betti numbers (by Poincaré duality). We have $H_0 = \mathbb{1}$, $H_n = \operatorname{sgn}$ and the geometric representation of W is a direct summand of $H_1 \otimes \mathbb{Q}_W$.

▶ ∢ ∃ ▶

Properties of $\mathbf{T}(W)$

Proposition

 $H_* := H_*(\mathbf{T}(W), \mathbb{Z})$ is torsion-free, with palindromic Betti numbers (by Poincaré duality). We have $H_0 = \mathbb{1}$, $H_n = \operatorname{sgn}$ and the geometric representation of W is a direct summand of $H_1 \otimes \mathbb{Q}_W$.

Remark

 $\mathbf{T}(H_4)$ is the Davis hyperbolic 4-manifold (1985) and $\mathbf{T}(H_3)$ is the Zimmermann hyperbolic 3-manifold (1993). Their Betti numbers are $b_*(\mathbf{T}(H_3)) = (1, 11, 11, 1)$ and $b_*(\mathbf{T}(H_4)) = (1, 24, 72, 24, 1)$.

Properties of $\mathbf{T}(W)$

Proposition

 $H_* := H_*(\mathbf{T}(W), \mathbb{Z})$ is torsion-free, with palindromic Betti numbers (by Poincaré duality). We have $H_0 = \mathbb{1}$, $H_n = \operatorname{sgn}$ and the geometric representation of W is a direct summand of $H_1 \otimes \mathbb{Q}_W$.

Remark

 $\mathbf{T}(H_4)$ is the Davis hyperbolic 4-manifold (1985) and $\mathbf{T}(H_3)$ is the Zimmermann hyperbolic 3-manifold (1993). Their Betti numbers are $b_*(\mathbf{T}(H_3)) = (1, 11, 11, 1)$ and $b_*(\mathbf{T}(H_4)) = (1, 24, 72, 24, 1)$.

Finally, if W(q) (resp. $\widehat{W}(q)$) is the Poincaré series of W (resp. of \widehat{W}) then, as for tori,

$$\chi(\mathsf{T}(W)) = \left. rac{W(q)}{\widehat{W}(q)} \right|_{q=1}$$

글 에 에 글 에 다

Second problem: flag manifolds

Notation

- G a connected reductive complex algebraic group,
- *B* a Borel subgroup of *G*, $T^{\mathbb{C}} < G$ maximal torus such that $T^{\mathbb{C}} < B$.
- $W := N_G(T^{\mathbb{C}})/T^{\mathbb{C}}$ the Weyl group.
- Flag manifold: the homogeneous space $\mathcal{F}_G(\mathbb{C}) := G/B$.
- If K maximal compact subgroup of G and $T := K \cap T^{\mathbb{C}} \simeq (\mathbb{S}^1)^r$, then

$$\mathcal{F}_{G}(\mathbb{C}) := G/B \stackrel{\mathrm{diff}}{\simeq} K/T \odot W = N_{K}(T)/T.$$

Second problem: flag manifolds

Notation

- G a connected reductive complex algebraic group,
- *B* a Borel subgroup of *G*, $T^{\mathbb{C}} < G$ maximal torus such that $T^{\mathbb{C}} < B$.
- $W := N_G(T^{\mathbb{C}})/T^{\mathbb{C}}$ the Weyl group.
- Flag manifold: the homogeneous space $\mathcal{F}_G(\mathbb{C}) := G/B$.
- If K maximal compact subgroup of G and $T := K \cap T^{\mathbb{C}} \simeq (\mathbb{S}^1)^r$, then

$$\mathcal{F}_{G}(\mathbb{C}) := G/B \stackrel{\mathrm{diff}}{\simeq} K/T \odot W = N_{K}(T)/T.$$

Problem (B)

Describe G/B = K/T as a W-equivariant CW-complex.

