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Motivations

Principle : Associate to topological spaces some algebraic
invariants to identify them. Different kinds of invariants :

Number : dimension(s), Euler characteristic...
Structures : (co)homology groups, homotopy groups,
cohomology algebras...
Elements in these structures : characteristic classes,
fundamental class...

How to distinguish between spaces ? By looking at the
relationships between them !

Another motivation: existence of geometric structures on spaces
(Hopf-Poincaré, Brouwer and Lefschetz fixed point theorems...)
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Motivations

Suitable notion of “morphism” for topology : continuous maps. In
the sequel, every map is continuous.
Associated “Isomorphisms”: homeomorphisms. Too strong !
Spaces may look the same, without being homeomorphic.
Example : S1 and C× are not homeomorphic...
...but both only have one “hole”.

Two such spaces are homotopy equivalent.
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Fundamental group
▶ What is a “hole”, topologically?

≃
▶ Question : how to continuously deform a path into another ?

Definition
Let I := [0, 1] and X be a topological space. A homotopy between
two paths with the same endpoints γ1, γ2 : I → X is a
(continuous) map H : I × I → X st

∀t ∈ I,
{

H(t, 0) = γ1(t),
H(t, 1) = γ2(t), and ∀s ∈ I,

{
H(0, s) = γ1(0) = γ2(0),
H(1, s) = γ1(1) = γ2(1).

In this case, we denote γ1 ∼ γ2.
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Fundamental group

Case of loops :

We fix x0 ∈ X . If γ : I → X is a loop based at x0 ∈ X (i.e.
x0 = γ(0) = γ(1)), we let

[γ] := {γ′ : I → X ; γ′(0) = γ′(1) = x0 and γ′ ∼ γ}
and

π1(X , x0) := {[γ], γ loop in X , based at x0}.
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Fundamental group
We may compose paths : If γ1 : a → b and γ2 : b → c, then we
let

γ ∗ δ : t 7→
{

γ(2t) si 0 ≤ t ≤ 1
2

δ(2t − 1) si 1
2 ≤ t ≤ 1

γ1 ∼ γ2
δ1 ∼ δ2

}
⇒ γ1 ∗ δ1 ∼ γ2 ∗ δ2. (⋆)

Using (⋆) we define
∀[γ], [δ] ∈ π1(X , x0), [γ] ∗ [δ] := [γ ∗ δ].

Key fact 1: (π1(X , x0), ∗) is a group.
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Fundamental group

If X is path-connected, then π1(X , x0) ≃ π1(X , y0), ∀x0, y0 ∈ X .

Key fact 2: π1 : Top∗ → Grp is a functor.
Decrypted : for f : (X , x0) → (Y , y0) map of pointed spaces, then
we have a group homomorphism

π1(f ) = f1 : π1(X , x0) → π1(Y , y0)
[γ] 7→ [f ◦ γ] st

{
(g ◦ f )1 = g1 ◦ f1
(idX )1 = idπ1(X)

Example
Up to homotopy, a loop in S1 is determined by the number of its
(oriented) turns around 0, hence π1(S1) ≃ Z.
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Fundamental group

We may generalize the notion of homotopy to maps between
spaces :

Definition
A homotopy between maps f , g : X → Y is a map
H : X × I → Y such that

∀x ∈ X ,
{

H(x , 0) = f (x),
H(x , 1) = g(x).

In this case, we denote f ∼ g .
Two spaces X ,Y are homotopy equivalent if there are
f : X → Y and g : Y → X st g ◦ f ∼ idX and f ◦ g ∼ idY .
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Fundamental group
Example

If ∅ ≠ X ⊂ Rn is convex and x0 ∈ X , then

H(x , t) = (1 − t)x0 + tx

is a homotopy idX ∼ x0 (we say that X is contractible).
Denote

ι : S1 ↪→ C×

z 7→ z and p : C× ↠ S1

z 7→ z/|z |

We have p ◦ ι = idS1 and a homotopy ι ◦ p ∼ idC× defined by

H(z , t) = tz + (1 − t)z/|z |.
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Fundamental group

Example
Another example: the Möbius strip retracts onto S1.
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Fundamental group

Example
We have seen that π1(S1) ≃ Z and we have an isomorphism

π1(C×) −→ Z

[γ] 7−→ 1
2iπ

∮
γ

dz
z = Indγ(0)

Key fact 3: π1 is homotopy invariant : if X ∼ Y then
π1(X ) ≃ π1(Y ).

Not a complete invariant! π1(S2) = 1 = π1(pt) but S2 ≁ pt.

Refine by looking at higher dimensions?
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Higher homotopy groups

For any space X and x0 ∈ X , we have defined

π1(X , x0) = [(S1, 1), (X , x0)] def= {γ : S1 → X ; γ(1) = x0}/ ∼ .

We can do the same for each n ≥ 2 :

πn(X , x0) := [(Sn, 1), (X , x0)].

