Equivariant cellular structures on the flag manifold of \mathbb{R}^3 and Dirichlet-Voronoi domains Séminaire d'équipe GAT, LAMFA, Amiens

Arthur Garnier

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée Université de Picardie Jules Verne

November 4, 2021

Menu

1 Flag manifolds and first cellular structure on $SL_3(\mathbb{R})/B$

(2) $SL_3(\mathbb{R})/B$ as a spherical space form

Ormal homogeneous metrics and Dirichlet-Voronoi domains

 $R\Gamma(X,\underline{\mathbb{Z}}) \in \mathcal{D}^{b}(\mathbb{Z}[W])$ and equivariant cellular structures

discrete group $W \odot X$ topological space

$$\rightsquigarrow W \odot H^*(X,\mathbb{Z}) = H^*(R\Gamma(X,\underline{\mathbb{Z}})).$$

Also, $R\Gamma(X,\underline{\mathbb{Z}}) \in \mathcal{D}^b(\mathbb{Z}[W])$, but how to compute $R\Gamma(X,\underline{\mathbb{Z}})$?

Definition

A CW-structure on X is W-equivariant if

- W acts on cells
- For $e \subset X$ a cell and $w \in W$, if we = e then $w_{|e} = id_e$.

Associated cellular chain complex: $C^{\text{cell}}_*(X, W; \mathbb{Z}) \in \mathcal{C}_b(\mathbb{Z}[W]).$

Theorem

The complex $C^*_{\text{cell}}(X, W; \mathbb{Z})$ is well-defined up to homotopy and $C^*_{\text{cell}}(X, W; \mathbb{Z}) \cong R\Gamma(X, \underline{\mathbb{Z}})$ in $\mathcal{D}^b(\mathbb{Z}[W])$.

Illustration: $\{\pm 1\} \bigcirc \mathbb{S}^2 \subset \mathbb{R}^3$

 $C_2 = \{1, s\}$ acts on \mathbb{S}^2 via the antipode $s : x \mapsto -x$. We construct a C_2 -equivariant cellular structure as follows:

Cochain complex given by

$$C^*_{\text{cell}}(\mathbb{S}^2, C_2; \mathbb{Z}) = \left(\mathbb{Z}[C_2] \langle e_0^* \rangle \xrightarrow{1-s} \mathbb{Z}[C_2] \langle e_1^* \rangle \xrightarrow{1+s} \mathbb{Z}[C_2] \langle e_2^* \rangle \right)$$

so $R\Gamma(\mathbb{S}^2, \underline{\mathbb{Q}}) \simeq \mathbb{1} \oplus \varepsilon[-2]$ and $R\Gamma(\mathbb{S}^2, \underline{\mathbb{F}_2})$ has cohomology $H^*(\mathbb{S}^2, \mathbb{F}_2) = \mathbb{1} \oplus \mathbb{1}[-2]$, however, $R\Gamma(\overline{\mathbb{S}^2}, \underline{\mathbb{F}_2})$ is indecomposable...

Arthur Garnier

Flag manifolds

Notation

- G a connected reductive complex algebraic group,
- *B* a Borel subgroup of *G*, $T^{\mathbb{C}} < G$ maximal torus such that $T^{\mathbb{C}} < B$.
- $W := N_G(T^{\mathbb{C}})/T^{\mathbb{C}}$ the Weyl group.
- Flag manifold: the homogeneous space $\mathcal{F}_G(\mathbb{C}) := G/B$.
- If K maximal compact subgroup of G and $T := K \cap T^{\mathbb{C}} \simeq (\mathbb{S}^1)^r$, then

$$\mathcal{F}_{G}(\mathbb{C}) := G/B \stackrel{\mathrm{diff}}{\simeq} K/T \odot W = N_{K}(T)/T.$$

Problem

Describe G/B = K/T as a W-equivariant CW-complex.

