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Abstract. These notes are taken from a talk I gave at the Arbeitsgemeinschaft on Geo-
metric Representation Theory that took place at Oberwolfach on April 2022.

The aim is to give an introduction to Soergel bimodules. After some geometric moti-
vations, we define Bott-Samelson and Soergel bimodules. We review their main properties
(filtrations, character) and in particular, state the Soergel categorification theorem.

Then, we discuss the relation between Soergel’s conjecture and Lusztig’s multiplicity
conjecture, via the Soergel modules.
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Part 1. Geometric introduction

Let G be a connected reductive algebraic group over C and choose a Borel B < G and
a maximal torus T < B. If X∗(T ) denotes the character lattice of T , then we consider the
symmetric algebra R := Sym(X∗(T ) ⊗ Q) = Sym(h∗) ≃ H∗

T (pt,Q), a graded algebra with
deg(h∗) = 2, h being the Lie algebra of T . We have an isomorphism of R-algebras

H∗
T (G/B,Q) = H∗

B(G/B,Q) ≃ R⊗RW R,
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where W = NG(T )/T is the (finite) Weyl group. We consider the B-equivariant derived
category Db

B(G/B,Q) and the hypercohomology

H∗
B : Db

B(G/B,Q)! H∗
T (G/B,Q)−gmod = (R⊗RW R)−gmod,

where gmod stands for graded modules, yields a functor

Db
B(G/B,Q)

H∗
B−! (R⊗RW R)−gmod

µ∗
−! (R⊗R)−gmod = R−gbim,

where µ is the canonical map R⊗R! R⊗RW R and gbim is the category of R-bimodules.
We still abusively denote this functor by H∗

B.
On the other hand, we have the geometric Hecke category

H = Hgeom := ⟨ICw, w ∈ W ⟩⊕,[1] ≃
〈
Q

Ps/B
, s ∈ S

〉
∗,⊕,[1],Kar

,

where ICw := IC(BwB/B) ∈ Db
B(G/B,Q) is the intersection complex of the Schubert

variety associated to w ∈ W . We have also denoted by ∗ the convolution product of
B-equivariant sheaves, [1] is the homological shift and Kar is the Karoubian completion
(i.e. completion under direct summands). Moreover, Ps := BsB is the minimal parabolic
subgroup generated by the simple reflection s ∈ S. The split Grothendieck group [H]⊕
is a ring under the product [F ] · [G] := [F ∗ G], and we endow it with the structure of a
Z[v, v−1]-algebra via the rule v · [F ] := [F [1]]. The key observation of Soergel is the following
theorem:

Theorem 1.1. The restricted functor

H∗
B : H −! R−gbim

is monoidal and fully faithful, so it is an equivalence onto its essential image. This image
is the category SBim of Soergel bimodules.

Let w ∈ W and consider an expression w = (s, t, . . . , u) for w, with s, t, . . . , u ∈ S. We
define the Bott-Samelson space

BSw := Ps ×B Pt ×B · · · ×B Pu/B

and the multiplication map ξ : BSw ! BwB/B, which is a resolution of singularities of the
Schubert variety and we let

Ew := ξ∗QBSw
= Q

Ps/B
∗Q

Pt/B
∗ · · · ∗Q

Pu/B
[ℓ(w)] ∈ H.

We call H∗
B(Ew) =: BS(w) ∈ R−gbim is the Bott-Samelson bimodule associated to the

expression w. If s ∈ S, then

BS(s) = H∗
B(QPs/B

[1]) = H∗
B(ICs) ≃ R⊗Rs R(1),

where (1) is the grading shift.
The central result of the theory of Soergel bimodules is the following categorification

result, that we shall detail and state properly below:

Theorem 1.2. The map
H −! [H]⊕
Hs 7−! [Q

Ps/B
[1]]

is an isomorphism of Z[v±1]-algebras, where H is the Hecke algebra of (W,S) and Hs is
the element of the Kazhdan-Lusztig basis associated to s ∈ S. Moreover, its reciprocal
[H]⊕

∼
! [SBim]⊕

∼
! H uses the “character” of a Soergel bimodule.

The combinatorial description of Soergel bimodules still makes sense for any Coxeter
group, leading to a categorification of the Hecke algebra.
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Part 2. Definitions and first properties of Bott-Samelson and Soergel
bimodules

1. Setting the stage: Demazure operators, bimodules and tensor product

Let (W,S) be a Coxeter system and let W ! GL(h) be the geometric representation
of W over R. We denote by (αs)s∈S the standard basis of h and we let R := Sym(h) =
R[αs, s ∈ S], with deg(αs) = 2 for all s ∈ S.

