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Abstract. This work finds its origin in a question asked by Pr. Ivan Marin in 2016 : In
a finite dimensional algebra over an algebraically closed field, what can be said about the
unicity of the semisimple subalgebra complementing the radical, given by the Wedderburn-
Malcev theorem ? We shall investigate this problem here, by tempting to describe the con-
jugacy classes of thoses complements. The main idea - which was communicated to me by
Pr. Alexander Zimmermann - is to use the first Hochschild cohomology group HH1, which
yields some classification analogous to the case of group cohomology. After some first con-
sequences we shall see, with the (crucial) help of two papers by Rolf Farnsteiner (Bielefeld
Universität), that there is only one conjugacy class of such semisimple complements.

1. Scheme of investigations

In order to exhibit the similarities between the case of group cohomology and Hochschild
cohomology, we shall first focus on the case of split abelian group extensions. More precisely,
we want to describe conjugacy classes of complements in a semidirect product. Indeed, we
shall see that these conjugacy classes are parametrized by the first cohomology group H1.
To get the desired bijection, one has to look at the bar resolution of the group algebra, which
allows us to describe H1 as the quotient of derivations by inner derivations. This analysis
(which we supposed known here, see [12], [11] or [3] for a proof) yields a correspondence be-
tween derivations and complements, which turns out to factorize through inner derviations,
to give the main result. Then we give a corollary from [8] which says that - with a little
solvable assumption - all the complements are conjugate.

After that, we come to the core if this work, which is the case of algebras. The context
here is the one of split Hochschild extensions (see [6]). The main idea is the same as the first
case : we describe the first Hochschild cohomology HH1 as a quotient of derivations, find a
correspondence between them and the so-called ”complements”, that factorizes to give the
classification result we were looking for. However, we shall see that conjugacy classes have
to be taken in a subgroup of the units of the extension, that is proper in general. We will
name these conjugacy classes the π-conjugacy classes (or unipotent conjugacy classes).

Next, we shall investigate the case of the Wedderburn-Malcev theorem ([12], Theorem
3.6.9), by applying the results of the second part. The good case is the one of a radical of
square zero. In this case, the main result of the previous part is legit and the vanishing of
the first Hochschild cohomology group then gives that all the complements are π-conjugate.
In the general case, we will give two results on π-conjugacy classes of complements, that are
not very powerful, but still may be useful.

At last, we shall correct the third part with an exposition of a very important result
(found in [2], Theorem 1), that describes the conjugacy classes in a slightly more general
case. We then apply this result to the Wedderburn-Malcev context to finally prove that all
the semisimple complements of the radical are unipotently conjugate.
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2. Prerequisites : the case of abelian extensions of groups

Our presentation here is taken from [7].
Let G be a group and M an abelian group that is furthermore a ZG-module. With the

action of G on M , one may define the semi-direct product E := M oG and we get a short
exact sequence

0 // M
ι // R

π // G // 1

and we write MoE for the set of complements of M in E. Of course, any conjugate subgroup
of a complement is a complement itself, so E acts on MoE by conjugation and we write
MoE
γ for the set of orbits under action, that is

MoE
γ := MoE

/E .

Recall that we have (see [3], Proposition 24)

H1(G,M)
def
= Ext 1

ZG(Z,M) = Z1(G,M)
/
B1(G,M) ,

where
Z1(G,M) = D(G,M) = {f : G→M ; f(gh) = gf(h) + f(g)}

and
B1(G,M) = I(G,M) = {f : G→M ; ∃m ∈M ; f(g) = gm−m}.

First of all, we have

Proposition 1. There is a natural (set theoretic) bijection

D(G,M) ≈MoE .

