Homotopy, invariants and Serre fibrations GdT Simplicial random variables

Arthur Garnier

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée Université de Picardie Jules Verne

March 17, 2021

PINE

Motivations

<u>Principle</u> : Associate to topological spaces some **algebraic invariants** to identify them. Different kinds of invariants :

- Number : dimension(s), Euler characteristic...
- Structures : (co)homology groups, **homotopy groups**, cohomology algebras...
- Elements in these structures : characteristic classes, fundamental class...

How to distinguish between spaces ? By looking at the relationships between them !

Another motivation: existence of geometric structures on spaces (Hopf-Poincaré, Brouwer and Lefschetz fixed point theorems...)

Motivations

Suitable notion of "morphism" for topology : continuous maps. *In the sequel, every map is continuous.*

Associated "Isomorphisms": **homeomorphisms**. Too strong ! Spaces may look the same, without being homeomorphic.

Example : \mathbb{S}^1 and \mathbb{C}^{\times} are not homeomorphic...

...but both only have one "hole".

Two such spaces are **homotopy equivalent**.

Fundamental group

What is a "hole", topologically?

Question : how to continuously deform a path into another ?

Definition

Let I := [0, 1] and X be a topological space. A **homotopy** between two paths with the same endpoints $\gamma_1, \gamma_2 : I \to X$ is a (continuous) map $H : I \times I \to X$ st

$$\forall t \in I, \begin{cases} H(t,0) = \gamma_1(t), \\ H(t,1) = \gamma_2(t), \end{cases} \text{ and } \forall s \in I, \begin{cases} H(0,s) = \gamma_1(0) = \gamma_2(0), \\ H(1,s) = \gamma_1(1) = \gamma_2(1). \end{cases}$$

In this case, we denote $\gamma_1 \sim \gamma_2$.

Fundamental group

Case of loops :

We fix $x_0 \in X$. If $\gamma : I \to X$ is a loop based at $x_0 \in X$ (i.e. $x_0 = \gamma(0) = \gamma(1)$), we let $[\gamma] := \{\gamma' : I \to X ; \gamma'(0) = \gamma'(1) = x_0 \text{ and } \gamma' \sim \gamma\}$

and

$$\pi_1(X, x_0) := \{ [\gamma], \ \gamma \text{ loop in } X, \text{ based at } x_0 \}.$$

Fundamental group

3

We may compose paths : If $\gamma_1: a \to b$ and $\gamma_2: b \to c$, then we let

$$\begin{array}{c} \gamma(2t) & \text{si} \quad 0 \leq t \leq \frac{1}{2} \\ \delta(2t-1) & \text{si} \quad \frac{1}{2} \leq t \leq 1 \end{array} \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Using (\star) we define

$$\forall [\gamma], [\delta] \in \pi_1(X, x_0), \ [\gamma] * [\delta] := [\gamma * \delta].$$

Key fact 1: ($\pi_1(X, x_0), *$) is a group.

Fundamental group

If X is path-connected, then $\pi_1(X, x_0) \simeq \pi_1(X, y_0)$, $\forall x_0, y_0 \in X$.

Key fact 2: $\pi_1 : \mathfrak{Top}^* \to \mathfrak{Grp}$ is a functor.

Decrypted : for $f : (X, x_0) \rightarrow (Y, y_0)$ map of pointed spaces, then we have a group homomorphism

$$\begin{array}{rcl} \pi_1(f)=f_1 & : & \pi_1(X,x_0) & \to & \pi_1(Y,y_0) \\ & & & [\gamma] & \mapsto & [f\circ\gamma] \end{array} \mathsf{st} \; \left\{ \begin{array}{l} (g\circ f)_1=g_1\circ f_1 \\ (\mathit{id}_X)_1=\mathit{id}_{\pi_1(X)} \end{array} \right.$$

Example

Up to homotopy, a loop in \mathbb{S}^1 is determined by the number of its (oriented) turns around 0, hence $\pi_1(\mathbb{S}^1) \simeq \mathbb{Z}$.

Fundamental group

We may generalize the notion of homotopy to maps between spaces :

Definition

• A **homotopy** between maps $f, g : X \to Y$ is a map $H : X \times I \to Y$ such that

$$\forall x \in X, \begin{cases} H(x,0) = f(x), \\ H(x,1) = g(x). \end{cases}$$

In this case, we denote $f \sim g$.