If M is a graded left R-module and p =
∑

i piv
i ∈ N[v±1], we let M⊕p :=

∑
i∈ZM(i)⊕pi ,

where M(1) is the grading shift. In other words, it extends the rule v · M := M(1) and
yields a Z[v±1]-action on R−gmod. If M ≃ R⊕p for some p ∈ N[v±1], the we say that M
is graded free of graded rank rk(M) =: p.

We now define the Demazure operators:

Definition 2.1. The Demazure operator ∂s associated to s ∈ S is the graded map

∂s : R −! Rs(−2)

f 7−! f−s(f)
αs

This is the projection associated to the decomposition R ≃ Rs ⊕ Rsαs = Rs ⊕ Rs(−2), as
(left) Rs-modules.

Proposition 2.2. The Demazure operators satisfy the following properties

(1) For s ∈ S, ∂s is a map of Rs-bimodules.
(2) For s ∈ S, we have s ◦ ∂s = ∂s, ∂s ◦ s = −∂s, ∂

2
s = 0.

(3) For s ∈ S and f, g ∈ R, we have ∂s(fg) = ∂s(f)g + s(f)∂s(g).
(4) The Rs-pairing

R⊗R −! Rs

f ⊗ g 7−! ∂s(fg)

is perfect.
(5) If s, t ∈ S are such that ms,t < ∞, then we have the braid relation

∂s∂t · · ·︸ ︷︷ ︸
ms,t

= ∂t∂s · · ·︸ ︷︷ ︸
ms,t

.

We also let R−gbim be the full subcategory of R-bimodules, which are finitely generated
as left and as right R-modules. It is a monoidal subcategory. For simplicity, if M,N are
R-bimodules, we denote MN := M ⊗R N .

2. Bott-Samelson and Soergel bimodules

Definition 2.3. (1) For s ∈ S, let

Bs := R⊗Rs R(1) ∈ R−gbim.

(2) If w = (s, t, . . . , u) is an expression for w ∈ W , then we let

BS(w) := BsBt · · ·Bu ≃ R⊗Rs R⊗Rt · · · ⊗Ru R(ℓ(w)) ∈ R−gbim.

(3) The category of Bott-Samelson bimodules BSBim has Bott-Samelson bimodules as
objects and, for B,B′ ∈ BSBim,

HomBSBim(B,B′) := Hom•
R(B,B′) =

⊕
i∈Z

HomR−gbim(B,B′(i)).

(4) A Soergel bimodule is a direct summand of a finite direct sum of (grading) shifts of
Bott-Samelson bimodules. The category of Soergel bimodules SBim is the (strictly)
full subcategory of R−gbim with Soergel bimodules as objects. In other words,

SBim = ⟨Ob(BSBim)⟩⊕,(1),Kar = ⟨R,Bs, s ∈ S⟩⊕,⊗,(1),Kar .

Remark 2.4. For any two expressions u and v, we have BS(u)BS(v) = BS(uv), so that
the category BSBim is monoidal.
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Proposition 2.5. The category SBim is monoidal and Krull-Schmidt (i.e. any object has
a unique decomposition into objects having local endomorphism rings).

Example 2.6. (1) If s ∈ S, then R and Bs are indecomposable bimodules and we have

BsBs = R⊗Rs R⊗Rs R(2) ≃ R⊗Rs (Rs ⊕Rs(−2))⊗Rs R(2)

= R⊗Rs R(2)⊕R⊗Rs R = Bs(1)⊕Bs(−1).

Thus, the set of isomorphism classes of indecomposable Soergel bimodules in type
A1, up to shift, is given by {R,Bs}. Notice also that, in the Hecke algebra H(W,S),
we have H2

s = vHs+ v−1Hs, which is a “decategorified” version of the isomorphism
BsBs ≃ Bs(1)⊕Bs(−1) we just observed.