Example: type A

•
$$G = SL_n(\mathbb{C}), \ K = SU(n), \ T = S(U(1)^n) \text{ and } W = \mathfrak{S}_n,$$

• $B = \begin{pmatrix} * & * & \dots & * \\ 0 & * & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & * \end{pmatrix}$ Borel subgroup,
• $G/B = \{\text{flags } (0 = V_0 \subseteq V_1 \subseteq \dots \subseteq V_n = \mathbb{C}^n)\},$
• $K/T = \{\text{decompositions } \mathbb{C}^n = L_1 \stackrel{\perp}{\oplus} \dots \stackrel{\perp}{\oplus} L_n\} \odot \mathfrak{S}_n,$
• $G/T^{\mathbb{C}} = \{\text{decompositions } \mathbb{C}^n = L_1 \oplus \dots \oplus L_n\} \odot \mathfrak{S}_n.$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< □ > < 同 >

3

Example: type A

•
$$G = SL_n(\mathbb{C}), K = SU(n), T = S(U(1)^n) \text{ and } W = \mathfrak{S}_n,$$

• $B = \begin{pmatrix} * & * & \cdots & * \\ 0 & * & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & * \end{pmatrix}$ Borel subgroup,
• $G/B = \{\text{flags } (0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = \mathbb{C}^n)\},$
• $K/T = \{\text{decompositions } \mathbb{C}^n = L_1 \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus} L_n\} \odot \mathfrak{S}_n,$
• $G/T^{\mathbb{C}} = \{\text{decompositions } \mathbb{C}^n = L_1 \oplus \cdots \oplus L_n\} \odot \mathfrak{S}_n.$

Example

$$\mathcal{F}_{SL_2}(\mathbb{C}) \simeq U(2)/U(1)^2 \simeq \mathbb{CP}^1 \odot \mathfrak{S}_2 = \langle s \rangle, \ s(L_1 \stackrel{\perp}{\oplus} L_2) = L_2 \stackrel{\perp}{\oplus} L_1.$$

 $[1:z] \cdot s = [-\overline{z}:1] = [1:-1/\overline{z}]$

 \rightsquigarrow antipode on $\mathbb{S}^2\text{,}$ as in the example of the introduction.

A first decomposition of $\mathcal{F}_3(\mathbb{R}) := \mathcal{F}_{SL_3}(\mathbb{R}) = SL_3(\mathbb{R})/B$

 $\mathcal{O}_{\min} := SL_3(\mathbb{C}) \cdot \left(\begin{array}{c} & \cdot & 1 \\ & \cdot & \cdot \end{array} \right)$ minimal nilpotent orbit, then $\mathcal{F}_3(\mathbb{C}) = \mathbb{P}(\overline{\mathcal{O}_{\min}}) \subset \mathbb{P}(\mathfrak{sl}_3) \simeq \mathbb{CP}^7$, so $\mathcal{F}_3(\mathbb{R}) \hookrightarrow \mathbb{RP}^7$.

A first decomposition of $\mathcal{F}_3(\mathbb{R}) := \mathcal{F}_{SL_3}(\mathbb{R}) = SL_3(\mathbb{R})/B$

 $\begin{aligned} \mathcal{O}_{\min} &:= SL_3(\mathbb{C}) \cdot \left(\begin{array}{c} & & 1 \\ & & \end{array} \right) \text{ minimal nilpotent orbit, then} \\ \mathcal{F}_3(\mathbb{C}) &= \mathbb{P}(\overline{\mathcal{O}_{\min}}) \subset \mathbb{P}(\mathfrak{sl}_3) \simeq \mathbb{C}\mathbb{P}^7 \text{, so } \mathcal{F}_3(\mathbb{R}) \hookrightarrow \mathbb{R}\mathbb{P}^7 \text{. Using the} \\ \text{GKM graph of } \mathfrak{S}_3 \text{, construct an equivariant structure on } \mathcal{F}_3(\mathbb{R}). \end{aligned}$

