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Introduction

Motivations

Dans de nombreux contextes mathématiques, un espace topologique ou géométrique est
naturellement équipé d’une action d’un groupe. En particulier, les espaces d’orbites donnent
des exemples d’espaces remarquables. On peut par exemple faire agir le groupe cyclique
Cy sur la n-sphere S™ par antipode et l'espace des orbites associé est ’espace projectif réel
RP"™ = S™/Cs. Mais il y a également des actions de groupes infinis qui produisent des espaces
agréables, tels que le n-tore R™/7Z™. L’étude des structures et propriétés de tels espaces, et
de 'action dont ils sont munis, forme le but de la topologie algébrique équivariante.

Pour fixer les idées, considérons un espace topologique X, muni d’une action d’un groupe
W. On cherche classiquement & déterminer pour la paire (X, W) des invariants algébriques
(fonctoriels si possible) décrivant ’action de W sur X. Par exemple, I'homologie H,(X,Z)
possede une structure de Z[W]-module. On peut donc toujours considérer la (co)homologie
classique, mais comme une représentation entiére de W (resp. comme une Z[W]-algebre
graduée) plutét que comme un simple groupe abélien (resp. un anneau gradué); gardant
ainsi la trace de l'action de W. On peut également considérer ’algébre de cohomologie
équivariante Hjy,(X,7Z) de X (voir [Bor60] ou [Hsi75] entre autres). Quand I’action est
libre, on obtient I'algebre de cohomologie usuelle de I'espace des orbites. Notons que tout
ceci a lieu pour tout anneau de coefficients, et pas seulement sur les entiers.

Par ailleurs, on peut naturellement considérer le probleme inverse : étant donnée une
représentation d’un groupe, peut-on trouver un espace muni d’'une action du groupe et
dont la (co)homologie donne la représentation souhaitée; lui donnant une interprétation
géométrique. Par exemple, tout caractere complexe irréductible d’un groupe réductif fini
apparait comme composant d’un caractére de Deligne-Lusztig, construit en prenant la co-
homologie ¢-adique d’une variété algébrique sur F, (voir [DL76]).

Ceci étant dit, dans le cas équivariant, la cohomologie donne parfois trop peu d’informations,
comme nous le verrons plus bas. La théorie des faisceaur équivariants fournit pour cela
un vocabulaire adapté. Dans le cas classique, le théoreme |Bre97, Theorem III.1.1] as-
sure que la cohomologie H*(X,Z) d’un espace raisonnable X (localement contractile et
héréditairement paracompact, ce qui est le cas des espaces qui nous intéressent) se réalise
comme cohomologie des faisceaur de X & coefficients dans le faisceau constant Z (ici en-
core, ceci est vrai pour tout anneau de coefficients). C’est la cohomologie d’un complexe
RT'(X,Z), donnée en appliquant le foncteur dérivé a droite RT'(X,—) du foncteur des sec-
tions globales I'( X, —) au faisceau Z. Sion note Ab(X) la catégorie des faisceaux en groupes
abéliens sur X, alors le foncteur exact a gauche I'(X, —) : Ab(X) — Ab induit un foncteur
dérivé RI'(X,—) : D*(X) — D*(Ab), ou I'on a noté D°(X) := D’(Ab(X)) par souci de
lisibilité. Dans le cas équivariant ou un groupe W agit sur X, Bernstein et Lunts ([BL94])
ont défini la catégorie dérivée équivariante Dy (X) et si W est discret, alors le foncteur
sections globales T'(X, —) induit un foncteur Dy (X) — DP(Z[W]-Mod). De plus dans ce
cas, la catégorie Dy (X) s’interprete comme la catégorie dérivée de la catégorie Abyy (X)
des faisceaux W-équivariants sur X et le foncteur Dy (X) — DY(Z[W]) coincide alors avec
le foncteur dérivé de T'(X, —) : Aby (X) — Z[W]-Mod.

Par ailleurs, dans le cas classique le complexe RI'(X,Z) est représenté par le complexe des
cochaines singulieres de X, formé de groupes abéliens et comme ’anneau Z est héréditaire,




ce complexe est quasi-isomorphe a sa cohomologie. On n’obtient donc pas d’information plus
précise avec RI'(X,Z) qu’avec la cohomologie dans ce cas. Cependant, ’anneau Z[W] n’est
pas héréditaire, donc il n’y a plus d’isomorphisme RT(X,Z) ~ H*(X,Z) dans D*(Z[W]).
Ainsi, dans le cadre équivariant, le complexe RI'(X,Z) donne en effet plus d’informations
que la cohomologie, dans la catégorie dérivée D°(Z[W]).