 Two spaces X, Y are homotopy equivalent if there are f: X → Y and g: Y → X st g ∘ f ∼ id_X and f ∘ g ∼ id_Y.

Fundamental group

Example

• If $\emptyset \neq X \subset \mathbb{R}^n$ is convex and $x_0 \in X$, then

$$H(x,t) = (1-t)x_0 + tx$$

is a homotopy $id_X \sim x_0$ (we say that X is *contractible*).

Denote

We have $p \circ \iota = \mathit{id}_{\mathbb{S}^1}$ and a homotopy $\iota \circ p \sim \mathit{id}_{\mathbb{C}^{\times}}$ defined by

$$H(z,t) = tz + (1-t)z/|z|.$$

Fundamental group

Example

Another example: the Möbius strip retracts onto \mathbb{S}^1 .

Fundamental group

Example

We have seen that $\pi_1(\mathbb{S}^1)\simeq\mathbb{Z}$ and we have an isomorphism

$$\begin{array}{rcl} \pi_1(\mathbb{C}^{\times}) & \longrightarrow & \mathbb{Z} \\ [\gamma] & \longmapsto & \frac{1}{2i\pi} \oint_{\gamma} \frac{dz}{z} = \operatorname{Ind}_{\gamma}(0) \end{array}$$

 $\frac{\text{Key fact 3:}}{\pi_1(X) \simeq \pi_1} \text{ is homotopy invariant : if } X \sim Y \text{ then } \pi_1(X) \simeq \pi_1(Y).$

Not a complete invariant! $\pi_1(\mathbb{S}^2) = 1 = \pi_1(\mathrm{pt})$ but $\mathbb{S}^2 \nsim \mathrm{pt}$.

Refine by looking at higher dimensions?

Higher homotopy groups

For any space X and $x_0 \in X$, we have defined

$$\pi_1(X, x_0) = [(\mathbb{S}^1, 1), (X, x_0)] \stackrel{\text{def}}{=} \{\gamma : \mathbb{S}^1 \to X \ ; \ \gamma(1) = x_0\} / \sim .$$

We can do the same for each $n \ge 2$:

$$\pi_n(X, x_0) := [(\mathbb{S}^n, 1), (X, x_0)].$$

We have a homeomorphism of pairs $(I^n, \partial I^n) \simeq (\mathbb{S}^n, 1)$, hence $\pi_n(X, x_0) = [(I^n, \partial I^n), (X, x_0)]$ and we have a composition

$$\gamma * \delta : (t_1, \ldots, t_n) \mapsto \begin{cases} \gamma(2t_1, t_2, \ldots, t_n) & \text{si } 0 \leq t_1 \leq \frac{1}{2}, \\ \delta(2t_1 - 1, t_2, \ldots, t_n) & \text{si } \frac{1}{2} \leq t_1 \leq 1. \end{cases}$$

Higher homotopy groups

Compatible with homotopy and makes $\pi_n(X, x_0)$ an **abelian group**. For each $n \ge 2$, $\pi_n : \mathfrak{Top}^* \to \mathfrak{Ab}$ is a functor (i.e. $f : (X, x_0) \to (Y, y_0)$ induces $f_n : \pi_n(X, x_0) \to \pi_n(Y, y_0)$ st $(f \circ g)_n = f_n \circ g_n$ and $id_n = id$) and a homotopy invariant (i.e. $f \sim g \Rightarrow f_n = g_n$).

Adding $\pi_0(X, x_0) := \{\text{path-connected components of } X\}$, we obtain algebraic homotopy invariants $\pi_n(X, x_0)$ for a pointed space (X, x_0) and $n \in \mathbb{N}$.

Does this determine the homotopy type? No!

Higher homotopy groups

Example

The map

$$f : \mathbb{N} \to \{0\} \cup \{1/n, n \in \mathbb{N}^*\}$$
$$n \mapsto \begin{cases} 1/n & \text{si } n \neq 0\\ 0 & \text{sinon} \end{cases}$$

is not a homotopy equivalence but f_n is an isomorphism for every n.

Definition

A map $f: (X, x_0) \to (Y, y_0)$ is a **weak homotopy equivalence** if $f_n: \pi_n(X, x_0) \to \pi_n(Y, y_0)$ is an isomorphism for each $n \ge 1$ and one-to-one for n = 0.