Proof. First of all, one has to note that the choice of an element of MoE is equivalent to
the choice of a section of π. Let H ∈MoE and let s : G ↪→ E be the corresponding section.
Since E = MH and M ∩H = 1, if g ∈ G ↪→ E, there is a unique pair (m−1, h) ∈ M ×H
such that g = m−1h, that is mg = h. In particular, for every g ∈ G, there exists a unique
mg ∈ M such that mgg ∈ H. Furthermore, if g, g′ ∈ G, with corresponding mg,mg′ ∈ M ,
then one has

((g ·mg′) ·mg) · gg′ = ((g ·mg′) ·mg, g)(1, g′) = (mg, g)(mg′ , 1)(1, g′) = (mg, g)(mg′ , g
′) ∈ H

and so mgg′ = (g ·mg′)·mg. That implies that if δH : g 7→ mg, then δH(gg′) = gδH(g′)+δh(g)
whence δH ∈ D(G,M).
Conversely, if δ ∈ D(G,M), then the map

s : G ↪→ E
g 7→ (δ(g), g)

is a section of π and hence Hδ := s(G) ∈ MoE . We conclude that the map H 7→ δH is an
inverse of δ 7→ Hδ and this one is therefore bijective, as required. �

Choose H,K ∈ MoE and suppose they are conjugate, that is K = He = eHe−1 for
e = (m, g) ∈ E. Then K = m(gHg−1)m−1 and since g ∈ E = MH, there is a m0 ∈M such
that K = Hm0 and let m := m−10 . For g ∈ G, one may then compute

δH(g)g ∈ H ⇒ (δH(g)g)m0 ∈ K ⇒ m−1δH(g)gm ∈ K ⇔ δH(g)m−1 gmg−1︸ ︷︷ ︸
∈M

g ∈ K

and since M is abelian, this implies

(δH(g)gmg−1m−1)︸ ︷︷ ︸
∈M

g ∈ K ⇒ δK(g) = δH(g)[g,m] ⇒ (δK − δH)(g) = [g,m]
def
= gm−m,
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that is δK − δH ∈ I(G,M). By reversing this argument, we get that δK − δH ∈ I(G,M)
implies that H = Ke for some e ∈ E. Finally, we have proven that δ? induces a map
δ? : MoE

γ → H1(G,M) that is a bijection. We can summarize these considerations with the
following result :

Theorem 1. Let G a group, M a G-module and E := M oG. Then conjugacy classes in E
of complements of M are parametrized by the first cohomology H1(G,M). In other words,
there exists a natural bijection

MoE
γ

≈ // H1(G,M) .

We may investigate the case of Hall subgroups, which always admit complements by the
Schur-Zassenhaus theorem (see [3] Théorème 10, or [12], Theorem 1.8.47). We will consider
here only the case of finite groups. Let G be a finite group and M a finite G-module. We
have :

Proposition 2. One has

|G| ·H1(G,M) = 0 = |M | ·H1(G,M),

that is, the order of every element of H1(G,M) is divisible by |G| and |M |. In particular,
if |M | and |G| are coprime, then

H1(G,M) = 0.

Proof. Let δ ∈ D(G,M). If g ∈ G, by summing over h ∈ G the relations

δ(gh) = gδ(h) + δ(g)

one gets

|G|δ(g) =
∑
h∈G

δ(gh)− g
∑
h∈G

δ(h),

and if m := −
∑

h δ(h) ∈M , then the previous equation may be written as |G|δ(g) = gm−m
and then |G|δ ∈ I(G,M) and this proves the first equality. Next, if δ ∈ D(G,M) and if
g ∈ G, by Lagrange’s theorem we have |M |δ(g) = 0 and so |M |δ = 0, hence the result. �

Corollary 1. If N EG is a normal abelian Hall subgroup of G, then N has a complement
in G and all of these complements are conjugate in G.

Proof. The fact that N admits a complement is precisely the statement of the theorem of
Schur-Zassenhaus. Furthermore, since NoG

γ ≈ H1
(
G /N ,N

)
, the result follows directly

from the previous proposition. �

We may finally give two results from [8], that can also be found in §8 from a graduate
course in Group Theory, given by A. Zimmermann in the Université de Picardie Jules Verne.

Lemma 1. ([8], Theorem 5.24)
If G is a finite solvable group, then every minimal normal subgroup is elementary abelian.