(2) If s, t ∈ S are such that 2 < ms,t < ∞, then BsBt ≃ R ⊗Rs R ⊗Rt R(2) and
BtBs are generated by 1 ⊗ 1 ⊗ 1, so they are indecomposable. Let Bst := BsBt and
Bts := BtBs and, since BsBs is decomposable, we see that the bimodules Bs and Bt

are not isomorphic.
(3) Suppose that W = S3 is of type A2, so that ms,t = 3. We already know that

R,Bs, Bt, Bst, Bts are indecomposable. Let Bsts := R ⊗Rs,t R(3). It is generated by
1⊗ 1 in degree −3, so it is indecomposable. The maps

Bsts
ιsts−! BsBtBs

1⊗ 1 7−! 1⊗ 1⊗ 1⊗ 1
and

Bs
ιs−! BsBtBs

1⊗ 1 7−! 1
2(1⊗ αt ⊗ 1⊗ 1 + 1⊗ 1⊗ αt ⊗ 1)

are injective. We also have a projection

BsBtBs
ps
−! Bs

1⊗ f ⊗ g ⊗ 1 7−! −∂s(fg)⊗ 1

satisfying ps ◦ ιs = idBs and ps ◦ ιsts = 0. The endomorphism es := ιs ◦ps of BsBtBs

is idempotent and so is ests := 1− es. We obtain a decomposition

BsBtBs ≃ Bsts ⊕Bs.

Similarly, we have BtBsBt ≃ Bsts ⊕Bt. Observe finally that

BsBtBs ≃ Bsts ⊕Bs ≁ Bst(−1)⊕Bst(1) ≃ BsBsBt,

so that Bst ≁ Bts and also,

BstsBs ≃ BsBsts ≃ Bsts(1)⊕Bsts(−1) ≃ BstsBt ≃ BtBsts.

Therefore, the set {R,Bs, Bt, Bst, Bts, Bsts} is a complete set of distinct indecom-
posable Soergel bimodules, up to shift and isomorphism. This set is parametrized by
W = S3, which is a general feature.

Part 3. The classical theory: standard bimodules, filtrations and characters

3. Twisted bimodules and standard filtrations

Definition 3.1. For x ∈ W , consider the R-module automorphism µx : R ! R defined by
µx(r) := xr and consider the twisted bimodule Rx := Rµx ∈ R−gbim (i.e. R ⊗ R acts on
Rx via ((r1, r2) · r := r1rxr2). The category of standard bimodules is the full subcategory

StdBim := ⟨Rx, x ∈ W ⟩⊕,(1) ⊂ R−gbim.

Remark 3.2. For x, y ∈ W , we have Rx⊗Ry ≃ Rxy and Hom•(Rx, Ry) = δx,yR (as graded
vector spaces). Moreover, the category StdBim is closed under direct summands.

Proposition 3.3. We have an isomorphism of Z[v±1]-algebras

Z[v±1][W ]
∼
−! [StdBim]⊕

x 7−! [Rx]
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In other words, the category of standard bimodules categorifies the group algebra of W over
Z[v±1]. Since SBim categorifies the Hecke algebra, we can say that SBim is a “deformation”
of StdBim.

4. Standard filtrations and characters of Soergel bimodules

For s ∈ S, we have Bs = R⊗Rs R(1) and consider the elements c1, cs, ds ∈ Bs defined by

c1 := 1⊗ 1, cs :=
1
2(αs ⊗ 1 + 1⊗ αs) and ds :=

1
2(αs ⊗ 1− 1⊗ αs).

For f ∈ R, we have the following relations:

f · c1 = c1 · f + ds · ∂s(f) = c1 · s(f) + cs · ∂s(f) and f · ds = ds · s(f).
These lead to (non-split) short exact sequences

A // B

(∆s) 0 // Rs(−1)
17!ds // Bs

f⊗g 7!fg // R(1) // 0

and

(∇s) 0 // R(−1)
17!cs // Bs

f⊗g 7!f ·s(g) // Rs(1) // 0.

Remark 3.4. We have Rs ⊂ Bs but Rs /∈ SBim, so that SBim is not closed under submod-
ules and quotients. In particular, this category is not abelian.

For an expression w = (s, t, . . . , u), tensoring the sequences (∆s), (∆t), . . . , (∆u) with
(shifts of) R, Rs, Bs... leads to a filtration of BS(w). A subquotient of this filtration is
a tensor product of R(1) and Rsi(−1) and the choice of a subquotient corresponds to the
choice of a subexpression of w. Of course, we can do the same with (∇s) instead of (∆s).

Fix an enumeration x0, x1, . . . , of W such that, if xi ≤ xj in the Bruhat order, then i ≤ j.
For instance, we can sort the elements by lengths, and put an arbitrary order on elements
of the same length.