Ces foncteurs dérivés peuvent se révéler peu pratiques et difficiles a calculer explicite-
ment. Aussi a-t-on besoin de méthodes effectives pour décrire RI'(X,Z). Dans le cas
classique, il est bien connu que déterminer une structure cellulaire sur X (en d’autres
termes, décrire X comme un CW-complexe) induit un complexe de groupes abéliens li-
bres représentant RI'(X,Z) dans D°(X). Le méme raisonnement fonctionne dans le cas
équivariant, a condition que le groupe agissant W soit discret et que certaines conditions de
compatibilité entre la structure cellulaire et ’action soient satisfaites : W doit permuter les
cellules entre elles et, si un élément de W stabilise une cellule, il doit la fixer ponctuellement.
On obtient alors la notion de W-CW-complexe ; une telle structure sur I'espace X induit
un complexe de cochaines cellulaires de cohomologie, qui est bien un modele pour RI'(X, Z)
dans DY(Z[W]). Ainsi, la question de décrire RT'(X,Z) dans la catégorie dérivée des Z[W]-
modules se ramene & déterminer une structure de W-CW-complexe sur le W-espace X, au
moins quand le groupe W est supposé discret.

Un cas remarquable est celui ot W est un groupe de Weyl agissant sur un espace X
provenant de la théorie de Lie. Deux des principales classes d’espaces intervenant dans ce
contexte sont les tores maximaux de groupes de Lie compacts et les variétés de drapeaux.
Plus précisément, étant donné un groupe de Lie compact K et un tore maximal T’ < K de K,
le groupe de Weyl est le groupe fini W := Ng(T')/T, dont les éléments agissent naturellement
sur T par conjugaison par des représentants dans Ng (T') (cette action est bien définie car
T est abélien). D’un autre coté, la variété de drapeaur est 1'espace homogene K /T, muni
de l'action a droite libre de W (par multiplication par un représentant dans N (T)).

Ces notations étant données, nous résumons donc le but de cette theése sous forme de deux
problemes principaux. Le premier concerne les tores et leurs potentielles généralisations aux
groupes de Coxeter finis :

Probléme A. Nous décomposons le probléeme de deux parties :

1. Exhiber une décomposition cellulaire W -équivariante du tore T et décrire le complexe
d’homologie cellulaire équivariant associé.

2. Peut-on construire des espaces analogues auzx tores maximauz des groupes de Lie com-
pacts pour les groupes de Coxeter finis non-cristallographiques ?
Le second probleme est le probléeme central et concerne la variété de drapeaux K/T.

Probleme B. Ezhiber une décomposition cellulaire W -equivariante de la variété de dra-
peaux K/T et décrire le complexe d’homologie cellulaire équivariant associé.

Un exemple éclairant de variété de drapeaux est le type A,_1 (pour n > 2): soient




K = SU(n) le groupe spécial unitaire et T' le groupe des matrices diagonales de K :

* 0 - 0
r={" " N esum b = swa.
6 O. *

Le normalisateur de T' est donné par les matrices monomiales et le groupe de Weyl est
le groupe symétrique S,,. Le groupe K agit naturellement sur ’ensemble des n-uplets de
droites de C" et il fixe (globalement) le sous-ensemble des droites orthogonales deux a deux.
On s’apercoit aisément que cette action induit une bijection

1 1L 1
SU(TL)/T — {(Ll,,Ln) g Ly < Cn, dlm(Ll) =letl1®Lo®---® L, = (Cn}
et que W = G,, agit par permutation des droites.

La raison pour laquelle on appelle K /T une variété de drapeauz est la suivante: & partir
d’un n-uplet (Li,...,L,), on peut définir les sous-espaces emboités V; := L1 @ --- @ L; et
définir le drapeau (Vi,...,V, = C™). On obtient une application

SUM) /T — {(Vi,....Vy) : Vi < Visqg < C" et dim(V;) = i},

le second ensemble étant I’ensemble des drapeaux de C™. Le point important est que cette
application est en fait une bijection. En effet, si (Vi,...,V},) est un drapeau de C", alors
on peut considérer L; 'orthogonal de V;_; dans V; (avec la convention Vj = 0) et alors

Ly ELB .- GLB L, = C". Ceci revient a choisir une base adaptée au drapeau et a lui appliquer
le procédé de Gram-Schmidt et le n-uplet de droites obtenu est indépendant du choix d’une
base adaptée. Par ailleurs, ’ensemble des drapeaux s’interprete naturellement comme un es-
pace homogene : on peut pour s’en apercevoir considérer 'action transitive de G := SL,,(C)
sur les drapeaux (composante par composante) et le stabilisateur du drapeau standard est
le sous-groupe

* k k

=010 * | e sLa(C)
: L%
0 0

On a ainsi une application bijective
SU(n)/T — SL,(C)/B,
qui se trouve étre un difféomorphisme. Voir la Section [7.4] pour plus de détails.