Arthur Garnier

Example: type A

•
$$G = SL_n(\mathbb{C}), K = SU(n), T = S(U(1)^n) \text{ and } W = \mathfrak{S}_n,$$

• $B = \begin{pmatrix} * & * & \cdots & * \\ 0 & * & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & * \end{pmatrix}$ Borel subgroup,
• $G/B = \{\text{flags } (0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = \mathbb{C}^n)\},$
• $K/T = \{\text{decompositions } \mathbb{C}^n = L_1 \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus} L_n\} \odot \mathfrak{S}_n,$
• $G/T^{\mathbb{C}} = \{\text{decompositions } \mathbb{C}^n = L_1 \oplus \cdots \oplus L_n\} \odot \mathfrak{S}_n.$

Example

$$\mathcal{F}_{SL_2}(\mathbb{C}) \simeq U(2)/U(1)^2 \simeq \mathbb{CP}^1 \odot \mathfrak{S}_2 = \langle s \rangle, \ s(L_1 \stackrel{\perp}{\oplus} L_2) = L_2 \stackrel{\perp}{\oplus} L_1.$$

$$[1:z] \cdot s = [-\overline{z}:1] = [1:-1/\overline{z}]$$

 \rightsquigarrow antipode on $\mathbb{S}^2,$ as in the example above.

The Goresky-Kottwitz-MacPherson graph

 $\begin{aligned} \{ \text{vertices} \} &\leftrightarrow \{ \underline{T}\text{-fixed points} \}, \ \{ \text{edges} \} &\leftrightarrow \{ \overline{T}\text{-orbits of dim 1} \}, \\ \text{each edge} &\leftrightarrow \quad \overline{T}\text{-orbit} = \mathbb{CP}^1 \end{aligned}$

(b) Many SL₂ situations

 \rightsquigarrow 1-skeleton and part of the 2-skeleton, like for $SL_2.$

Arthur Garnier

Educated guess/hope

- Hope the complex has nice general combinatorial description.
- Hard to find a CW-structure. Try to guess ranks of free modules. Let

$${\mathcal P}^{\mathbb{C}}_W(q):=\sum_k \#\{W ext{-orbits of }k ext{-cells of }\mathcal{F}\ell_{\mathbb{C}}(G)\}q^k$$

and similarly consider $P_W^{\mathbb{R}}$ for the real points. Constraints: deg $(P_W^{\mathbb{C}}) = 2|\Phi^+|$ and $P_W^{\mathbb{C}}(-1) = 1$.

Parametrization

 $\{k\text{-cells of }\mathcal{F}\ell_{\mathbb{R}}(G)\} \leftrightarrow \{k\text{-subsets of positive roots}\}.$

k-cells parametrized by *k* real parameters (one for each root). This would give $P_W^{\mathbb{R}}(q) = [2]_q^{|\Phi^+|}$. Recall that $[k]_q = 1 + q + \cdots + q^{k-1}$.

Educated guess/hope

Missing cells in *Fℓ*_C(*G*): allow some parameters to take complex values.

Compatible with GKM.

Each positive root would have a multiplicity 0, 1 or 2

 \rightsquigarrow multiset of positive roots with multiplicity.

This gives $P_W^{\mathbb{C}}(q) = [3]_q^{|\Phi^+|}$.

 \rightsquigarrow combinatorial flavour of the de Concini–Salvetti complex.

Recall that the de Concini–Salvetti complex is a free resolution of \mathbb{Z} over $\mathbb{Z}[W]$, with W finite Coxeter group, constructed using increasing chains of subsets of simple reflections.