(a) GKM graph

(b) SL₂ situations

(c) 3-cells of $\mathcal{F}_3(\mathbb{R})$

A first decomposition of $\mathcal{F}_3(\mathbb{R}) := \mathcal{F}_{SL_3}(\mathbb{R}) = SL_3(\mathbb{R})/B$

 $\mathcal{O}_{\min} := SL_3(\mathbb{C}) \cdot \left(\begin{array}{c} & & 1 \\ & & \ddots \end{array} \right)$ minimal nilpotent orbit, then $\mathcal{F}_3(\mathbb{C}) = \mathbb{P}(\overline{\mathcal{O}_{\min}}) \subset \mathbb{P}(\mathfrak{sl}_3) \simeq \mathbb{CP}^7$, so $\mathcal{F}_3(\mathbb{R}) \hookrightarrow \mathbb{RP}^7$. Using the **GKM graph** of \mathfrak{S}_3 , construct an equivariant structure on $\mathcal{F}_3(\mathbb{R})$.

(a) GKM graph

(b) SL₂ situations

(c) 3-cells of $\mathcal{F}_3(\mathbb{R})$

Theorem (B1)

- *F*₃(ℝ) admits an 𝔅₃-cellular structure whose cellular chain complex has the shape Z[𝔅₃]⁴ → Z[𝔅₃]⁶ → Z[𝔅₃]³ → Z[𝔅₃].
- There is an 𝔅₃-isomorphism 𝔽₂[x, y, z]_{𝔅3} → H^{*}(𝔅₃(𝔅), 𝔽₂) sending x, y and z to irreducible real algebraic 1-cocycles.

15 / 23

New look at $\mathcal{F}_3(\mathbb{R})$

$\text{Recall } \mathcal{F}_3(\mathbb{R}) = SO(3)/S(O(1)^3) = SO(3)/\{\pm 1\}^2 \odot \mathfrak{S}_3.$

$SO(3)/\{\pm 1\}^2$ $\bigcirc \mathfrak{S}_3$

Arthur Garnier

э

ヨト イヨト

New look at $\mathcal{F}_3(\mathbb{R})$

 $\text{Recall } \mathcal{F}_3(\mathbb{R}) = SO(3)/S(O(1)^3) = SO(3)/\{\pm 1\}^2 \odot \mathfrak{S}_3.$

$$SO(3) \qquad \bigcirc \{\pm 1\}^2 \rtimes \mathfrak{S}_3 = W(D_3) = \mathfrak{S}_4$$

$$\downarrow/\{\pm 1\}^2 \qquad \bigcirc \mathfrak{S}_3$$

$$SO(3)/\{\pm 1\}^2 \qquad \bigcirc \mathfrak{S}_3$$

4 3 4 3 4 3 4

New look at $\mathcal{F}_3(\mathbb{R})$

 $\mathsf{Recall} \ \mathcal{F}_3(\mathbb{R}) = SO(3)/S(O(1)^3) = SO(3)/\{\pm 1\}^2 \odot \mathfrak{S}_3.$

$$S^{3}$$

$$\sqrt[]{\pm 1}$$

$$SO(3) \qquad \bigcirc {\pm 1}^{2} \rtimes \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4}$$

$$\sqrt[]{\pm 1}^{2}$$

$$SO(3)/{\pm 1}^{2} \qquad \bigcirc \mathfrak{S}_{3}$$

4 3 4 3 4 3 4

< A[™]

Maximal tori and extensions Flag manifolds

New look at $\mathcal{F}_3(\mathbb{R})$

Recall $\mathcal{F}_3(\mathbb{R}) = SO(3)/S(O(1)^3) = SO(3)/\{\pm 1\}^2 \odot \mathfrak{S}_3$.

$$/\mathcal{Q}_{8} \begin{pmatrix} \mathbb{S}^{3} \\ \sqrt{\frac{1}{\pm 1}} \\ SO(3) \\ \sqrt{\frac{1}{\pm 1}^{2}} \\ SO(3)/{\frac{1}{\pm 1}^{2}} \end{pmatrix} \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4}$$