Revenant au cas général, le difféomorphisme précédent a un analogue pour tout groupe
de Lie compact K : considérons la complexification G de K. 1l s’agit d’un groupe algébrique
complexe réductif contenant K comme sous-groupe compact maximal, dont ’algebre de Lie
est la complexification classique de ’algebre de Lie de K, et on peut choisir un sous-groupe
de Borel B < G contenant 1. Dans ce contexte, la décomposition d’lwasewa induit un
difféomorphisme K/T = G/B qui donne un moyen de faire agir W (non algébriquement)
sur la variété projective F := G/B. D’autre part, si Gg dénote une forme réelle déployée
de G, alors celle-ci munit F d’une structure réelle et en posant Br := B N Ggr, on a une
identification des points réels F(R) ~ Gr/Bgr. Par exemple, dans le cas G = SL,(C), le




groupe K = SU(n) est la forme réelle compacte de G et Gg := SL,(R) est sa forme réelle
déployée. Le groupe Bg est formé des matrices triangulaires supérieures dans SL,(R). En
fait, nous avons deux involutions anti-holomorphes qui commutent .(z) := x* » i ot

0s(z) := T définies sur SL,,(C) et donnant le treillis suivant :

/ \
\ - /

SU(n) = = SL,(R)

Ly (

De plus, le procédé de Gram-Schmidt donne un difféomorphisme

SLn(R)/Br ~ 50(n)/S(0(1)"),

o S(O(1)™) est le sous-groupe des matrices diagonales de SO(n), qui est isomorphe a

(z/2)"

La variété de drapeaux réelle F(R) est une premiere étape vers la résolution du probleme
général. Ensuite, on peut tenter de construire une décomposition cellulaire de F(C),
équivariante pour action du groupe W x (6y), a partir d’'une décomposition W-équivariante
de F(R).

Dans la suite, nous considérerons toujours la variété de drapeaux F = G/B
comme étant munie de la structure réelle provenant de la structure déployée
sur G et nous noterons F(R) les points réels de F pour cette structure.

Une motivation pour ’étude du complexe RI'(G/B,Z) est la théorie de Springer, qui
relie les représentations irréductibles de W a la géométrie du cone nilpotent N' C g = Lie(G).
On note g,s 'ouvert des éléments réguliers semi-simples de g. On définit g := {(x,gB) €
g x G/B; x € 9b}. La premiére projection 7 : g —» g est appelée résolution simultanée
Grothendieck. C’est un morphisme propre. On note N = 7L N) et grs := 7 (grs). On
obtient donc deux carrés cartésiens

N § <3,

ﬂN:ZWﬁl | lﬂ— L iﬂgrslﬂ'rs

NC——s g T)grs

Le morphisme mas est la résolution de Springer du cone nilpotent. Comme observé par
Lusztig dans [Lus81], puisque le morphisme 7 est propre et petit (condition sur la dimension
de ses fibres), le complexe décalé G := Rm,Q[dimg] est égal au complexe d’intersection
IC(g, ms+Q), alias le prolongement intermédiaire jig1 (s« Q[dim g]). Le systeme local 7.6, Q
s’identifie & une représentation du groupe fondamental 71 (gys), qui est le groupe de tresses
de W. Cette représentation se factorise par le quotient W et c’est en fait la représentation
réguliere de W. Le foncteur j,g14 étant pleinement fidele, on en déduit un isomorphisme

Q{W] ;> El’ldDb(g) (Q) .

On en tire une action de W sur la cohomologie H*(B,, Q) de la fibre de Springer B, = 77&1 (z)
en x € N. Lusztig conjecture que ceci meéne a une nouvelle construction de la correspondance
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de Springer. Pour x = 0, on a By = G/B et l'action sur RI'(G/B,Q) coincide avec celle
induite par laction de W sur G/B introduite plus haut.

Le faisceau de Springer est l'objet S := RmaQ[dimN] de DY(N). Puisque 7wy est
propre et semi-petit, le théoréme de décomposition entraine que S est un faisceau pervers
semi-simple sur A. Un point crucial prouvé dans [BM83] est que la restriction au cone
nilpotent induit un isomorphisme

QW] — Endpe4)(G) — Endps(n)(S)

Pour ce faire, Borho et MacPherson montrent que ces deux algebres ont la méme dimension,
puis que le morphisme est injectif, en remarquant que l'action sur la cohomologie de la fibre
en 0 est fidele, puisque c’est le module régulier.