We have a homeomorphism of pairs (In, ∂In) ≃ (Sn, 1), hence
πn(X , x0) = [(In, ∂In), (X , x0)] and we have a composition

γ ∗ δ : (t1, . . . , tn) 7→
{

γ(2t1, t2, . . . , tn) si 0 ≤ t1 ≤ 1
2 ,

δ(2t1 − 1, t2, . . . , tn) si 1
2 ≤ t1 ≤ 1.
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Higher homotopy groups

Compatible with homotopy and makes πn(X , x0) an abelian
group. For each n ≥ 2, πn : Top∗ → Ab is a functor (i.e.
f : (X , x0) → (Y , y0) induces fn : πn(X , x0) → πn(Y , y0) st
(f ◦ g)n = fn ◦ gn and idn = id) and a homotopy invariant (i.e.
f ∼ g ⇒ fn = gn).

Adding π0(X , x0) := {path-connected components of X}, we
obtain algebraic homotopy invariants πn(X , x0) for a pointed space
(X , x0) and n ∈ N.

Does this determine the homotopy type? No!
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Higher homotopy groups

Example
The map

f : N → {0} ∪ {1/n, n ∈ N∗}

n 7→
{

1/n si n ̸= 0
0 sinon

is not a homotopy equivalence but fn is an isomorphism for every n.

Definition
A map f : (X , x0) → (Y , y0) is a weak homotopy equivalence if
fn : πn(X , x0) → πn(Y , y0) is an isomorphism for each n ≥ 1 and
one-to-one for n = 0.
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Partial converse: CW-complexes and Whitehead’s theorem

We have homotopy equivalence ⇒ weak homotopy equivalence.
There is a class of spaces for which the converse holds.

Definition
A CW-complex is a space X obtained from a set of points X0 by
inductively gluing n-cells.
More precisely, non-decreasing sequence of subspaces
X0 ⊂ X1 ⊂ · · · ⊂ X st X0 is discrete, for n > 0, Xn is obtained
from Xn−1 by attaching n-balls along their boundaries.

�
If infinitely many cells, weak topology on X : A ⊂ X is closed iff

A ∩ Xn is closed in Xn for all n. This is important in Ivan’s work.
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CW-complexes

Attaching n-cell ? Start with a space X and a map f : Sn−1 → X .
Commutative diagram (pushout)

Sn−1
� _

incl.
��

f // X

�� ∀

��

Bn //

∀ ..

X ∪f en

∃!

$$
∀Z

A CW-complex X is Hausdorff, each open cell is homeomorphic to
an open ball and open cells form a partition of X .
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CW-complexes
Example

Spheres, torus, Klein’s bottle...

But also whole classes of spaces: projective spaces,
(realisations of) simplicial complexes, smooth manifolds and
complex algebraic varieties (they are even “triangulated”)...
...but some are not : the Hawaiian earring
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Whitehead’s theorem

▶ First advantage : “easily” compute invariants (Euler
characteristic, (co)homology, π1 by generators and relations,
and (heavy) algorithms for πn≥2’s).

▶ Second advantage : weak homotopy equivalences and
homotopy equivalences coincide on CW-complexes :

Theorem (J. H. C. Whitehead, 1949)
If X ,Y space with the homotopy type of CW-complexes and if
f : X → Y is a weak equivalence, then it is a homotopy
equivalence.

categorical generalization : fibrant-cofibrant objects in model
categories...
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Reminder on complexes and exact sequences
A (chain) complex C• = (Cn, dn)n∈Z is a sequence of abelian
groups and homomorphisms of the form

· · · // Cn+1
dn+1 // Cn

dn // Cn−1 // · · ·

such that dn ◦ dn+1 = 0. We introduce its homology

∀n ∈ Z, Hn(C•) := ker(dn)/im(dn+1).

morphisms between complexes ? sequence (φn : Cn → Dn) st

· · · // Cn+1

φn+1
��

// Cn

φn
��

// Cn−1

φn−1
��

// · · ·

· · · // Dn+1 // Dn // Dn−1 // · · ·

We associate to φ• homomorphisms Hn(φ•) : Hn(C•) → Hn(D•).
Arthur Garnier Homotopy, invariants and Serre fibrations March 17, 2021 20 / 33



Motivations
Homotopy (groups)

Serre fibrations and homotopy LES

Reminder on complexes and exact sequences
Homological algebra : general vocabulary for constructions of
algebraic invariants of spaces.
Key point : if φ : A• → B• and ψ : B• → C• st

∀n ∈ Z, 0 // An
φn // Bn

ψn // Cn // 0 is a SES

i.e.

im(ψn) = Cn, ker(ψn) = im(φn) and ker(φn) = 0,

then we get a LES

· · · Hn+1(C) ∂ // Hn(A)
Hn(φ) // Hn(B)

Hn(ψ) // Hn(C) ∂ // Hn−1(A) · · ·

Crucial feature for applications in algebraic topology.
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Homotopy analogue ?

Question : what is the suitable notion of SES in Top to get a LES
in homotopy? Serre fibration !