New look at $\mathcal{F}_3(\mathbb{R})$

 $\text{Recall } \mathcal{F}_3(\mathbb{R}) = SO(3)/S(O(1)^3) = SO(3)/\{\pm 1\}^2 \odot \mathfrak{S}_3.$

$$\begin{array}{c} \mathbb{S}^{3} & \bigcirc \mathcal{Q}_{8} \rtimes \mathfrak{S}_{3} \\ & \swarrow / \{\pm 1\} \\ SO(3) & \bigcirc \{\pm 1\}^{2} \rtimes \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4} \\ & \swarrow / \{\pm 1\}^{2} \\ SO(3) / \{\pm 1\}^{2} & \bigcirc \mathfrak{S}_{3} \end{array}$$

▶ ∢ ∃ ▶

< A

New look at $\mathcal{F}_3(\mathbb{R})$

Recall
$$\mathcal{F}_3(\mathbb{R}) = SO(3)/S(O(1)^3) = SO(3)/\{\pm 1\}^2 \odot \mathfrak{S}_3.$$

$$\begin{array}{c} \mathbb{S}^{3} & \bigcirc \mathcal{Q}_{8} \rtimes \mathfrak{S}_{3} = \mathcal{O} = \left\langle i, \frac{1}{\sqrt{2}}(1+j) \right\rangle \\ & \swarrow \\ /\mathbb{Q}_{8} \left(\begin{array}{c} SO(3) \\ & \swarrow \\ /\{\pm 1\}^{2} \\ & \swarrow \\ /\{\pm 1\}^{2} \end{array} \right) & \bigcirc \{\pm 1\}^{2} \rtimes \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4} \\ & \swarrow \\ /\{\pm 1\}^{2} \\ & SO(3)/\{\pm 1\}^{2} \end{array}$$

▶ < ∃ >

< □ > < 同 >

æ

New look at $\mathcal{F}_3(\mathbb{R})$

Recall $\mathcal{F}_3(\mathbb{R}) = SO(3)/S(O(1)^3) = SO(3)/\{\pm 1\}^2 \odot \mathfrak{S}_3.$

$$S^{3} \qquad \bigcirc \mathcal{Q}_{8} \rtimes \mathfrak{S}_{3} = \mathcal{O} = \left\langle i, \frac{1}{\sqrt{2}}(1+j) \right\rangle$$

$$/\mathcal{Q}_{8} \qquad SO(3) \qquad \bigcirc \{\pm 1\}^{2} \rtimes \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4}$$

$$/\left\langle \downarrow / \{\pm 1\}^{2} \qquad \bigcirc \mathfrak{S}_{3} \right\rangle$$

$$\int (\mathbb{S})/\{\pm 1\}^{2} \qquad \bigcirc \mathfrak{S}_{3} = \mathbb{S}_{4}$$

$$/\left\langle \mathfrak{S}_{3} \right\rangle$$

$$\int (\mathbb{S})/\{\pm 1\}^{2} \qquad \bigcirc \mathfrak{S}_{3} = \mathbb{S}_{4}$$

where O is the **binary octahedral group**. This last space is called a **spherical space form**. Construct an O-cellular structure on \mathbb{S}^3 ?

Arthur Garnier

The complex 1, 3, 3, 1 for $\mathcal{F}_3(\mathbb{R})$

Theorem (B2)

The real flag manifold $\mathcal{F}_3(\mathbb{R}) \simeq \mathbb{S}^3/\mathcal{Q}_8$ admits an \mathfrak{S}_3 -equivariant cell structure with cellular chain complex given by

$$\mathbb{Z}[\mathfrak{S}_3] \xrightarrow{\begin{pmatrix} 1-s_\beta & 1-w_0 & 1-s_\alpha \\ \partial_3 & \end{pmatrix}} \mathbb{Z}[\mathfrak{S}_3]^3 \xrightarrow{\begin{pmatrix} s_\alpha s_\beta & 1 & w_0-1 \\ s_\alpha -1 & s_\alpha s_\beta & 1 \\ 1 & s_\beta -1 & s_\alpha s_\beta \\ \partial_2 & & \end{pmatrix}} \mathbb{Z}[\mathfrak{S}_3]^3 \xrightarrow{\begin{pmatrix} 1-s_\beta \\ 1-w_0 \\ 1-s_\alpha \\ \partial_1 \end{pmatrix}} \mathbb{Z}[\mathfrak{S}_3],$$