Proof. Let V EG minimal. If H v V (which means that H is a characteristic subgroup of
V ), then H E G and since V is minimal, this implies H = 1 or H = V . In particular, for
H = V ′ (the derived subgroup), then one has V ′ = 1 or V ′ = V and since G is solvable,
V is solvable too and so V ′ = 1, that is V is abelian. Hence every Sylow subgroup of V is
characteristic in V , so V is an abelian p-group. Then {x ∈ V ; xp = 1} v V , therefore V is
elementary abelian. �
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Theorem 2. ([8], Theorem 7.42)
Let N be a normal Hall subgroup of G. If either N or G /N is solvable, then all complements
of N in G are conjugate.

Proof. Let’s write m := |N | and n := [G : N ] and let K1,K2 be complements of N .

• Suppose that N is solvable. One has N ′ v N EG, whence N ′ EG and

K1N
′
/N ′ = K1

/
(K1 ∩N ′) = K1, since K1 ∩N ′ ≤ K1 ∩N = 1,

whence [K1N ′ : N ′] = n. Since N is solvable, one has N ′ � N . If N ′ = 1, then
N is abelian and this situation has already been investigated before. Else, one has

[G : N ′] < |G| and an immediate induction on |G| shows that KiN
′
/N ′ (i = 1, 2)

are conjugate in G /N :

∃g ∈ G /N ; g
(
K1N

′
/N ′

)
g−1 = K2N

′
/N ′ ⇒ gK1g

−1 ≤ K2N
′

and since N ′ 6= N we get |K1N
′| < |G| and so gK1g

−1 in conjugate to K2 in K2N
′,

and in G by induction hypothesis.
• Suppose that G /N is solvable. We shall proceed by induction on |G|. Let M /N

be a minimal normal subgroup of G /N . Since n ≤M , one has

M = M ∩G = M ∩KiN = (M ∩Ki)N, i = 1, 2

and we have M ∩Ki EKi. By the previous lemma, the solvability of G /N implies
that M /N admits a p-subgroup (elementary abelian) for some prime p. If M = G,
then G /N is itself a p-group (because of the minimality assumption) and hence ths
subgroups Ki are Sylow p-subgroups of G and therefore, are conjugate. One may
then suppose that M � G. Since M = (M ∩Ki)N and (M ∩Ki)∩N < Ki∩N = 1,
the subgroups M ∩Ki are complements of N in M . By induction assumption, there
exists x ∈M ≤ G such that M∩K1 = x(M∩K2)x

−1 = M∩xK2x
−1 and, remplacing

K2 by xK2x
−1 if necessary, we may suppose that M ∩K1 = M ∩K2 =: J EKi and

this last equation implies that Ki ≤ NG(J). One also has

NG(J) = NG(J) ∩NKi = (NG(J) ∩N)Ki,

and
J(NG(J) ∩N) ∩Ki = J(NG(J) ∩N ∩Ki) = J.

Hence, Ki /J are complements of J(NG(J) ∩N) /J in NG(J) /J . By induction

assumption, there exists y ∈ NG(J) /J such that K1 /J = y
(
K2 /J

)
y−1 and so

K1 = yK2y
−1, as was to be shown.

�

Remark 1. By the celebrated Feit-Thompson Theorem (which must not be lighlty used, since
its proof is 300 pages long, and calls out some very elaborated and complicated concepts) says
that every finite group of odd order is solvable (it is equivalent to say that every non-trivial
finite simple group is of even order). Since the order and the index of N are coprime, at
least one of them is odd and so the solvability hypothesis in the previous theorem is always
satisfied. At last, the complements of a normal Hall subgroup are always conjugate.



FIRST HOCHSCHILD COHOMOLOGY AND COMPLEMENTS THE WEDDERBURN-MALCEV CASE 5

3. The case of Algebras : First Hochschild Cohomology

We shall first set up the context. Let K be a field, A a K-algebra and M a A-bimodule

(that is, a module over the envelopping algebra Ae
def
= A ⊗K Aop). Recall that (see [6]) a

Hochschild extension of A by M is a short sequence

0 // M
ι // B

π // A // 0

where B is an algebra, π is an algebra epimorphism that is K-splits, ι is a monomorphism
of K-vector spaces such that im (ι) = ker(π) and M is a square zero two-sided ideal of B.
Moreover, the condition M2 = 0 allows to write{

ι(π(b)m) = bm,
ι(mπ(b)) = mb, ∀(m, b) ∈M ×B.