Definition 3.5. (1) For such an enumeration, a ∆-filtration of a Soergel bimodule B
is a filtration 0 = Bk ⊂ Bk−1 ⊂ . . . ⊂ B0 = B with subquotients

Bi/Bi+1 ≃ R
⊕hxi
xi , with hxi ∈ N[v±1].

(2) Dually, a ∇-filtration is a filtration 0 = B0 ⊂ B1 ⊂ . . . ⊂ Bk = B such that

Bi+1/Bi ≃ R
⊕h′

xi
xi .

The main interest of such filtrations relies in the following result:

Theorem 3.6 (Soergel). Any Soergel bimodule has a unique ∆-filtration (and a unique
∇-filtration). Moreover, for x ∈ W , the graded multiplicity hx of Rx in the ∆-filtration
(resp. the multiplicity h′x of Rx in the ∇-filtration) depends only on B and x (not on the
chosen enumeration). We can then define the multiplicity hx(B) (resp. h′x(B)) of Rx in
any ∆-filtration (resp. ∇-filtration) of B.

Definition 3.7. The ∆-character of a Soergel bimodule B is defined by

ch(B) = ch∆(B) :=
∑
x∈W

vℓ(x)hx(B)Hx ∈ H(W,S),

where (Hx)x is the standard basis of the Hecke algebra H(W,S). Dually, we can define the
∇-character ch∇(B) ∈ H(W,S) of B.

Example 3.8. For s ∈ S, we have the ∆-filtration 0 ⊂ Rs(−1) ⊂ Bs, with subquotients

R⊕v−1

s and R⊕v, so that ch(Bs) = Hs + v = Hs.
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For B,B′ ∈ SBim, we have

ch(B ⊕B′) = ch(B) + ch(B′) and ch(B(±1)) = v±1ch(B).

Therefore, the character induced a Z[v±1]-linear map

ch : [SBim]⊕ ! H(W,S).

5. Localization

Let Q := Frac(R) be the fraction field of R. We have Bs ⊗R Q ≃ Q ⊗Qs Q as (R,Q)-
bimodules.

Lemma 3.9. (1) For an expression x = (s, t, . . . , u), we have an isomorphism of (R,Q)-
bimodules

BS(x)⊗R Q ≃ Q⊗Qs Q⊗Qt · · · ⊗Qu Q.

(2) There is an isomorphism of Q-bimodules

Bs ⊗R Q ≃ Qs ⊕Q.

Remark 3.10. The short exact sequences (∆s) ⊗ Q and (∇s) ⊗ Q split for any s ∈ S.
Hence, any ∆(∇)-filtration splits over Q.

Definition 3.11. (1) The category BSBimQ of Bott-Samelson bimodules over Q is the
full monoidal subcategory of Q−bim generated by the bimodules BsQ for s ∈ S.

(2) The category SBimQ of Soergel bimodules over Q is the closure of BSBim under
finite direct sums and direct summands.

(3) The category StdBimQ of standard bimodules over Q is the full subcategory of Q−bim
consisting of direct summands of finite direct sums of twisted bimodules Qx for
x ∈ W .

The monoidal functor −⊗R Q : BSBim! BSBimQ induces a localization functor

Loc : SBim −! SBimQ

and we have an equivalence of categories SbimQ ≃ StdBimQ. In particular, we have an
isomorphism of rings

[SBimQ]⊕
∼
−! Z[W ]

[Qx] 7−! x

Therefore, we can see the localization as a “categorification after specializing at v = 1”.
More precisely, the following square commutes

SBim

Loc

��

ch // H(W,S)

v 7!1
��

SBimQ
ch

// Z[W ].

6. Soergel’s categorification theorem and Soergel’s conjecture

Theorem 3.12 (Soergel). (1) There is an isomorphism of Z[v±1]-algebras

c : H(W,S) −! [SBim]⊕
Hs 7−! [Bs]

(2) There is a bijection

W
1:1
 ! {indecomposables of SBim} / ≃, (1)

w 7−! Bw

where Bw is a direct summand of BS(w) for any reduced expression w for w ∈ W .
Moreover, any other direct summand of BS(w) is a shift of Bx for some x < w.
This last statement is equivalent to the fact that Bw has Rw(−ℓ(w)) exactly once in
its ∆-filtration and all the other subquotients are shifts of Rx for x < w.
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(3) The character induces an isomorphism of Z[v±1]-modules

ch : [SBim]⊕
∼
−! H(W,S),

which is reciprocal to c.
(4) (Soergel’s Hom formula). For B,B′ ∈ SBim, the graded R-bimodule Hom•(B,B′) is

free of finite rank as a left R-module and as a right R-module. Moreover, the graded
ranks of Hom•(B,B′) as a left and as a right R-module are both equal to

rk(Hom•(B,B′)) = (ch(B), ch(B′)),

where (−,−) : H(W,S) × H(W,S) ! Z[v±1] is the usual pairing on the Hecke
algebra.