Partial converse: CW-complexes and Whitehead's theorem

We have homotopy equivalence \Rightarrow weak homotopy equivalence. There is a class of spaces for which the converse holds.

Definition

A **CW-complex** is a space X obtained from a set of points X_0 by inductively gluing *n*-cells. More precisely, non-decreasing sequence of subspaces $X_0 \subset X_1 \subset \cdots \subset X$ st X_0 is discrete, for n > 0, X_n is obtained from X_{n-1} by attaching *n*-balls along their boundaries.

If infinitely many cells, weak topology on $X: A \subset X$ is closed iff $A \cap X_n$ is closed in X_n for all n. This is important in Ivan's work.

CW-complexes

Attaching *n*-cell ? Start with a space X and a map $f : \mathbb{S}^{n-1} \to X$. Commutative diagram (pushout)

A CW-complex X is Hausdorff, each open cell is homeomorphic to an open ball and open cells form a partition of X.

CW-complexes

Example

• Spheres, torus, Klein's bottle...

- But also whole classes of spaces: projective spaces, (realisations of) simplicial complexes, smooth manifolds and complex algebraic varieties (they are even "triangulated")...
- ...but some are not : the Hawaiian earring

Whitehead's theorem

- First advantage : "easily" compute invariants (Euler characteristic, (co)homology, π₁ by generators and relations, and (heavy) algorithms for π_{n≥2}'s).
- Second advantage : weak homotopy equivalences and homotopy equivalences coincide on CW-complexes :

Theorem (J. H. C. Whitehead, 1949)

If X, Y space with the homotopy type of CW-complexes and if $f: X \to Y$ is a weak equivalence, then it is a homotopy equivalence.

categorical generalization : fibrant-cofibrant objects in model categories...

Reminder on complexes and exact sequences

A (chain) **complex** $C_{\bullet} = (C_n, d_n)_{n \in \mathbb{Z}}$ is a sequence of abelian groups and homomorphisms of the form

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots$$

such that $d_n \circ d_{n+1} = 0$. We introduce its **homology**

$$\forall n \in \mathbb{Z}, \ H_n(C_{\bullet}) := \ker(d_n) / \operatorname{im}(d_{n+1}).$$

morphisms between complexes ? sequence $(\varphi_n : C_n \rightarrow D_n)$ st

We associate to φ_{\bullet} homomorphisms $H_n(\varphi_{\bullet}) : H_n(C_{\bullet}) \to H_n(D_{\bullet})$.

Reminder on complexes and exact sequences

Homological algebra : general vocabulary for constructions of algebraic invariants of spaces.

 $\underbrace{\mathsf{Key point}}: \text{ if } \varphi: A_{\bullet} \to B_{\bullet} \text{ and } \psi: B_{\bullet} \to C_{\bullet} \text{ st}$

$$\forall n \in \mathbb{Z}, \ 0 \longrightarrow A_n \xrightarrow{\varphi_n} B_n \xrightarrow{\psi_n} C_n \longrightarrow 0 \ \text{is a SES}$$

i.e.

$$\operatorname{im}(\psi_n) = C_n, \ \operatorname{ker}(\psi_n) = \operatorname{im}(\varphi_n) \text{ and } \operatorname{ker}(\varphi_n) = 0,$$

then we get a LES

$$\cdots H_{n+1}(C) \xrightarrow{\partial} H_n(A) \xrightarrow{H_n(\varphi)} H_n(B) \xrightarrow{H_n(\psi)} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \cdots$$

Crucial feature for applications in algebraic topology.

Arthur Garnier

Homotopy analogue ?

Question : what is the suitable notion of SES in \mathfrak{Top} to get a LES in homotopy? Serre fibration !

Definition

A map $p: E \to B$ is **Serre fibration** if we may complete every diagram of the form $(n \in \mathbb{N} \text{ and } l = [0, 1])$

In this case, we say that p has the **homotopy lifting property** (HLP) with respect to the pair $(I^{n+1}, I^n \times \{0\})$.

Variant and some properties

If a map $p: E \to B$ has the HLP for every pair $(Z \times I, Z)$ (any Z), then it is called a **Hurewicz fibration**. But this is too strong!

Proposition

• We have

$$\mathsf{HLP}//(I^n, I^{n-1} \times \{0\}) \Leftrightarrow \mathsf{HLP}//(\mathbb{B}^n, \mathbb{S}^{n-1})$$

$$\Rightarrow$$
 HLP//(I^n, J^{n-1}),

where $J^n := (I^n \times \{0\}) \cup_{\partial I^n \times \{0\}} (\partial I^n \times I)$. For instance, J^2 is a lidless box.