Furthermore, two such extensions B
π→ A and B′

π′→ A are said to be equivalent if there is

a morphism of algebras f : B → B′ (which is automatically an isomorphism) such that the
following diagramm commutes :

0 // M
ι // B

f
��

π // A // 0

0 // M
ι′ // B′

π′ // A // 0

Consider, for an algebra A and M an A-bimodule, the Hochschild cohomology

HHn(A,M) := Ext nAe(A,M), ∀n ≥ 0.

By looking at the bar resolution of M over A, and writing{
Z1(A,M) := {g ∈ HomK(A,M) ; g(ab) = ag(b) + g(a)b}
B1(A,M) := {g ∈ HomK(A,M) ; ∃m ∈M ; g(a) = am−ma}

as well as{
Z2(A,M) := {g ∈ HomK(A⊗A,M) ; ag(b⊗ c)− g(ab⊗ c) + g(a⊗ bc)− g(a⊗ b)c = 0}
B2(A,M) := {g ∈ HomK(A⊗A,M) ; ∃h ∈ HomK(A,M) ; g(a⊗ b) = ah(b)− h(ab) + h(a)b}

one has the following isomorphisms

HHk(A,M) ' Zk(A,M)
/
Bk(A,M) , k = 1, 2.

The fundamental theorem about the relationship between Hochschild cohomology and ex-
tensions is the following (see [11], Classification Theorem 9.3.1 and [3], Théorème 11) :

Theorem 3. The equivalence classes of Hochschild extensions of A by M are in 1 − 1
correspondence with the second cohomology group HH2(A,M).

Finally, given A, a bimodule M and a cocycle g ∈ Z2(A,M), one may define a structure
of algebra on B := M ×A, written as B := (M og A,+, ·g) as follows

(m, a) ·g (n, b) := (mb+ an+ g(a⊗ b), ab).
Let B := M o0A be the trivial Hochschild extension (which is isomorphic to M ohA for

every h ∈ B2(A,M)) and note that the choice of a coboundary g ∈ B2(A,M) is equivalent
to the one of a section (of algebras) σ of π. More precisely, on can embed A in B via

σ : A ↪→ B
a 7→ (−h(a), a)

for h ∈ HomK(A,M) realizes g as a 2-coboundary. So far, we can already notice some
similarities with the case of groups, and this will go intensify.



6 ARTHUR GARNIER

Definition 1. A complement Q of M in B = M o0 A is a K-subalgebra of B which is a

complement of M in B as vector spaces : B = M ⊕ Q. This implies that Q ' B /M , as
K-algebras. Indeed, the injecton Q ↪→ B as well as the natural projection B � B /M are
algebra morphisms, and the composed morphism is an isomorphism of vector spaces ; hence
is an isomorphism of algebras. Note that the assertion Q ∈ MoB is equivalent to ask Q to
be σ(A) for some section σ. We denote by MoB for the set of such complements.

Observe that if Q ∈ MoB, then M is provided with a structure of Q-bimodule. Indeed,
if m ∈ M and q ∈ Q ↪→ B, written as q = n + a with a ∈ A, since M is 2-nilpotent, one
may define qm := am and mq := ma.

Let Q ∈ MoB and a ∈ A
σ
↪→ B, there exists a unique pair (ma, qa) ∈ B such that

a = ma + qa and let δQ(a) := ma. Next, if a = ma + qa and b = mb + qb, then the condition
M2 = 0 implies

ab = (ma + qa)(mb + qb) = mamb +maqb + qamb + qaqb = maqb + qamb︸ ︷︷ ︸
∈M

+ qaqb︸︷︷︸
∈Q

,

hence

δQ(ab) = maqb+qamb = δQ(a)qb+qaδQ(b) = δQ(a)(mb+qb)+(ma+qa)δQ(b) = δQ(a)b+aδQ(b).