Definition
A map p : E → B is Serre fibration if we may complete every
diagram of the form (n ∈ N and I = [0, 1])

In ∼ // In × {0}� _
ι

��

∀f0 // E
p
��

In+1 ∼ // In × I
∀f

//
∃f̃

;;

B

In this case, we say that p has the homotopy lifting property
(HLP) with respect to the pair (In+1, In × {0}).
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Variant and some properties

If a map p : E → B has the HLP for every pair (Z × I,Z ) (any Z ),
then it is called a Hurewicz fibration. But this is too strong!

Proposition
We have

HLP//(In, In−1 × {0}) ⇔ HLP//(Bn, Sn−1)

⇔ HLP//(In, Jn−1),

where Jn := (In × {0}) ∪∂In×{0} (∂In × I). For instance, J2 is
a lidless box.
n = 0 ⇒ p(E ) is union of 0-connected components of B.
Every fiber bundle (hence any covering map) is a Serre
fibration.
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Examples of Serre fibrations
Example

The exponential map is a Z-covering map

R exp−→ S1

x 7−→ e2iπx

Quaternions give universal covering Z/2Z ↪→ S3 ↠ SO(3).
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Examples of Serre fibrations
Example

The Möbius strip [−1, 1] ↪→ M
π
↠ S1

The Hopf bundle S1 ↪→ S3 ↠ S2
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Homotopy long exact sequence

First remark: we have bijections (for a space X and x0 ∈ X )

∀n ≥ 1, πn(X , x0) def= [(Sn, 1), (X , x0)]

≃ [(In, ∂In), (X , x0)] ≈ [(Bn, Sn−1), (X , x0)].

Fix p : E → B Serre fibration (surjective if B is 0-connected),
b0 ∈ B, F := p−1(b0) ι

↪→ E and e0 ∈ F . We have induced maps
ιn : πn(F , e0) → πn(E , e0) and pn : πn(E , e0) → πn(B, b0)
and we want to construct a connecting homomorphism

∂ : πn(B, b0) → πn−1(F , e0),

fitting in a homotopy LES involving ιn and pn (as for homology).
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Idea of construction of the homotopy LES
Start with [f ] ∈ πn(B, b0), represented by f : (In, ∂In) → (B, b0).
We have a diagram

Jn−1
� _

ι
��

e0 // E
p
��

In
f
//

∃ℓf

==

B

restricts to ℓf : In−1 × {1} → F and f̃ := (In−1, ∂In−1) ℓf→ (F , e0).
Define

∂([f ]) := [f̃ ].

By HLP again, this is well-defined and gives a morphism

πn(B, b0) ∂→ πn−1(F , e0).
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Theorem and consequences

Theorem
If p : E → B Serre fibration, e0 ∈ E , b0 := p(e0) and
F = p−1(b0), then there are connecting homomorphisms
∂ : πn(B, b0) → πn−1(F , e0) fitting into a long exact sequence

· · ·
pn+1 // πn+1(B, b0)

∂ // πn(F , e0)
ιn // πn(E , e0)

pn // πn(B, b0)
∂ // · · ·

· · ·
p1 // π1(B, b0)

∂ // π0(F , e0)
ι0 // π0(E , e0)

p0 // π0(B, b0).

Proof heavily uses the HLP (see [Félix & Tanré], Théorème 7.14 or
[Hatcher], Theorem 4.41).
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Theorem and consequences

Remark
Doesn’t depend on the fiber: we have p−1(x) ∼ p−1(y) for
x , y ∈ B.

Corollary
Is p : E → B is a covering map, then pn is an isomorphism for
every n ≥ 2. Moreover, if E is 0-connected, then the sequence
reduces to

1 // π1(E ) p1 // π1(B) ∂ // π0(F ) // 0
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Examples of applications
Example

From exp : R ↠ S1, we get πi≥2(S1) = 0 and the sequence

1 // π1(R) = 1 // π1(S1) ∂
∼
// π0(Z) = Z // 0.

The universal covering Z/2Z ↪→ S3 ↠ SO(3) yields

π1(SO(3)) ≃ Z/2Z and πi(SO(3)) = πi(S2), ∀i ≥ 2.

The antipode p : Sn ↠ Pn(R) gives isomorphisms

πi(Pn(R)) ≃ πi(Sn), ∀i ≥ 2.
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Examples of applications

�
The πi(Sn)’s are a mess: for instance, π3(S2) = Z and

πn+1(Sn) = Z/2Z for n ≥ 3. Still there are algorithms for it, e.g.
the Kenzo algorithm of Sergeraert.

Corollary
If p : E → B Serre fibration with contractible fibers (i.e.
p−1(x) ∼ pt), then p is a weak homotopy equivalence.
If in addition E and B both have the homotopy type of a
CW-complex, then p is a homotopy equivalence.

To be used in the talks to come...
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Concluding remarks

Remark
About homology, we have Hurewicz morphisms (for X
0-connected)

πn(X ) → Hn(X ,Z)

and an isomorphism

π1(X )ab → H1(X ,Z).

If f : X → Y map between 1-connected CW-complexes, then
f homotopy equivalence iff H∗(f ) : H∗(X ,Z) → H∗(Y ,Z) iso.
Sadly, no LES for homology, but a “spectral sequence”...
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Thank you !
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