 $w_0 = s_\alpha s_\beta s_\alpha = s_\beta s_\alpha s_\beta$ being the longest element of $\mathfrak{S}_3 = \langle s_\alpha, s_\beta \rangle$.

December 10th, 2021

17 / 23

The complex 1, 3, 3, 1 for $\mathcal{F}_3(\mathbb{R})$

Theorem (B2)

The real flag manifold $\mathcal{F}_3(\mathbb{R}) \simeq \mathbb{S}^3/\mathcal{Q}_8$ admits an \mathfrak{S}_3 -equivariant cell structure with cellular chain complex given by

 $w_0 = s_\alpha s_\beta s_\alpha = s_\beta s_\alpha s_\beta$ being the longest element of $\mathfrak{S}_3 = \langle s_\alpha, s_\beta \rangle$.

Remark

- We also treat the case of the binary icosahedral group \mathcal{I} .
- $\mathbb{S}^3 = \text{Spin}(3)$ but other Spin(n) groups are complicated.
- but the 1-cells of \mathbb{S}^3 and $\mathcal{F}_3(\mathbb{R})$ are **geodesics**!

Dirichlet-Voronoi fundamental domains in general

(M,g) complete, connected Riemannian *N*-manifold, *d* geodesic distance and $W \leq \text{Isom}(M,g)$ *discrete* and $x_0 \in M$ regular point. The **Dirichlet-Voronoi** domain (centered at x_0) is

 $\mathcal{DV} := \{x \in M ; d(x_0, x) \leq d(wx_0, x), \forall w \in W\},\$

the w-dissecting hypersurface is $H_w := \{d(x_0, x) = d(wx_0, x)\}.$

Dirichlet-Voronoi fundamental domains in general

(M,g) complete, connected Riemannian *N*-manifold, *d* geodesic distance and $W \leq \text{Isom}(M,g)$ discrete and $x_0 \in M$ regular point. The **Dirichlet-Voronoi** domain (centered at x_0) is

$$\mathcal{DV} := \{x \in M ; d(x_0, x) \leq d(wx_0, x), \forall w \in W\},$$

the w-dissecting hypersurface is $H_w := \{d(x_0, x) = d(wx_0, x)\}.$

Proposition

- \mathcal{DV} is a star-shaped fundamental domain for $W \odot M$.
- If $\mathcal{DV} \subset B_g(x_0, \rho)$ for $0 < \rho < \operatorname{inj}_{x_0}(M)$, where $\operatorname{inj}_{x_0}(M)$ is the *injectivity radius* of M at x_0 , then $\overset{\circ}{\mathcal{DV}}$ is a N-cell. Moreover in this case, we have a homeomorphism $\partial \mathcal{DV} \simeq \mathbb{S}^{N-1}$.

Dirichlet-Voronoi fundamental domains in general

(M,g) complete, connected Riemannian *N*-manifold, *d* geodesic distance and $W \leq \text{Isom}(M,g)$ discrete and $x_0 \in M$ regular point. The **Dirichlet-Voronoi** domain (centered at x_0) is

$$\mathcal{DV} := \{x \in M ; d(x_0, x) \leq d(wx_0, x), \forall w \in W\},$$

the w-dissecting hypersurface is $H_w := \{d(x_0, x) = d(wx_0, x)\}.$

Proposition

- \mathcal{DV} is a star-shaped fundamental domain for $W \odot M$.
- If $\mathcal{DV} \subset B_g(x_0, \rho)$ for $0 < \rho < \operatorname{inj}_{x_0}(M)$, where $\operatorname{inj}_{x_0}(M)$ is the *injectivity radius* of M at x_0 , then $\stackrel{\circ}{\mathcal{DV}}$ is a N-cell. Moreover in this case, we have a homeomorphism $\partial \mathcal{DV} \simeq \mathbb{S}^{N-1}$.