For
$$SL_3$$
, $\mathcal{P}_W^{\mathbb{R}}(q) = [2]_q^3 = q^3 + 3q^2 + 3q + 1$ and
 $\mathcal{P}_W^{\mathbb{C}}(q) = [3]_q^3 = q^6 + 3q^5 + 6q^4 + 7q^3 + 6q^2 + 3q + 1.$

A first decomposition of $\mathcal{F}_3(\mathbb{R}) := \mathcal{F}_{SL_3}(\mathbb{R}) = SL_3(\mathbb{R})/B$

 $\mathcal{O}_{\min} := SL_3(\mathbb{C}) \cdot E_{1,3}$ minimal nilpotent orbit, then $\mathcal{F}_3(\mathbb{C}) = \mathbb{P}(\overline{\mathcal{O}_{\min}}) \subset \mathbb{P}(\mathfrak{sl}_3) \simeq \mathbb{CP}^7$, so $\mathcal{F}_3(\mathbb{R}) \hookrightarrow \mathbb{RP}^7$. Using the **GKM graph** of \mathfrak{S}_3 , construct an equivariant structure on $\mathcal{F}_3(\mathbb{R})$.

(a) GKM graph

(b) SL₂ situations

(c) 3-cells of $\mathcal{F}_3(\mathbb{R})$

Theorem (G. 2019)

- *F*₃(ℝ) admits an 𝔅₃-cellular structure whose cellular chain complex has the shape ℤ[𝔅₃]⁴ → ℤ[𝔅₃]⁶ → ℤ[𝔅₃]³ → ℤ[𝔅₃].
- There is an 𝔅₃-isomorphism 𝔽₂[x, y, z]_{𝔅3} → H^{*}(𝔅₃(𝔅), 𝔽₂) sending x, y and z to irreducible real algebraic 1-cocycles.

Arthur Garnier

New look at $\mathcal{F}_3(\mathbb{R})$

$$\mathsf{Recall} \,\, \mathcal{F}_3(\mathbb{R}) = SO(3)/S(O(1)^3) = SO(3)/\{\pm 1\}^2 \odot \mathfrak{S}_3.$$

$$S^{3} \qquad \bigcirc \mathcal{Q}_{8} \rtimes \mathfrak{S}_{3} = \mathcal{O} = \left\langle i, \frac{1}{\sqrt{2}}(1+j) \right\rangle$$

$$/\mathcal{Q}_{8} \qquad SO(3) \qquad \bigcirc \{\pm 1\}^{2} \rtimes \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4}$$

$$/\{\pm 1\}^{2} \qquad \bigcirc \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4}$$

$$/\{\pm 1\}^{2} \qquad \bigcirc \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4}$$

$$/(\pm 1)^{2} \qquad \bigcirc \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4}$$

$$/(\pm 1)^{2} \qquad \bigcirc \mathfrak{S}_{3} = W(D_{3}) = \mathfrak{S}_{4}$$

where \mathcal{O} is the **binary octahedral group**. This last space is called a **spherical space form**. Construct an \mathcal{O} -cellular structure on \mathbb{S}^3 ?

Arthur Garnier

Orbit polytopes

Free isometric action of a finite group $\mathcal{G} \odot \mathbb{S}^n \ni v_0$.

The **orbit polytope** of \mathcal{G} is $P_{\mathcal{G}} := \operatorname{conv}(\mathcal{G} \cdot v_0)$.

 ${\mathcal G}$ acts freely on $P_{{\mathcal G}}$ and on its faces and the projection

$$\partial P_{\mathcal{G}} \to \mathbb{S}^n$$

is a \mathcal{G} -homeomorphism.

Theorem (*Fêmina–Galves–Manzoli Neto–Spreafico (2013), Chirivì–Spreafico (2017)*)

Assume that $\operatorname{span}(\mathcal{G} \cdot v_0) = \mathbb{R}^{n+1}$. Then there is a system F_1, \ldots, F_r of orbit representatives for the \mathcal{G} -action on facets of $P_{\mathcal{G}}$ such that $\bigcup_i F_i$ is a fundamental domain for \mathcal{G} on $\partial P_{\mathcal{G}}$.