Dans [Jut09]|, Daniel Juteau a défini une version modulaireﬂ de la correspondance de
Springer, mais pour cela il a plutot utilisé la transformation de Fourier-Deligne : en ef-
fet argument de Borho et MacPherson ne peut pas étre appliqué tel quel, puisque la
cohomologie de la fibre en 0 n’est plus fidele, comme on peut le voir sur 'exemple de
SLy : on a H*(SL2(C)/B,Q) = 1 @& €[—2], ou ¢ est le caractere signe de Go; et alors
H*(SLy(C)/B,F3) = 1p, ® 1p,[—2], qui n’est pas fidele. Peut-étre devrions-nous considérer
le complexe RI'(SLy(C)/B,F3), plutét que sa cohomologie ?

On a un isomorphisme de variétés

SLy(C)/B —5 CP!~§?
(ba)B  +—  [a:b]

et en le pré-composant avec le difféomorphisme SU(2) = SLy(C)/B ot T = S(U(1)?), on
obtient un autre difféomorphisme

SU?2)/T -~ CP!

(‘g%b)T —  [a: b
et Paction de &5 = {1, s} sur CP! obtenue en transportant I'action sur SU(2)/T est donnée
par [a : b - s = [~b : @. Sur louvert {ab # 0}, ceci donne [1 : 2]-s = [-Z : 1] =
[1 : —1/z] et l'action sur S? obtenue en transportant ceci & nouveau et en utilisant la
projection stéréographique CP' ~ S? est I'antipode, c’est-a-dire que pour z € S* C R3
on ax-s = —x. Il est maintenant facile de trouver une décomposition cellulaire Ga-
équivariante de S?: prenons le point € := (0,0,1) € S? (qui correspond & 1 € SLy(C)/B).
Il est envoyé sur e” - s := (0,0, —1) par s et ces deux points constituent une Gy-orbite: ils
forment notre O-squelette. Ensuite, nous définissons une 1-cellule en prenant ’arc géodésique
el :={(z,y,2) €S?*; 2=0, > 0} joignant " et e” - 5. Il est envoyé sur son opposé e! - s
par s. Ces deux 1-cellules forment notre 1-squelette. Ensuite, on définit e? comme étant
’hémisphere supérieure de S?, et son image par s est I’autre hémisphere ey - s. Ces cellules
forment notre 2-squelette et nous avons fini. La décomposition en résultant est illustrée
dans la Figure [A]

Le complexe d’homologie cellulaire associé (dont la cohomologie est H*(SLa/B,Z)) est

donné par

Z[G2) 5 Z[Sy] —> Z[S,).

'voir aussi [JMW12] et [AHJR14)




€2

€y S €0

€9 S

Figure A: Décomposition Cy-équivariante de S2.

Maintenant, 'action de Gy sur ce complexe est fidele, méme apres réduction modulo
2. Ceci explique le slogan mentionné précédemment : “prendre la cohomologie fait perdre
trop d’information et ’on doit travailler au niveau dérivé”. C’est pourquoi on doit calculer
RI'(G/B,Z) ; et décrire le complexe d’homologie des (co)chaines associé a la structure
cellulaire de G/B est un moyen naturel et efficace de répondre a cette question. Il est
bon de mentionner a ce stade que l’existence abstraite d’une telle décomposition découle
d’un résultat général dit & Matumoto ([Mat73]), puisque la décomposition de Bruhat (voir
[Bum13|) donne a G/B la structure d’'un CW-complexe ; mais cette derniére structure
n’interagit malheureusement pas convenablement avec ’action de W.

Résultats principaux

Cette section présente quelques résultats principaux obtenus dans cette theése. Afin de mo-
tiver I’étude des structures cellulaires équivariantes, on doit tout d’abord prouver que le com-
plexe de cochaines cellulaires permet effectivement de calculer RI'(X,Z) dans la catégorie
dérivée des Z[W]-modules. C’est le but du résultat préliminaire suivant, qui affirme de plus
que tous les complexes ainsi obtenus sont homotopiquement équivalents. Nous restreignons
notre étude au cas d’'un groupe discret, ce qui est suffisant pour la suite.