This shows that δQ : A→M is an element of Z1(A,M).
Next, if δ ∈ Z1(A,M), let Qδ := {δ(a)− a, a ∈ A}. Since δ is K-linear, Qδ is a subspace

of B and as M2 = 0, one has

(δ(a)− a)(δ(b)− b) = δ(a)δ(b)− δ(a)b− aδ(b) + ab = −(δ(ab)− ab) ∈ Qδ
and soQδ is a subalgebra ofB. Moreover, if x = m−a ∈ B, then x = (m− δ(a))︸ ︷︷ ︸

∈M

+ (δ(a)− a)︸ ︷︷ ︸
∈Qδ

,

whence B = M + Qδ and since A ∩M = 0, one has Qδ ∩M = 0, so B = M ⊕ Qδ and we
conclude that Qδ ∈MoB.

Furthermore, if Q ∈MoB and a ∈ A, then

a = δQ(a) + q ⇒ δQ(a)− a = −q ∈ Q ⇒ QδQ ⊂ Q
and since Q and Qδ are (vector) complements of M in B, this implies Q = QδQ . If δ ∈
Z1(A,M), we have

B 3 a = δQδ(a) + q = δQδ(a)− δ(u) + u,

and since a−u ∈M ∩A and δQδ(a)−δ(u) ∈M ∩A, one has a = u and δQδ(a) = δ(u) = δ(a)
so δQδ = δ.

Hence, the maps δ 7→ Qδ and Q 7→ δQ are mutually inverse, whence the following

Proposition 3. There is a natural bijection δ? :

Z1(A,M) ≈MoB.

We shall now go further on this analysis, following the ideas of the first part.
Suppose that P,Q ∈MoB and that there exists m ∈M such that

Q = (1 +m)P (1−m) = (1 +m)P (1 +m)−1 =: P (1+m).

Let a ∈ A written as a = n+ q with n ∈M and q ∈ Q. One can choose p ∈ P such that

a = n+ q = n+ (1 +m)p(1−m) = n+ p+mp− pm−mpm.
Since M is a two-sided ideal, we have mp, pm,mpm ∈ M and mpm = 0 because M2 = 0.
Hence

a = n+mp− pm︸ ︷︷ ︸
∈M

+p ⇒ δP (a) = δQ(a) +mp− pm,
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and again, because M2 = 0 this implies

ma = m(n+mp− pm) +mp ⇒ ma = mp, and analogously am = pm.

Whence,

δP (a) = δQ(a) +ma− am ⇒ (δQ − δP )(a) = am−ma ⇒ δQ − δP ∈ B1(A,M).

Conversely, if δQ = δP in HH1(A,M), then for q ∈ Q, there exists a ∈ A with

q = δQ(a)− a = δP (a)− a+ am−ma = p+ am−ma = p− (δQ(a)− a)m+m(δP (a)− a)

= p− qm+mp = (1 +m)p− qm ⇒ q(1 +m) = (1 +m)p ⇒ Q(1 +m) = (1 +m)P.

But, since m ∈M and M2 = 0, one has (1 +m)(1−m) = 1−m2 = 1 = (1−m)(1 +m) and
so 1+m ∈ B× and (1+m)−1 = 1−m, so the last equation entails Q = (1+m)P (1+m)−1 =

P (1+m). We finally get that for P,Q ∈ Mo, one has δP = δQ in HH1(A,M) if and only if
Q = P x for some x ∈ 1 +M .

Definition 2. • It is clear that 1 + M = π−1(1). Furthermore, this subgroup of B×

acts on MoB by conjugation and we denote by MoB
γ,π the set of orbits under action :

MoB
γ,π := MoB

/
π−1(1) .

The orbits are called the π-conjugacy classes of complements.

• The subgroup π−1(1) = 1 +M of B× may be called the π-unipotent subgroup of the
extension, or also the impious subgroup.

Remark 2. The name ”unipotent” comes from the following example :
If T2(K) denotes the subalgebra of M2(K) consisting of upper-triangular matrices and if we
consider the two-sided ideal

M :=

{(
0 x
0 0

)
, x ∈ K

}
then the considered subgroup is

1 +M =

{(
1 x
0 1

)
, x ∈ K

}
≤ GL2(K) =M2(K)×

and is formed by unipotent matrices.
Moreover, the name ”impious” finds its origin in the fact that, in general, one has π−1(1) 6=
B× ; which means that one has to restrict the conjugating elements to a proper subgroup of
the units of B, in order to get the classification theorem that follows. An example for which
we have that the unipotent subgroup is proper is the following :
Choose a field K 6= F2 and consider the Hochschild extension (where (P ) denotes the ideal
P (X)K[X] of K[X] generated by P )

0 // (X)
/

(X2)
ι // K[X]

/
(X2)

π // K[X]
/

(X) ' K

σ

ii
// 0 ,

provided with the canonical section

K �
� //

σ

44
K[X] // // K[X]

/
(X2) .