The chain complex

Theorem (*Chiriv*)–*G.–Spreafico*, 2020)

The sphere \mathbb{S}^3 admits an \mathcal{O} -equivariant cellular decomposition whose associated cellular homology complex is

$$\mathbb{Z}[\mathcal{O}] \xrightarrow{\begin{pmatrix} 1-\tau_i & 1-\tau_j & 1-\tau_k \end{pmatrix}}{\partial_3} \mathbb{Z}[\mathcal{O}]^3 \xrightarrow{\begin{pmatrix} \omega_i & 1 & \tau_j - 1 \\ \tau_k - 1 & \omega_j & 1 \\ 1 & \tau_i - 1 & \omega_k \end{pmatrix}}{\partial_2} \mathbb{Z}[\mathcal{O}]^3 \xrightarrow{\begin{pmatrix} \tau_i - 1 \\ \tau_j - 1 \\ \tau_k - 1 \end{pmatrix}}{\partial_1} \mathbb{Z}[\mathcal{O}] ,$$

where

$$\begin{split} \omega_0 &= \frac{1-i-j-k}{2}, \ \omega_i = \frac{1+i-j-k}{2}, \ \omega_j = \frac{1-i+j-k}{2}, \ \omega_k = \frac{1-i-j+k}{2}, \\ \tau_i &= \frac{1-i}{\sqrt{2}}, \ \tau_j = \frac{1-j}{\sqrt{2}}, \ \tau_k = \frac{1-k}{\sqrt{2}}. \end{split}$$

What does it look like?

Arthur Garnier

The complex 1, 3, 3, 1 for $\mathcal{F}_3(\mathbb{R})$

Theorem

The real flag manifold $\mathcal{F}_3(\mathbb{R}) \simeq \mathbb{S}^3/\mathcal{Q}_8$ admits an \mathfrak{S}_3 -equivariant cell structure with cellular chain complex given by

 $w_0 = s_\alpha s_\beta s_\alpha = s_\beta s_\alpha s_\beta$ being the longest element of $\mathfrak{S}_3 = \langle s_\alpha, s_\beta \rangle$.

Remark

The 1-cells of \mathbb{S}^3 and $\mathcal{F}_3(\mathbb{R})$ are **geodesics**!...

Dirichlet-Voronoi fundamental domains in general

(M,g) complete, connected Riemannian *N*-manifold, *d* geodesic distance and $W \leq \text{Isom}(M,g)$ discrete and $x_0 \in M$ regular point. The **Dirichlet-Voronoi** domain (centered at x_0) is

$$\mathcal{DV} := \{x \in M ; d(x_0, x) \leq d(wx_0, x), \forall w \in W\},$$

the w-dissecting hypersurface is $H_w := \{d(x_0, x) = d(wx_0, x)\}.$

Proposition

- \mathcal{DV} is a star-shaped fundamental domain for $W \odot M$.
- If $\mathcal{DV} \subset B_g(x_0, \rho)$ for $0 < \rho < \operatorname{inj}_{x_0}(M)$, where $\operatorname{inj}_{x_0}(M)$ is the *injectivity radius* of M at x_0 , then $\stackrel{\circ}{\mathcal{DV}}$ is a N-cell. Moreover in this case, we have a homeomorphism $\partial \mathcal{DV} \simeq \mathbb{S}^{N-1}$.

We hope to build an equivariant cell structure from \mathcal{DV} , where the lower cells should be intersections of **walls** $\mathcal{DV} \cap H_w$.

Arthur Garnier

Injectivity radius

Recall that

$$\begin{split} & \operatorname{inj}_{x_0}(M) = \sup\{r > 0 \text{ s.t. } \operatorname{Exp}_{x_0} \text{ is injective on } B(x_0, r)\} \\ & = \sup\{r > 0 \text{ ; } \forall x \in B(x_0, r), \ \exists! \text{ minimal geodesic from } x_0 \text{ to } x\}. \end{split}$$

Hard to compute! but some estimates, e.g. using **sectional curvature** (Klingenberg, '59).

The case of flag manifolds: first result

In general, K/T admits a **normal homogeneous metric** (i.e. coming from a bi-invariant one on K, e.g. induced by the Killing form κ). We consider the Dirichlet-Voronoi domain

$$\mathcal{DV} := \{x \in K/T ; d(1,x) \leq d(w,x), \forall w \in W\}.$$

Example

For $\mathcal{F}_n(\mathbb{C}) := SU(n)/S(U(1)^n)$ and $X, Y \in \mathfrak{su}(n)$, we have $\kappa(X, Y) = 2n \operatorname{tr}(XY)$.