Théoréme 0 (alias|2.1.11). Soient W un groupe discret et X un W-CW-complezxe. Alors,
le complexe de cochaines cellulaires C (X, W;Z) satisfait

RU(X,2) ~ C% (X, Z) ~ C* (X, W;Z) dans D°(Z[W)).

sing cell

De plus, le compleze Cly (X, W;Z) est indépendant de la structure de W-CW-complexe
sur X, a homotopie équivariante pres, i.e., deux telles structures quelconques donnent des

complezxes qui sont isomorphes dans la catégorie homotopique bornée ICb(Z[W]).

Comme mentionné plus haut, nous cherchons des structures cellulaires équivariantes sur
les tores et les variétés de drapeaux. Nous résumons les principaux résultats de ce travail
dans le tableau suivant :




Probléme [A| : Tores maximaux \

Probléme IE : Variétés de drapeaux

Théoréeme M : Triangulation équivariante | Theorem [B1l: Structure cellulaire 5
de T < K et dg-algébre dans le cas ou équivariante sur F3(R) := 5O(3)/5(0(1)%)
m(K) =1. utilisant P(Onin) et le graphe de GKM.

Théoréeme ¢ Triangulation équivariante | Théoréme 2 Structure cellulaire
de T < K dans le cas général. équivariante sur F3(R) a partir du groupe
octaédral binaire O < S d’ordre 48.

Théoreme M : Construction d’un Théoreme 2 Structure cellulaire
analogue W -triangulé des tores pour tout équivariante sur F3(R) a partir d’une
groupe de Cozeter fini irréductible. métrique normale homogéne et d’un

domaine fondamental de Dirichlet- Voronoi.

Proposition : Détermination du rayon
d’injectivité de SO(n)/S(O(1)") et une
estimation pour celui de SU(n)/S(U(1)™).

Le point manquant est une conjecture qui permettrait de généraliser I’approche de
Dirichlet-Voronoi aux cas supérieurs ; la Proposition [B5|est un premier résultat dans ce sens.
Mentionnons de plus que nous fournissons deux paquets pour GAP. Le premieIEI permet de
travailler avec des modules libres sur des algebres de groupes en utilisant le méta-paquet
cARPl Dans le second’] nous implémentons les complexes définis dans les Théoreme
et [A3l

Tores maximaux des groupes de Lie compacts et extension aux groupes non-
cristallographiques

D’abord, on étudie 1'action des groupes de Weyl sur les tores (maximaux) des groupes de
Lie compacts semi-simples. On utilise le vocabulaire des données radicielles, des groupes de
Weyl affines et des alcoves pour formuler le premier résultat suivant, qui suppose le groupe
de Lie simplement connexe. Les diagrammes de Dynkin affines sont donnés dans la Table

Théoréme A1l (alias . Soient K un groupe de Lie simple, compact et simplement
conneze, T < K un tore mazimal et W = Ng(T)/T le groupe de Weyl associé. Si W,
dénote le groupe de Weyl affine, alors lalcove fondamentale induit une triangulation Wy-
equivariante de l’algébre de Lie Lie(T) de T, dont la Wy-dg-algébre associée est décrite en
termes de classes paraboliques. Ceci induit une triangulation W -équivariante de T et la
W -dg-algébre associée est donnée par

cen(T, W Z) = Defyp (Co (Lie(T), Wa; Z)),

cell

ol Def%a : L[W,)-dgAlg — Z[W|-dgAlg est le foncteur de déflation.

En particulier, on retrouve bien

H*(Cy (T, W3 Z)) = HY(T,Z) = A*(P).

cell

Zhttps://github.com/arthur-garnier/FreeIntegralModules
3https://github.com/homalg-project/CAP_project
“https://github.com/arthur-garnier/Salvetti-and-tori-complexes
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Dans le cas général (ou l'on ne suppose plus guere 71 (K) = 1), le réseau des cocar-
acteres Y (T') de T n’est plus égal au réseau des copoids QY et la combinatoire précédente
ne s’applique plus, puisque le groupe étendu Wy (r) := Y (T) x W n’est plus un groupe
de Coxeter. Cependant, nous pouvons appliquer une subdivision barycentrique a 1’alcove
fondamentale A (qui est un n-simplexe), ce qui induit dessus une triangulation Qy-(7)-
équivariante, o Qy () == {@W € Wy (1) ; W(A) = A} =~ m(K). On a obtenu le résultat
explicite suivant :

Théoréeme A2 (alias . La subdivision barycentrique de [’alcéve fondamentale du
systeme de racine de (K,T) induit une triangulation Wy (r)-équivariante de Lie(T). Nous
décrivons la combinatoire du compleze des cochaines cellulaires Cly, (Lie(T'), Wy (); Z), ainsi
que son cup-produit. Cette triangulation induit une triangulation W -équivariante de T et la