Example 3.13. By the first and third points in the theorem, if w = (s, t, . . . , u) is an
expression for w ∈ W , then we have

ch(BS(w)) = HsHt · · ·Hu.

Using Soergel’s Hom formula, we can compute that

rk(Hom•(Bs, Bt)) = v2, rk(Hom•(Bs, Bs)) = v2 + 1,

rk(Hom•(B2
s , Bs)) = v3 + 2v + v−1, rk(Hom•(Bs, BsBtBs)) = v4 + 2v2 + 1.

Conjecture 3.14 (Soergel’s conjecture). For any w ∈ W , we have ch(Bw) = Hw.

This is now a theorem of Elias and Williamson.
This conjecture implies the Kazhdan-Lusztig conjecture. Recall that the elements Hx

of the Kazhdan-Lusztig basis are uniquely written as Hx = Hx +
∑

y<x hy,xHy, where

hy,x ∈ Z[v±1] are the Kazhdan-Lusztig polynomials. The Kazhdan-Lusztig conjecture states
that hy,x ∈ N[v±1], i.e. that hy,x all have non-negative coefficients. Soergel’s conjecture may
be rephrased as hy,x = hy(Bx) and this, together with the fact that hx(B) ∈ N[v±1] for any
B ∈ SBim, indeed implies the Kazhdan-Lusztig conjecture. There is no known proof of the
Kazhdan-Lusztig conjecture that does not use categorification. However, for a finite Weyl
group, this conjecture was proved to hold using the following result:

Theorem 3.15 (Kazhdan-Lusztig). For x, y ∈ W with y < x, let IH i
Xy

(Xx) := Hi(ICx)y,

where Xx and Xy are the Schubert varieties associated to x and y, respectively. Then, we
have

vℓ(x)−ℓ(y)hy,x(v
−1) =

∑
i

vi dim(IH2i
Xy

(Xx)).

Part 4. Relation with Lusztig’s multiplicity conjecture

7. Reminders on Lusztig’s conjecture

Let g be a complex semisimple Lie algebra, with triangular decomposition g = n− ⊕
h ⊕ n+ and let b := h ⊕ n+. For λ ∈ h∗, we have the Verma module ∆(λ) := U(g) ⊗U(h)

Cλ, where Cλ is the one-dimensional representation of h with weight λ. There exists a
unique simple quotient L(λ) of ∆(λ), which is finite-dimensional if and only if λ is regular
dominant. The category O (of locally n+-finite finitely generated weight modules) has a
“block decomposition” O =

∑
λ∈h∗/(W,·)Oλ, where · is the dot action w ·µ := w(mu+ρ)−ρ

where ρ = 1
2

∑
α∈Φ+ α. The principal block is O0 and we have a bijection

W
1:1
 ! Irr(O0)

w 7−! L(w · 0) = L(wρ− ρ).

For simplicity we denote ∆w := ∆(w · 0) and Lw := L(w · 0) for any w ∈ W . The Lusztig
multiplicity conjecture is stated as follows:
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Conjecture 4.1 (Lusztig). For any x, y ∈ W , we have

[∆y : Lx] = hy,x(1),

where [∆y : Lx] is the Jordan-Hölder multiplicity of Lx in ∆y.

Remark 4.2. By the Bernstein-Gelfand-Gelfand reciprocity, we have [∆y : Lx] = (Px : ∆y),
where (Px : ∆y) is the standard multiplicity of ∆y in the projective cover Px of Lx.

This conjecture is now a theorem and the first proof of it (Beilinson-Bernstein and
Brylinski-Kashiwara, 1981) uses the localization theorem, the Riemann-Hilbert correspon-
dence and the theorem of Kazhdan and Lusztig stated at the end of the last part. The
second proof is by Soergel (in 1990) and uses the functor V. In this part, we explain the
strategy of Soergel’s proof.