Conjecture: $\mathcal{DV} \subset B(1, inj(K/T))$. First step:

Lemma

We have
$$\operatorname{inj}(\mathcal{F}_n(\mathbb{C}), \kappa) \ge \pi \sqrt{n/2}$$
 and $\operatorname{inj}(\mathcal{F}_n(\mathbb{R}), \kappa) = \pi \sqrt{n} = d(1, s_\alpha)$ for any $\alpha \in \Phi^+$.

Arthur Garnier

A new structure on $\mathcal{F}_3(\mathbb{R})$

Proposition

Let $\mathcal{DV}_3 \subset \mathcal{F}_3(\mathbb{R})$ Dirichlet-Voronoi domain. Then

 $\max_{x \in \mathcal{DV}_3} d(1,x) = 4\sqrt{3}\arccos(1/2 + \sqrt{2}/4) \approx 3.7969 < 5.4414 \approx \pi\sqrt{3} = \operatorname{inj}(\mathcal{F}_3(\mathbb{R})).$

Theorem (G. 2021)

The walls of \mathcal{DV}_3 induce an \mathfrak{S}_3 -cell structure on $\mathcal{F}_3(\mathbb{R})$ with chain complex of the form $\mathbb{Z}[\mathfrak{S}_3] \to \mathbb{Z}[\mathfrak{S}_3]^7 \to \mathbb{Z}[\mathfrak{S}_3]^{12} \to \mathbb{Z}[\mathfrak{S}_3]^6$.

Arthur Garnier

A glance at the proof of $\max_{\mathcal{DV}_3} d(1,-) pprox 3.7969$

Lemma ("no antenna lemma")

(M, g) connected and compact, $W \leq \text{Isom}(M)$ finite, $x_0 \in M$ regular and assume that $\mathcal{DV} \subset B(x_0, \text{inj}_{x_0}(M))$. If $\mathcal{DV} \cap S(x_0, \rho)$ is finite for some $0 < \rho < \text{inj}_{x_0}(M)$, then $\mathcal{DV} \subset \overline{B(x_0, \rho)}$. If moreover $\mathcal{DV} \cap S(x_0, \rho) \neq \emptyset$ then $\max_{x \in \mathcal{DV}} d(x_0, x) = \rho$.

Let $\pi : \mathbb{S}^3 \to \mathcal{F}_3(\mathbb{R})$. For $q = a + bi + cj + dk \in \mathbb{S}^3$ s.t. $a \ge |b|, |c|, |d|$, we have $d(1, \pi(q)) = 4\sqrt{3} \arccos(a)$. Using reflections, prove that $\pi(q) \in \mathcal{DV}_3 \Rightarrow a^2(10 - 6\sqrt{2}) \ge 1$, so $\mathcal{DV}_3 \subset B(1, \pi\sqrt{3})$. Let $a_0 := 1/2 + \sqrt{2}/4$, conditions on remaining elements of \mathfrak{S}_3 yields

$$\{\pi(q) \in \mathcal{DV}_3 ; \ d(1,\pi(q)) = 4\sqrt{3}a_0\}$$

 $\approx \{(b, c, d) \in \mathbb{R}^3 ; |b|, |c|, |d| \le \sqrt{2}/4, |b \pm c \pm d| \le a_0, b^2 + c^2 + d^2 = 1 - a_0^2\}$ \rightsquigarrow full truncated cube intersected with a sphere \rightsquigarrow only 24 points (the 0-cells).

Thank you!