Therefore, one has π−1(1) = 1 + (X)
/

(X2) = 1 + M and if u ∈ K× \ {1}, then (u +

(X2))(u−1 + (X2)) = 1 + (X2) so u is a unit of K[X]
/

(X2) , which is not an element of

π−1(1), whence π−1(1) �
(
K[X]

/
(X2)

)×
.
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The previous considerations and definitions may be summed up with :

Theorem 4. Let A be a K-algebra, M a A-bimodule and consider the trivial Hochschild
extension B := Mo0A (M is then a 2-nilpotent two-sided ideal of B). Then the π-conjugacy
classes of complements of M in B are in 1 − 1 correspondence with the first Hochschild
cohomology group HH1(A,M) ; and the induced map δ? realizes the bijection. For short,
we have

δ? : MoB
γ,π

≈ // HH1(A,M) .

4. The Wedderburn-Malcev case

Let K be an field and A a K-algebra. Recall that we define the Jacobson radical rad (A)
of A to be the intersection of all maximal left ideals of A. We shall suppose here that A is
finite dimensional and that K is algebraically closed. This last hypothesis is too strong and

for the Wedderburn-Malcev theorem, it suffices to suppose that A
/

rad (A) is separable,

that is, L ⊗K
(
A
/

rad (A)

)
is semisimple for every field extension L/K (see [12], Remark

3.6.10); but in [3] (Théorème 12), only the case of an algebraically closed field is considered
and we shall work in this context. With all these hypothesis, writing R := rad (A), one has

Theorem 5. (Wedderburn-Malcev, 1942)(see [3], Théorème 12 or [12], Theorem 3.6.9)
There exists a semisimple subalgebra S of A, isomorphic to A /R , such that as vector spaces

A = S ⊕R.

We want to describe here the other complements of R in A. For this, we first suppose
that

R2 = 0,

that is, R = rad (A) is nilpotent of order 2. With this assumption, one gets a canonical split
Hochschild extension

0 // R // A
p // Sii // 0

We are therefore in the context studied below and so we get a bijection

RoAγ,p ≈ HH1(S,R) ' HH1
(
A /R,R

)
.

By the semisimplicity hypothesis, this last group vanishes :

Lemma 2. One has
HH1(S,R) = 0.

Proof. From the proof of [3], Théorème 12, the envelopping algebra Se =
(
A /R

)e
is semisim-

ple and hence, Se is a projective S-bimodule, so the representable functor

Hom Se(SSS , ?) : S−Mod−S // Ab

is exact (see [11], Theorem 2.7.6 or [3], Remarque 34 and Lemme 35), it follows that

HH1(S,R)
def
= Ext 1

Se(S,R) = R1(Hom Se(S, ?))(R) = 0,

where Rk(F ) denotes the kth right derived functor of the left exact functor F . �
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Hence, one gets RoAγ,p =
{
Rp
−1(1)

}
and so :

Theorem 6. If A is a finite dimensional algebra over an algebraically closed field K, such

that rad (A) is 2-nilpotent, and if S ' A
/

rad (A) is a semisimple subalgebra of A given

by the Wedderburn-Malcev theorem (with π : A � S the natural projection), then every
complement of rad (A) in A, is π-conjugated to S.

We shall now investigate the general case, that is R is no longer supposed to be 2-nilpotent.
We will see that the situation is quite less friendly.

Remark 3. Indeed, it turns out that the conclusion of Theorem 6 is still true, as described
in the last section.

Firstly, we will give a general result about the π-conjugates of S, with no use of Hochschild
theory. We give next another result which uses cohomology and the previous case.