8. Reminders on translation functors and wall-crossing functors

Definition 4.3. (1) For a positive root α ∈ Φ+, let Hα be the affine hyperplane

Hα := {λ ∈ E := R⊗Z X∗(T ) ⊂ h∗ ; (λ+ ρ, α) = 0}.
(2) The (closed) ρ-shifted Weyl chamber is defined by

CZ := {λ ∈ E ; (λ+ ρ, αs) ≥ 0, ∀s ∈ S}.
(3) For λ ∈ h∗, consider the natural maps iλ : Oλ ↪! O and pλ : O ↠ Oλ. For λ, µ ∈ h∗

such that µ−λ is integral, let ν be the unique dominant integral weight in W (µ−λ).
The translation functor is defined by

Tµ
λ := pµ ◦ (L(ν)⊗−) ◦ iλ : Oλ −! Oµ.

Lemma 4.4. Let λ, µ ∈ h∗ such that µ− λ is integral.

(1) The functor Tµ
λ is exact and sends projective objects to projective objects.

(2) We have a biadjunction between Tµ
λ and T λ

µ .

Theorem 4.5. If λ, µ ∈ h∗ are dominant integral weights, then the functor Tµ
λ : Oλ ! Oµ

is an equivalence of categories, with inverse T λ
µ . Moreover, for w ∈ W , the functor Tµ

λ sends
∆(w · λ) to ∆(w · µ).

Definition 4.6. Let s ∈ S and choose an integral µ in CZ such that µ ∈ Hαs but µ /∈ Hα′

for α′ ̸= αs (i.e. Stab·(µ) = {1, s}). We define the wall-crossing functor

Θs := T 0
µ ◦ Tµ

0 : O0 −! O0.

It doesn’t depend on µ and is self-biadjoint.

Proposition 4.7. For any w ∈ W and s ∈ S we have a non-split short exact sequence{
0 // ∆w

// Θs∆w
// ∆ws

// 0 if ws > w,

0 // ∆ws
// Θs∆w

// ∆w
// 0 if ws < w.

In particular, in the (non-split) Grothendieck group K0(O0), we have [Θs∆w] = [∆w]+[∆ws],
so that the map

K0(O0) −! Z[W ]
[∆w] 7−! w

is an isomorphism of abelian groups intertwining Θs and the right multiplication by 1+ s ∈
Z[W ].

Remark 4.8. This results says that the principal block O0, together with the family {Θs}s∈S
categorifies the right regular Z[W ]-module.

The following result is a general fact on finite length abelian categories with enough
projectives:
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Lemma 4.9. The family {Pw}w∈W is a complete set of non-isomorphic indecomposable
projective objects in O0 and for any projective object Q ∈ O0, we have

Q ≃
⊕
w∈W

P⊕mult(Pw,Q)
w ,

where mult(Pw, Q) = dimHom(Q,Lw).

For any expression x = (s, t, . . . , u), we let

Px := Θu ◦ · · · ◦Θt ◦Θs(P1).

The following result is a first analogy we can notice between the present setting and Soergel
bimodules:

Proposition 4.10. For x ∈ W , the projective module Px admits a standard filtration such
that ∆y appears as a subquotient only if y ≤ x and ∆x appears exactly once. Moreover, if x
is a reduced expression for x, then we have

Px ≃ Px ⊕
⊕
y<x

P
⊕my
y ,

for some my ∈ N.

Corollary 4.11. For x ∈ W and for a reduced expression x of x, the module Px is the
unique indecomposable direct summand of Px not appearing as a direct summand of Pw for
any expression w with ℓ(w) < ℓ(x).

9. Soergel modules

Here, we define the Soergel modules in general. Consider a Coxeter system (W,S), to-
gether with an arbitrary W -representation h over an arbitrary field F and let R := Sym(h∗),
with deg(h∗) = 2. As in the second part, we can define the categories BSBim(h,W ) of
Bott-Samelson bimodules and the category SBim(h,W ) of Soergel bimodules. We recall the
dependence in h in order to recall that these categories do not necessarily verify the results
of the second and third part, which are valid only for certain faithful representations of W
(see [EMTW20]).

Definition 4.12. If w = (s, t, . . . , u) is an expression for w ∈ W , we define the (right)
Bott-Samelson module BS(w) is the graded right R-module

BS(w) := F⊗R BS(w) ≃ F⊗R R⊗Rs R⊗Rt · · · ⊗Ru R(ℓ(w)).