 $n = 0 \Rightarrow p(E)$ is union of 0-connected components of B.

• Every fiber bundle (hence any covering map) is a Serre fibration.

Examples of Serre fibrations

Example

 $\bullet\,$ The exponential map is a $\mathbb Z\text{-covering map}$

$$\mathbb{R} \stackrel{e ext{exp}}{\longrightarrow} \mathbb{S}^1 \ x \longmapsto e^{2i\pi x}$$

$$\int_{1}^{2} P = exp$$

$$\int_{1}^{2} P = exp$$

$$\int_{1}^{2} P = exp$$

• Quaternions give universal covering $\mathbb{Z}/2\mathbb{Z} \hookrightarrow \mathbb{S}^3 \twoheadrightarrow SO(3)$.

Examples of Serre fibrations

Example

• The Möbius strip $[-1,1] \hookrightarrow \mathcal{M} \xrightarrow{\pi} \mathbb{S}^1$

 \bullet The Hopf bundle $\mathbb{S}^1 \hookrightarrow \mathbb{S}^3 \twoheadrightarrow \mathbb{S}^2$

Homotopy long exact sequence

First remark: we have bijections (for a space X and $x_0 \in X$)

$$\forall n \ge 1, \ \pi_n(X, x_0) \stackrel{\text{def}}{=} [(\mathbb{S}^n, 1), (X, x_0)]$$
$$\simeq [(I^n, \partial I^n), (X, x_0)] \approx [(\mathbb{B}^n, \mathbb{S}^{n-1}), (X, x_0)].$$

Fix $p: E \to B$ Serre fibration (surjective if B is 0-connected), $b_0 \in B, F := p^{-1}(b_0) \stackrel{\iota}{\hookrightarrow} E$ and $e_0 \in F$. We have induced maps $\iota_n : \pi_n(F, e_0) \to \pi_n(E, e_0)$ and $p_n : \pi_n(E, e_0) \to \pi_n(B, b_0)$ and we want to construct a **connecting homomorphism**

$$\partial: \pi_n(B, b_0) \to \pi_{n-1}(F, e_0),$$

fitting in a homotopy LES involving ι_n and p_n (as for homology).

Idea of construction of the homotopy LES

Start with $[f] \in \pi_n(B, b_0)$, represented by $f : (I^n, \partial I^n) \to (B, b_0)$. We have a diagram

restricts to $\ell_f : I^{n-1} \times \{1\} \to F$ and $\tilde{f} := (I^{n-1}, \partial I^{n-1}) \xrightarrow{\ell_f} (F, e_0)$. Define

 $\partial([f]) := [\widetilde{f}].$

By HLP again, this is well-defined and gives a morphism

$$\pi_n(B,b_0) \stackrel{\partial}{\rightarrow} \pi_{n-1}(F,e_0).$$

Theorem and consequences

Theorem

If $p: E \to B$ Serre fibration, $e_0 \in E$, $b_0 := p(e_0)$ and $F = p^{-1}(b_0)$, then there are connecting homomorphisms $\partial : \pi_n(B, b_0) \to \pi_{n-1}(F, e_0)$ fitting into a long exact sequence

$$\cdots \xrightarrow{p_{n+1}} \pi_{n+1}(B, b_0) \xrightarrow{\partial} \pi_n(F, e_0) \xrightarrow{\iota_n} \pi_n(E, e_0) \xrightarrow{p_n} \pi_n(B, b_0) \xrightarrow{\partial} \cdots$$

$$\cdots \xrightarrow{\rho_1} \pi_1(B, b_0) \xrightarrow{\partial} \pi_0(F, e_0) \xrightarrow{\iota_0} \pi_0(E, e_0) \xrightarrow{\rho_0} \pi_0(B, b_0).$$

Proof heavily uses the HLP (see [Félix & Tanré], Théorème 7.14 or [Hatcher], Theorem 4.41).

Theorem and consequences

Remark

Doesn't depend on the fiber: we have $p^{-1}(x) \sim p^{-1}(y)$ for $x, y \in B$.