From [12], Lemma 1.6.6, we know that since A is finite dimensional over K, it is an
artinian and noetherian algebra, hence its radical R is nilpotent, of nilpotency class n ≥ 1,
say. We shall prove by induction on n the following fact :

Proposition 4. If T is a complement of R in A, then there exists some r ∈ R such that

T ⊂ S(1−r) ⊕Rn−1.

Proof. If n = 2, there is nothing to be shown and so we may suppose that n ≥ 3. Let

Â := A /Rn−1

and
π : A� Â

be the natural projection. From [3], Lemme 7, because the algebra A /R is artinian and
noetherian, we have

R̂ := rad (Â) = rad (A) · Â = R ·A /Rn−1 = R /Rn−1 .

Let Ŝ := π(S). One has

Â = π(A) = π(S ⊕R) = π(S)⊕ π(R) = Ŝ ⊕ R̂ ⇒ Ŝ ∈ R̂oÂ.

If T ∈ RoA, then π(T ) ∈ R̂oÂ and by induction assumption (R̂n−1 = 0), one has π(T ) ⊂
Ŝ(1−r̂) + R̂n−2 with r̂ ∈ R̂. Hence, if r ∈ R is such that π(r) = r̂, then one gets

π(T ) ⊂ π
(
S(1−r) +Rn−2

)
⇒ T ⊂ S(1−r) +Rn−2 +Rn−1 ⊂ S(1−r) +Rn−1

and so T ⊂ S(1−r)+Rn−1. Furthermore, S(1−r) ∈ RoA and so S(1−r)∩Rn−1 ⊂ S(1−r)∩R = 0,
whence the result. �

We finally come to another result, that uses cohomology and the 2-nilpotent case. Recall
that R = rad (A). On has

Proposition 5. If T and S are complements of R in A (not necessary semisimple), then
there exists r ∈ R such that

T ⊕R2 = S(1−r) ⊕R2.

In other words, two complements of R in A are π-conjugate modulo R2.
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Proof. Let
A := A /R2

together with the natural projection π : A� A. Then A is artinian and noetherian and as
below,

R := rad (A) = rad (A) ·A = R /R2 ,

so R
2

= 0 and we are in the previous context. If S, T ∈ RoA, then π(T ), π(S) ∈ RoA. Hence,

by the 2-nilpotent case, there exists r ∈ R such that π(T ) = π(S)(1−r) and if r ∈ R verifies

π(r) = r, one then gets π(T ) = π
(
S(1−r)) and since T ∩R2 ⊂ T ∩R = 0 = S ∩R ⊃ S ∩R2,

on has
T ⊕R2 = T +R2 = S(1−r) +R2 = S(1−r) ⊕R2.

Of course, we also have an algebra isomorphism S ' T . �

5. Correction to the Wedderburn-Malcev case :
a positive answer by Rolf Farnsteiner

In [2], one may find an analysis of the situation, similar to the one we just made. It turns
out that there is a stronger result about π-conjugates of complements : indeed there are
all in the same orbit. More precisely, we shall reproduce the result here. Let A be a finite
dimensional algebra over a field K and write R := rad (A).

Theorem 7. ([2], Theorem 1)
If there is a subalgebra S complementing R in A and if T is a separable subalgebra of A, then
one may find r ∈ R with T (1+r) ⊂ S. In other words, S contains at least one π-conjugate
of every separable subalgebra of A.

Proof. First suppose that R2 = 0. We shall give two different arguments to prove the result
in this particular case.

∗ The context gives rise to a split Hochschild extension

0 // R // A // S //ii 0 .

Since T is separable, it is semisimple. Indeed, the map t 7→ t⊗ 1 is an isomorphism
of algebras T ' T ⊗K K and this last algebra is semisimple. If T = A, then
A is semisimple, so R = 0, in which case there is noting to show. Else, T is
contained in a maximal semisimple subalgebra T of A, which is a complement of
R. Indeed, S is also contained in a maximal semisimple subalgebra S of A, that in
turn must be a complement of R (because S is a complement) and so S = S ; so
all maximal semisimple subalgebras have the same dimension, hence T ∩R = 0 and
dim(A) = dim(R) + dim(T ), so that T is a complement. Therefore, replacing T by
T if necessary, one may suppose that T is itself a complement of R. But since S is
semisimple, by Theorem 6, we get that T and S are π-conjugated, hence the result
in this case.
∗ We expose here the more elementary argument from [2]. The decomposition A =
S ⊕R gives two natural linear maps f : T → S and g : T → R such that

∀t ∈ T, t = f(t) + g(t).