A (right) Soergel module is a direct summand of a finite direct sum of shifts of Bott-Samelson
modules. The category SBim(h,W ) is the full subcategory of gmod−R consisting of Soergel
modules.

The functor F⊗R − : R−gbim −! gmod−R is additive and sends BS(w) to BS(w) and
hence restricts to a functor

F⊗R − : SBim(h,W ) −! SBim(h,W )

and SBim(h,W ) is the Karoubian completion of the essential image of the functor F⊗R − :
SBim(h,W )! gmod−R.

Proposition 4.13. If W is finite and if h is reflection faithful1, then the map

F⊗R Hom•
R−gbim(B,B′) −! Hom•

gmod−R(F⊗R B,F⊗R B′)

is an isomorphism for all B,B′ ∈ SBim(h,W ).

1i.e. there is a bijection {reflections of W} 1:1
 ! {hyperplanes of h fixed by some w ∈ W}.
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Corollary 4.14. If W is finite and h is reflection faithful, then the modules

Bw := F⊗R Bw

are indecomposable and {Bw, w ∈ W} is a complete set of non-isomorphic indecomposable
Soergel modules, up to shift.

Remark 4.15. (1) The hypotheses are necessary.
(2) The corollary says that we can identify [SBim(h,W )]⊕ with the right regular repre-

sentation of H(W,S).
(3) We can replace “right” by “left” everywhere above.

10. The functor V and Soergel’s proof of Lusztig’s conjecture

Here, we return to the setting where W is the Weyl group of g = n−⊕h⊕n+. The functor
V establishes an equivalence

Proj(O0)
V
 ! SBim(h∗,W ).

First, we dualize the datum: Bott-Samelson and Soergel (bi)modules are over R = Sym(h) =
C[h∗]. This comes from the fact that Soergel theoretic objects are naturally associated to
the Langlands dual g∨ of g.

Remark 4.16. Since the representations h and h∗ are both isomorphic to the complex geo-
metric representation of W , the above discussions on Bott-Samelson and Soergel (bi)modules
apply and the corresponding categories for h and h∗ are (not naturally) equivalent.

Definition 4.17. Let w0 ∈ W be the longest element in W and consider Pw0 := P (w0 · 0)
the projective cover of L(w0 · 0). We define the functor

V := HomO0(Pw0 ,−) : O0 −!mod−EndO0(Pw0).

Recall that, if we let IW be the homogeneous ideal generated by W -invariant polynomials
with zero constant term, then the coinvariant algebra ofW is the graded algebra C := R/IW .

Theorem 4.18 (Soergels Endomorphismensatz). Let γ : Z(g) ! U(h) ≃ R be the Harish-
Chandra homomorphism, post-compose it with the map R ! R sending P (λ) to P (λ − ρ)

and still denote the resulting map by γ : Z(g) ! R. Then, the maps Z(g)
γ
! R

can.
! C and

Z(g) ! EndO0(Pw0) are surjective and have the same kernel. In particular, we have an
isomorphism

EndO0(Pw0) ≃ C.

This result allows one to view the functor V as a functor

V : O0 −!mod−C,

where mod−C is the category of ungraded right C-modules.

Theorem 4.19 (Soergel). (1) (Struktursatz). If M,Q ∈ O0 with Q projective, then V
induces an isomorphism

HomO0(M,Q)
∼
−! Hommod−C(V(M),V(Q)).

In particular, V is fully faithful on projective objects.
(2) For s ∈ S, there is a natural isomorphism

V ◦Θs ≃ (−⊗Cs C) ◦ V.

Remark 4.20. (1) Since Pw is the projective cover of Lw, for all M ∈ O0, we have

dimCV(M) = dimC(HomO0(Pw0 ,M)) = [M : Lw0 ].

(2) We have

V(∆w) = C and V(Lw) =

{
C if w = w0,
0 otherwise.

10
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Corollary 4.21. (1) The functor V restricts to an equivalence of categories

V : Proj(O0)
∼
−! {ungraded Soergel modules}.

(2) For s ∈ S, we have V ◦Θs ≃ (−⊗R Bs) ◦ V and moreover, for any expression x of
x ∈ W , we have

V(Px) ≃ C⊗R BS(x) and V(Px) ≃ C⊗R Bx.