We hope to build an equivariant cell structure from \mathcal{DV} , where the lower cells should be intersections of walls $\mathcal{DV} \cap H_{W}$, where the lower cells should be intersections of walls $\mathcal{DV} \cap H_{W}$.

Arthur Garnier

The case of flag manifolds: first result

In general, K/T admits a **normal homogeneous metric** (i.e. coming from a bi-invariant one on K, e.g. induced by the Killing form κ). We consider the Dirichlet-Voronoi domain

$$\mathcal{DV} := \{x \in K/T ; d(1,x) \leq d(w,x), \forall w \in W\}.$$

Example

For $\mathcal{F}_n(\mathbb{C}) := SU(n)/S(U(1)^n)$ and $X, Y \in \mathfrak{su}(n)$, we have $\kappa(X, Y) = 2n \operatorname{tr}(XY)$.

The case of flag manifolds: first result

In general, K/T admits a **normal homogeneous metric** (i.e. coming from a bi-invariant one on K, e.g. induced by the Killing form κ). We consider the Dirichlet-Voronoi domain

$$\mathcal{DV} := \{x \in \mathcal{K}/\mathcal{T} ; d(1,x) \leq d(w,x), \forall w \in W\}.$$

Example

For $\mathcal{F}_n(\mathbb{C}) := SU(n)/S(U(1)^n)$ and $X, Y \in \mathfrak{su}(n)$, we have $\kappa(X, Y) = 2n \operatorname{tr}(XY)$.

Conjecture: $\mathcal{DV} \subset B(1, \operatorname{inj}(K/T))$.

The case of flag manifolds: first result

In general, K/T admits a **normal homogeneous metric** (i.e. coming from a bi-invariant one on K, e.g. induced by the Killing form κ). We consider the Dirichlet-Voronoi domain

$$\mathcal{DV} := \{x \in \mathcal{K}/\mathcal{T} ; d(1,x) \leq d(w,x), \forall w \in W\}.$$

Example

For $\mathcal{F}_n(\mathbb{C}) := SU(n)/S(U(1)^n)$ and $X, Y \in \mathfrak{su}(n)$, we have $\kappa(X, Y) = 2n \operatorname{tr}(XY)$.

Conjecture: $\mathcal{DV} \subset B(1, inj(K/T))$. First step:

Lemma

•
$$\operatorname{inj}(\mathcal{F}_n(\mathbb{C}),\kappa) \geq \pi \sqrt{n/2}$$
,

• $\operatorname{inj}(\mathcal{F}_n(\mathbb{R}),\kappa) = \pi \sqrt{n} = d(1, s_\alpha)$ for any $\alpha \in \Phi^+$.

A new structure on $\mathcal{F}_3(\mathbb{R})$

Proposition

Let $\mathcal{DV}_3 \subset \mathcal{F}_3(\mathbb{R})$ Dirichlet-Voronoi domain. Then

 $\max_{x \in \mathcal{DV}_3} d(1, x) = 4\sqrt{3} \arccos(1/2 + \sqrt{2}/4) \approx 3.7969 < 5.4414 \approx \pi\sqrt{3} = \operatorname{inj}(\mathcal{F}_3(\mathbb{R})).$

A new structure on $\mathcal{F}_3(\mathbb{R})$

Proposition

Let $\mathcal{DV}_3 \subset \mathcal{F}_3(\mathbb{R})$ Dirichlet-Voronoi domain. Then