W -dg-algébre associée est obtenu en appliquant le foncteur Def%ym a Clyy (Lie(T), Wy (7); Z).

cell

‘ Type ‘ Diagramme de Dynkin étendu ‘
T o s
Ay & 2
a
Ay (n22)
aq a2 Qp—1 Qp
~ g—8—=<0
Bz = 02 a (&3] a2
aq
Bn (n = 3) 2 &% o Qn— Qp
a
Cpn (n>3) o o ap p_1 > Qp

o1 Qp
5/ n>4 s Qp—2
n (n24) i Q3
a Qp—1
@
FEg a2
aq [e%:] [e%1 Qs (¢T3
®—0—’—Ia2—0—0—Q

Er
a aq a3 (6% Qs (&7} a7
ag
Es
o aq as oy as g ay asg
F4 o 1 (%) Qs (67}
G aq Q2 a

Table 1: Diagrammes de Dynkin étendus des systémes de racines irréductibles.
Les points blancs représentent les racines correspondantes aux poids minuscules et les croix
représentent les plus basses racines a := —ag.




On remarque que la combinatoire du complexe dans le cas simplement connexe a un
sens en réalité pour tout couple (W,r) avec W un groupe de Coxeter fini irréductible et
r € W une réflexion de W. Le second point du Probleme [B| est alors naturel : si W n’est
pas cristallographique, est-il possible de choisir une telle réflexion r € W pour laquelle ce
complexe est le complexe des chaines simpliciales d’une certaine W-variété triangulée, de
telle sorte que dans le cas cristallographique avec r la réflexion associée a la plus haute
racine, on retrouve bien un tore maximal 7 Le résultat suivant répond a la question de
maniere affirmative :

Théoréme A3 (alias[5.3.3). Soit (W, S) un systéme de Cozeter fini irréductible de rang n.
Etant donnée une réflexion v € W, on peut considérer le systéme de Cozeter (W, Su{r})
dont le diagramme est celui de W muni du neud additionnel correspondant a r, avec arétes
associées données par les ordres de sr pour s € S. Alors, il existe une réflexion rw € W
telle que l'extension W soit affine si W est un groupe de Weyl et hyperbolique compacte
sinon. Si de plus n > 2, alors la réflexion ry est unique pour cette propriété.

Si W est une telle ertension, st on note S le complexe de Coxeter de W et Q= ker(W —»
W), alors T(W) := ¥/Q est une W-variété riemannienne connexe, compacte, orientable,
W -triangulée et de dimension n telle que

o si W est un groupe de Weyl, alors T(W) est W-isométrique a un tore maximal du
groupe de Lie compact simplement connexe dont le systeme de racine est celui de W,

e dans les autres cas, la variété T(W') est hyperbolique.

Le cas particulier des groupes diédraux I2(m) présente des propriétés intéressantes, que
I’on peut résumer dans 1’énoncé suivant :

Corollaire (5.5.1} [5.5.5] et [5.5.6). Pour g € N*, les surfaces T(I2(2g + 1)), T(I2(4g))
and T(Iy(4g + 2)) sont des surfaces de Riemann de genre g et définissables sur Q. En
particulier, pour g = 1, ce sont des courbes elliptiques rationnelles. De plus, on a une
isométrie T([2(29 + 1)) ~ T(I2(4g + 2)) et ces deuzr surfaces ne sont pas isométriques a

T(I2(49)).

Notre approche permet de déterminer une présentation du groupe fondamental de T(W),
en utilisant le théoréeme du domaine fondamental polyédral de Poincaré et de caractériser
la représentation d’homologie de T(W), a 'aide de la formule de la trace de Hopf.

Proposition (5.4.4} [6.2.2] [6.2.5} [6.2.6| and [6.2.7). Le groupe fondamental m1(T(W)) ~ Q
admet une présentation explicite avec [W : Cy (7)] générateurs, ou 7 est la réflection addi-

tionnelle dans l’extension W. De cette présentation, on déduit que I’homologie H.(T(W),Z)
est sans torsion et donc les nombres de Betti sont palindromiques. De plus, nous obtenons
une décomposition de la représentation d’homologie H,(T (W), k) en caractéres irréductibles,
ot k est un corps de scindage pour W.