Corollary

Is $p: E \to B$ is a covering map, then p_n is an isomorphism for every $n \ge 2$. Moreover, if E is 0-connected, then the sequence reduces to

$$1 \longrightarrow \pi_1(E) \xrightarrow{\rho_1} \pi_1(B) \xrightarrow{\partial} \pi_0(F) \longrightarrow 0$$

Examples of applications

Example

• From exp : $\mathbb{R} \twoheadrightarrow \mathbb{S}^1$, we get $\pi_{i \geq 2}(\mathbb{S}^1) = 0$ and the sequence

$$1 \longrightarrow \pi_1(\mathbb{R}) = 1 \longrightarrow \pi_1(\mathbb{S}^1) \xrightarrow{\partial}{\longrightarrow} \pi_0(\mathbb{Z}) = \mathbb{Z} \longrightarrow 0.$$

• The universal covering $\mathbb{Z}/2\mathbb{Z} \hookrightarrow \mathbb{S}^3 \twoheadrightarrow SO(3)$ yields $\pi_1(SO(3)) \simeq \mathbb{Z}/2\mathbb{Z}$ and $\pi_i(SO(3)) = \pi_i(\mathbb{S}^2), \ \forall i \ge 2.$

• The antipode $p: \mathbb{S}^n \twoheadrightarrow \mathbb{P}^n(\mathbb{R})$ gives isomorphisms

$$\pi_i(\mathbb{P}^n(\mathbb{R})) \simeq \pi_i(\mathbb{S}^n), \ \forall i \geq 2.$$

Examples of applications

The $\pi_i(\mathbb{S}^n)$'s are a mess: for instance, $\pi_3(\mathbb{S}^2) = \mathbb{Z}$ and $\pi_{n+1}(\mathbb{S}^n) = \mathbb{Z}/2\mathbb{Z}$ for $n \geq 3$. Still there are algorithms for it, e.g. the Kenzo algorithm of Sergeraert.

Corollary

If $p: E \to B$ Serre fibration with contractible fibers (i.e. $p^{-1}(x) \sim \text{pt}$), then p is a weak homotopy equivalence. If in addition E and B both have the homotopy type of a CW-complex, then p is a homotopy equivalence.

To be used in the talks to come...

Concluding remarks

Remark

• About homology, we have Hurewicz morphisms (for X 0-connected)

$$\pi_n(X) \to H_n(X,\mathbb{Z})$$

and an isomorphism

$$\pi_1(X)^{\mathrm{ab}} \to H_1(X,\mathbb{Z}).$$

 If f : X → Y map between 1-connected CW-complexes, then f homotopy equivalence iff H_{*}(f) : H_{*}(X, Z) → H_{*}(Y, Z) iso.

• Sadly, no LES for homology, but a "spectral sequence"...

Thank you !

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π ₁₁	π_{12}	π_{13}	π_{14}
S^0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S^1	Z	0	0	0	0	0	0	0	0	0	0	0	0	0
S^2	- 0	Z	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	$\mathbb{Z}/15$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^2$	$\mathbb{Z}/2 \times \mathbb{Z}/12$	$(\mathbb{Z}/2)^2 \times \mathbb{Z}/84$
S^3	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	$\mathbb{Z}/15$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^2$	$\mathbb{Z}/2 \times \mathbb{Z}/12$	$(\mathbb{Z}/2)^2 \times \mathbb{Z}/84$
S^4	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z} \times \mathbb{Z}/12$	$(\mathbb{Z}/2)^{2}$	$(\mathbb{Z}/2)^{2}$	$\mathbb{Z}/3 \times \mathbb{Z}/24$	$\mathbb{Z}/15$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^{3}$	$\mathbb{Z}/2 \times \mathbb{Z}/12 \times \mathbb{Z}/120$
S^5	- 0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/30$	$\mathbb{Z}/2$	$(\mathbb{Z}/2)^{3}$
S^6	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/60$	$\mathbb{Z}/2 \times \mathbb{Z}/24$
S^7	0	0	- 0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0	$\mathbb{Z}/2$	$\mathbb{Z}/120$
S^8	- 0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0	$\mathbb{Z}/2$
S^9	- 0	0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0
S^{10}	- 0	0	- 0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0
S^{11}	- 0	0	-0	- 0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$
S^{12}	0	0	0	0	0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$
S^{13}	0	0	0	0	0	0	0	0	0	0	0	0	Z	$\mathbb{Z}/2$
S^{14}	0	0	0	0	0	0	0	0	0	0	0	0	0	Z