(a) Other view of \mathcal{DV}_3

(b) Truncated cube (blue) and sphere (red)

The complex for the first decomposition is

$$\mathbb{Z}[\mathfrak{S}_3]^4 \xrightarrow{\partial_3} \mathbb{Z}[\mathfrak{S}_3]^6 \xrightarrow{\partial_2} \mathbb{Z}[\mathfrak{S}_3]^3 \xrightarrow{\partial_1} \mathbb{Z}[\mathfrak{S}_3] ,$$

where

$$\partial_1 = (1-s_{lpha} \ 1-s_{eta} \ 1-w_0), \ \ \partial_3 = egin{pmatrix} 0 & s_{lpha} & 0 & 1 \ -s_{eta} s_{lpha} & 0 & -w_0 & 0 \ 0 & s_{eta} s_{lpha} & 1 & 0 \ 1 & 0 & 0 & s_{eta} s_{lpha} \ -s_{lpha} s_{eta} s_{eta} & s_{eta} & 0 & 0 \ 0 & 0 & s_{lpha} s_{eta} & -s_{lpha} s_{eta} & 0 & 0 \ 0 & 0 & s_{lpha} s_{eta} & -s_{lpha} s_{eta$$

$$\partial_2 = egin{pmatrix} -1 & 1 & s_lpha & w_0 - s_lpha s_eta & s_eta - s_eta s_lpha \\ s_eta s_lpha - s_eta & s_lpha - 1 & -w_0 & w_0 & s_lpha s_eta & s_lpha s_eta \\ s_eta & s_eta s_lpha - 1 & s_lpha s_eta - w_0 & -s_eta & s_eta s_lpha \\ s_eta & s_eta s_lpha - 1 & s_lpha s_eta - w_0 & -s_eta & s_eta s_lpha \end{pmatrix}.$$

The complex for the third decomposition is

$$\mathbb{Z}[\mathfrak{S}_3] \xrightarrow{\partial_3} \mathbb{Z}[\mathfrak{S}_3]^7 \xrightarrow{\partial_2} \mathbb{Z}[\mathfrak{S}_3]^{12} \xrightarrow{\partial_1} \mathbb{Z}[\mathfrak{S}_3] ,$$

where

$$\partial_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & s_{\beta} & -s_{\beta} & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & s_{\beta}s_{\alpha} & 0 & 0 & -1 \\ -w_{0} & 0 & 0 & 0 & 0 & 0 & 0 & w_{0} & 0 & s_{\beta} & -w_{0} & 0 \\ s_{\beta}s_{\alpha} & -s_{\beta}s_{\alpha} & 0 & 0 & s_{\alpha} & -s_{\alpha} & 0 & 0 & 0 & 0 & 0 \\ 0 & s_{\beta}s_{\alpha} & -s_{\beta}s_{\alpha} & 0 & 0 & 0 & 0 & -w_{0} & 0 & w_{0} & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & s_{\beta} & -s_{\beta} & 0 & 0 & 0 & 0 \\ 1 & -s_{\alpha}s_{\beta} & 0 & 0 & -1 & 0 & 0 \\ 1 & s_{\beta} & 0 & -s_{\beta} & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & -w_{0} & 0 & 0 \\ 1 & s_{\alpha} & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & -1 & 0 & -w_{0} & 0 & 0 \\ 1 & 0 & -s_{\beta}s_{\alpha} & -1 & 0 & 0 & 0 \\ 0 & -1 & -w_{0} & 0 & -s_{\beta} & 0 \\ 0 & -1 & -w_{0} & 0 & -s_{\beta} & 0 \\ 0 & s_{\beta} & 1 & 0 & 0 & 0 & -s_{\beta} \\ 0 & w_{0} & -w_{0} & -1 & 0 & 0 & 0 \\ 0 & -s_{\beta}s_{\alpha} & 1 & 0 & 0 & -1 & 0 \end{pmatrix}, \quad \partial_{3} := \begin{pmatrix} 1 -s_{\alpha} \\ 1 -s_{\beta} \\ 1 -s_{\beta} \\ 1 -s_{\alpha}s_{\beta} \\ 1 -s_{\alpha}s_{\beta} \\ 1 -s_{\alpha}s_{\beta} \end{pmatrix}.$$

Arthur Garnier