Trois structures cellulaires équivariantes sur la variété de drapeaux de SL3(R)

Apres ceci, on étudie 'action du groupe de Weyl sur les variétés de drapeaux. Plus
spécifiquement, on étudie la variété de drapeaux réelle F(R) de SL3(R), qui constitue
déja un exemple non-trivial & traiter. Utilisant le plongement F(R) — RP7 induit par




le plongement de F = P(Opn) dans P(sl3) ~ CP7, ott Oy est Uorbite nilpotente minimale
de SL3(C), ainsi que le graphe de Goresky—Kottwitz—MacPhersonﬂ (GKM) de W = 63,
on obtient une premiére structure cellulaire sur F(R). Ceci est synthétisé dans le résultat
suivant :

Théoréme B1 (alias et9.2.2)). La variété de drapeaux réelle F(R) de SL3(R) admet
un structure cellulaire semi-algébrique régquliere G3-équivariante dont le compleze de chaines
cellulaires est donné par

0 0! 0
Z[G3]" —= Z[&3]° —= Z[&3]* —— L[&;]
ot les bords 0; sont données par multiplication par les matrices suivantes

81:(1—sa 1—sg 1—w0),

-1 1 1 Sa wo — SaSg S8 — SBSa
0= | 585 — 53 Sa—1 —wo wo 50583 54583 ,
83 588a  Sa— 1 Sasg— wo —sg S38a
0 Sa 0 1
—585q 0 —wo 0
0 58S 1 0
Oy = poa
3 1 0 0 585a
—5483 Sasg 0 0
0 0 5483 —Sasp

ol 5o et sg sont les réflexions simples de &3 et wy := 545350 = 53553 est son plus long
élément.

Cette approche permet aussi de déterminer l'action de &3 sur la (co)homologie F(R) et
en particulier, on donne la structure de Fo[G3]-algebre sur H*(F(R),Fy). Plus précisément,
on a le résultat suivant :

Corollaire (9.4.7). Soit Falx,y, z]e, 'algébre des coinvariants modulo 2 de S3. Il existe
un isomorphisme gradué (de degré 0) de F3[S3]-algébres

F2[:C7y7 Z]GS e H*(‘F(R)7F2)

envoyant les indéterminées x, y et z sur des 1-cocycles algébriques irréductibles.

Ensuite, on jette un regard nouveau sur F(R). Plus spécifiquement, il se trouve que
I'on a un difféomorphisme F(R) = S3/Qg, ou Qg est le groupe des quaternions d’ordre 8.
Ceci fait de la variété F(R) une spherical space form et on se ramene donc a déterminer
une décomposition cellulaire de la sphere S3, équivariante pour I’action du group octaédral
binaire O = Qg x &3, en utilisant la méthode de Chirivi-Spreafico. De plus, puisque le
cas du groupe icosaédral binaire Z ¢ S? n’a pas été traité dans la littérature auparavant,
nous l'étudions également. Dans le cas octaédral, quotienter par ’action du groupe des
quaternions d’ordre 8 donne la conséquence suivante :

SRappelons que le graphe de GKM d’un groupe de Weyl W a pour sommets les éléments de W et on met
une aréte entre w et w’ s’il existe une réflexion r € W telle que w’ = wr et £(w') > £(w).
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Théoréeme B2 (alias [14.0.5). La variété de drapeaur réelle F(R) de SL3(R) admet une
structure cellulaire &3-Equivariante, dont le complexe des chaines cellulaires est le suivant

2[&3) — - 7[65]P — 2> 7[&5)P 2> 7[Sy)

ol
5458 1 wo — 1 1—sp
81:(1—35 1 —wy 1—sa), Or=|5a—1 sass 1 , O3=|1—wy
1 sg—1 sqsp 1— s,

Nous remarquons également que la structure cellulaire du précédent théoréeme possede
quelques jolies propriétés par rapport a la métrique riemannienne sur F(R), induite par la
métrique bi-invariante sur SU(3).

Proposition . On munit la variété algébrique complexe F = SU(3)/T de la métrique
induite par la métrique einsteinienne bi-invariante sur SU(3), puis la restreignons a F(R).
Alors, les cellules de la décomposition cellulaire précédente de F(R) sont des unions de
géodésiques minimales de F(R). En particulier, les 1-cellules sont les orbites de sous-groupes
a un parametre de SO(3).