Direct computations prove that f is a morphism of K-algebras and

∀s, t ∈ T, g(st) = f(s)g(t) + g(s)f(t).
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Thus f induces a T -bimodule structure on R and under this structure, we have
g ∈ Z1(T,R). Since T is separable, the envelopping algebra T e is semisimple. Indeed,
let Ka be an algebraic closure of K. By Wedderburn’s theorem, one gets

T op ⊗K Ka '
m∏
k=1

Mnk(Ka)

whence

T e ⊗K Ka '
m∏
k=1

T ⊗KMnk(Ka) '
m∏
k=1

Mnk(T ⊗K Ka).

Since T ⊗K Ka is semisimple, each matric ring Mnk(T ⊗ Ka) is also semisimple.
Consequently, T e ⊗K Ka is semisimple, implying the same property for T e (see [1],
Lemma 2 for this argument). The semisimplicity of T e entails that

HH1(T,R) = 0.

As a result, one can choose an element r ∈ R such that

g(t) = tr − rt = f(t)r − rf(t), ∀t ∈ T.
Consequently, keeping in mind that R2 = 0, on gets

t = f(t) + g(t) = f(t)(1 + r)− rf(t)

so that

(1 + r)t(1 + r)−1 = (1 + r)t(1− r) = (1 + r)f(t)− rf(t)(1− r) = f(t) ∈ S,
for every t ∈ T , proving that (1 + r)T (1 + r)−1 ⊂ S.

We now proceed by induction on the nilpotency class ` ≥ 2 of R. Consider

Ã := A /R`−1 ,

as well as π : A� Ã, the natural epimorphism. As before, rad (Ã)`−1 = 0 and consider the

subalgebras S̃ := π(S) and T̃ := π(T ). Since S ' A /R and T is separable, both S and T

are semisimple. Hence, one has S ∩ kerπ = 0 = T ∩ kerπ. Then we have Ã = S̃ ⊕ rad (Ã)
and the induction assumption ensures the existence of m ∈ R such that

T (1+m) ⊂ S ⊕R`−1 =: B.

Thus, T (1+m) is a separable subalgebra of B and rad (B)2 = 0. The case ` = 2 previously
investigated provides n ∈ rad (A)`−1 such that

(1 + n)(1 +m)T (1 +m)−1(1 + n)−1 ⊂ S,
and since (1 + n)(1 +m) = 1 + n+m, the element r := n+m ∈ R is the required one. �

We may finally apply this result to the particular case of Wedderburn-Malcev ; and find
at last the positive answer we were seeking for :

Corollary 2. Let A be a finite dimensional algebra over an algebraically closed field K. If
S is a semisimple subalgebra of A such that A = S ⊕ rad (A) (which exists by Wedderburn-
Malcev) and if T is another semisimple algebra completing rad (A) in A, then there exists

r ∈ rad (A) such that T = S(1+r).
In other words, all the semisimple complements of the radical in A are π-conjugate.
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Proof. Since T and S are in particular vector complements, they have the same dimension
over K, so it is sufficient to prove that T ⊂ S(1+r) for some r ∈ rad (A). But as it can be
directly seen in the previous proof, instead of the separable assumption on T , we only use
the fact that T and T e are semisimple algebras to get the conclusion of the Theorem. Here,
T is supposed to be semisimple and since K is algebraically closed, the Corollary 1.4.17 to
the Artin-Wedderburn theorem from [12] ensures that there are some integers n1, . . . , nm
such that, as algebras,

T '
m∏
i=1

Mni(K),

so

T op '
m∏
i=1

Mni(K)op '
m∏
i=1

Mni(K
op) '

m∏
i=1

Mni(K).

From this, tensoring these two expressions over K yields

T e = T ⊗K T op '
∏

1≤i,j≤m
Mni(K)⊗KMnj (K) '

∏
1≤i,j≤m

Mninj (K).

Therefore, T e is semisimple, as a product of semisimple algebras ; hence the result. �
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