 $\max_{x \in \mathcal{DV}_3} d(1,x) = 4\sqrt{3}\arccos(1/2 + \sqrt{2}/4) \approx 3.7969 < 5.4414 \approx \pi\sqrt{3} = \operatorname{inj}(\mathcal{F}_3(\mathbb{R})).$

Theorem (B3)

The walls of \mathcal{DV}_3 induce an \mathfrak{S}_3 -cell structure on $\mathcal{F}_3(\mathbb{R})$ with chain complex of the form $\mathbb{Z}[\mathfrak{S}_3] \to \mathbb{Z}[\mathfrak{S}_3]^7 \to \mathbb{Z}[\mathfrak{S}_3]^{12} \to \mathbb{Z}[\mathfrak{S}_3]^6$.

A new structure on $\mathcal{F}_3(\mathbb{R})$

Proposition

Let $\mathcal{DV}_3 \subset \mathcal{F}_3(\mathbb{R})$ Dirichlet-Voronoi domain. Then

 $\max_{x \in \mathcal{DV}_3} d(1,x) = 4\sqrt{3}\arccos(1/2 + \sqrt{2}/4) \approx 3.7969 < 5.4414 \approx \pi\sqrt{3} = \operatorname{inj}(\mathcal{F}_3(\mathbb{R})).$

Theorem (B3)

The walls of \mathcal{DV}_3 induce an \mathfrak{S}_3 -cell structure on $\mathcal{F}_3(\mathbb{R})$ with chain complex of the form $\mathbb{Z}[\mathfrak{S}_3] \to \mathbb{Z}[\mathfrak{S}_3]^7 \to \mathbb{Z}[\mathfrak{S}_3]^{12} \to \mathbb{Z}[\mathfrak{S}_3]^6$.

Figure: The 2-cells of $\mathcal{F}_3(\mathbb{R}) \to \mathbb{R} \to \mathbb{R}$

Summarizing

Problem A: Maximal tori	Problem B: Flag manifolds	
Theorem A1: Equivariant triangulation of $T < K$ and dg-ring in the case $\pi_1(K) = 1$.	Theorem B1: Equivariant cell structure on $\mathcal{F}_3(\mathbb{R}) := SO(3)/S(O(1)^3)$ using $\mathbb{P}(\overline{\mathcal{O}_{\min}})$ and the GKM graph.	
Theorem A2: Equivariant triangulation of $T < K$ in the general case using barycentric subdivision of alcoves.	Theorem B2: Equivariant cell structure on $\mathcal{F}_3(\mathbb{R})$ from the binary octahedral group $\mathcal{O} < \mathbb{S}^3$ of order 48.	
Theorem A3: Construction of a W-triangulated analogue of tori for all finite irreducible Coxeter groups.	Theorem B3: Equivariant cell structure on $\mathcal{F}_3(\mathbb{R})$ from a normal homogeneous metric and a Dirichlet-Voronoi fundamental domain.	

イロト イヨト イヨト イヨト

æ

Perspectives

- Work in progress: cell structure on $\mathcal{F}_n(\mathbb{R})$ using the domain \mathcal{DV} . Then extend to $\mathcal{F}_n(\mathbb{C})$ and to other types.
- G ⊂ g ⊃ N nilpotent cone and Ñ := {(x, b) ∈ N × B; x ∈ b}.
 Springer resolution π : Ñ → N and Springer fibers B_x := π⁻¹(x).
 W acts on RΓ(B_x, Q) but not on B_x itself. B₀ = G/B is an actual W-space. Springer theory was a motivation for Problem B.
- The étale case of tori? Take the Frobenius into account!
- If W complex reflection group, possible to construct a (compact)
 W-manifold generalizing T(W)?
- Equivariant cell structure for W ⊂ B_T ≃ (CP∞)ⁿ? Geometric meaning of Koszul duality between H[•](B_T, Q) = S[•](t) and H[•](T, Q) = Λ[•](t^{*})?

A 回 > A 回 > A 回 >

Thank you !

▶ < ∃ >

Image: A mathematical states and a mathem

э

Arthur Garnier