We are now ready to deduce Lusztig’s conjecture from Soergel’s conjecture. Recall that
Lusztig’s conjecture is equivalent to (Px : ∆y) = hy,x(1). Under the group isomorphism
K0(O0) ≃ Z[W ], this in turn is equivalent to the following statement:

(∗) ∀x ∈ W, [Px] = Hx|v=1.

Proposition 4.22. Soergel’s conjecture (for the geometric representation of W ) implies the
Lusztig multiplicity conjecture.

Proof. We prove (∗) by induction on the Bruhat order. This is trivial if x = 1. Otherwise,
there is some s ∈ S such that w := xs < x. Then, we have

ΘsPw ≃ Px ⊕
⊕
z<x

P⊕mz
z , mz ∈ N.

Applying V to this isomorphism yields BwBs ≃ Bx⊕
⊕

z<xB
⊕mz

z and since Soergel modules
decompose exactly as Soergel bimodules do, we get

BwBs ≃ Bx ⊕
⊕
z<x

B⊕mz
z .

Applying the character homomorphism to this, we obtain

Hx = HwHs −
∑
z<x

mzHz.

On the other hand, using the induction hypothesis and the first equality above, we obtain

Hx|v=1 =

(
HwHs −

∑
z<x

mzHz

)
|v=1

= [Pw](1 + s)−
∑
z<x

mz[Pz]

= [ΘsPw]−
∑
z<x

mz[Pz] = [Px],

as required. □

Remark 4.23. (1) For W a Weyl group, Soergel proved his conjecture for the geometric
representation using the decomposition theorem. This gives a new almost algebraic
proof of Lusztig’s conjecture.

(2) Soergel’s program is to give an algebraic proof of Lusztig’s conjecture. This was
completed in 2013 by Elias and Williamson. This proof has a geometric flavour, as
they develop a “Hodge theory of Soergel bimodules”...

Part 5. Abstract for the report

The category of Soergel bimodules is an algebraic generalization of the geometric Hecke
category. More precisely, if G is a connected reductuve algebraic groups over C, with a
Borel subgroup B < G containing a maximal torus T , with associated Weyl group W and
if we let R := Sym(X∗(T )⊗Q) (with deg(X∗(T )) = 2), then we have the hypercohomology
functor

Db
B(G/B,Q)

H∗
B−! H∗

B(G/B,Q)−gmod = (R⊗RW R)−gmod
proj.
−! R−gbim,
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where R−gbim is the category of graded R-bimodules. By a theorem of Soergel, the restric-
tion of this functor to the geometric Hecke category (the category of semisimple perverse
sheaves on G/B) is fully faithful. Its image in R−gbim is the category of Soergel bimodules.

This still makes sense for any Coxeter system (W,S), with a sufficiently nice faithful
reflection representation h of W . In this setting, we introduce the category of Bott-Samelson
bimodules and a Soergel bimodule is then defined to be a direct summand of a finite direct
sum of shifts of a Bott-Samelson bimodule. Such bimodules form an additive monoidal
category denoted by SBim.

We review the basic properties of SBim, in particular the ∆-filtrations and the character.
By Soergel’s categorification theorem, the character is an isomorphism of Z[v, v−1]-algebras

ch : [SBim]⊕
∼
−! H(W,S)

[B] 7−! ch(B)

where H(W,S) is the Hecke algebra of (W,S). Then, we state the classification of indecom-
posable bimodules, which are parametrized by W and we denote by Bw the indecomposable
bimodule associated to w ∈ W .

Soergel’s conjecture states that we have ch(Bw) ∈ H(W,S) is the element of the Kazhdan-
Lusztig basis of H(W,S) corresponding to w ∈ W . In the last part, we discuss the relation
between this conjecture (now a theorem of Elias and Williamson) and Lusztig’s multiplicity
conjecture. First, we notice that Soergel’s conjecture also implies the Kazhdan-Lusztig
positivity conjecture (stating that the Kazdhan-Lusztig polynomials all have non-negative
coefficients). First, we introduce the Soergel modules and Soergel’s functor V. We review
the main features of this functor and in particular, we state a theorem of Soergel stating
that V establishes an equivalence between the category of projective objects in the principal
block O0 of the category O and the category of ungraded Soergel modules. We finish by
deducing Lusztig’s conjecture from Soergel’s conjecture for the geometric representation of
the Weyl group W .
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