Continuant I’étude de la géométrie riemannienne de F(R) et de maniére a obtenir un
énoncé plus intrinseque, nous terminons par I’étude d’un domaine de Dirichlet- Voronoi pour
G3 agissant sur F(R):

DY :={ze FR); d1,z) <d(w,z), Yw e W},

ou d est la distance géodésique sur F(R) associée a la métrique. Nous prouvons le résultat
suivant :

Théoréme B3 (alias|17.4.2). Le domaine de Dirichlet-Voronoi DV est un domaine fonda-
mental pour S3 agissant sur F(R) et admet une structure cellulaire induisant une décomposition
cellulaire &3-équivariante de F(R), dont le complexe d’homologie cellulaire associé est donné
par

Z]&s] 2> Z]5]T — 2> 7[&5)? -2 7[5
avec bords
0 0 0 0 0 sg —sg 0 0 —1 0 1
0 0 0 1 -1 0 0 0 sgsa 0 0 —1
a . —wo 0 0 0 0 0 wo 0 sg —wo O
1= ] sgsa =585« 0 0 sa =8« 0 0O O 0 0 0 |°

0 $8Sa —8gsa 0 0 O 0 0 —wog 0O we O
0 0 1 -10 0 sg —sg 0 0 0 0

1 0 wo 0 0 0 —wo

1 —sasg O 0 -1 0 0

1 s 0 -s3 0 0 O
10 s 0 0 -1 0 %_2‘;
1 0 -1 0 —wg O O 1w
i 1 sa 0 0 0 0 -1 . 1—sgs
=11 -1 0 0 0 -s5 0 [, Ogi=[ 1700
1 0 =—sgsa =1 0 0 0 1:§a5ﬁ
0 -1 —wy 0 —sg 0 0 . B
0 sp 1 0 0 0 -—sg T Sass

0 wo —wog -1 0 0 0

0 —sgsa 1 0 0 -1 0
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Chacune des trois décompositions de SO(3)/S(O(1)3) que nous avons trouvées possede
ses avantages et inconvénients : la décomposition du Théoreme a un l-squelette com-
patible avec le graphe de GKM de &3 mais ne fonctionne que parce que la variété est de
petite dimension et semble difficile & généraliser. Celle du Théoreme a peu de cellules
et des degrés agréables comme nous le verrons ci-dessous mais utilise le difféomorphisme
équivariant tres particulier F(R) ~ S3/Qs. Une telle identification entre une variété de
drapeaux réelle et un espace d’orbites libre d’une sphere ne peut évidemment pas étre at-
tendue dans les cas supérieurs. La derniere du Théoreme [B3] a beaucoup de cellules, mais
parait généralisable aux autres variétés de drapeaux réelles, puisqu’elle ne repose que sur
la géométrie intrinseque de la variété considérée. Pour plus de détails a ce sujet, nous
renvoyons le lecteur & la Conjecture [B4] et & la Proposition ci-dessous.

Quelques perspectives et conjectures

A Dissue de la rédaction de cette these, les themes restant a explorer sont nombreux.

Comme premiere perspective de recherche, on peut mentionner le cas étale des tores.
Dans le deuxieme chapitre on exhibe des triangulations des tores des groupes de Lie com-
pacts, équivariantes par rapport a ’action du groupe de Weyl W. Une question naturelle-
ment reliée a ceci est le cas des groupes réductifs finis. Plus précisément, on prend un
groupe réductif G sur un corps E et défini sur F;, d’endomorphisme de Frobenius associé
F : G — G et on se donne un tore F-stable T < G. Le groupe réductif fini associé est
le groupe G des points F-fixes de G et le tore associé est TY'. Dans ce cas, la notion de
CW-complexe n’a plus de sens, mais l'on peut s’attendre a ce que le complexe de Rickard
RTU.(T,Z/nZ) (qui est un complexe de modules de permutations, analogue au complexe
cellulaire provenant d’'une CW-structure, voir [Ric94]) puisse étre calculé via une combina-
toire similaire & celle du cas des groupes de Lie. Dans le cas étale, on doit aussi prendre en
compte 'action du Frobenius. Nous résumons ceci dans le probléeme suivant :

Probleme A4. Décrire la combinatoire du complexe de Rickard RU.(T,Z/n) en tant
qu’objet de D*(Z/n[W x (F)]).

Une deuxieme piste de réflexion possible concerne notre extension de la construction des
tores pour les groupes de Coxeter. Basiquement, le slogan est : “il existe des analogues
des tores pour les groupes de Coxeter non-cristallographiques”. Ceci est a rapprocher de
la notion de spets. Informellement, les spetses sont des “groupes algébriques fantomes”,
d’abord associé aux groupes de Coxeter (voir les travaux pionniers de Lusztig dans [Lus93|)
et plus tard aux groupes de réflexions complexes par Broué, Malle et Michel dans [BMM99].
On pourrait dire que T(W) est le “tore” du spets du groupe de Coxeter W. Ainsi, une
question raisonnable est de demander si la construction de T(W) peut étre étendue aux
groupes de réflexions complexes (irréductibles), associant un “tore” a tout spets. Cependant,
nous avons fait un trés lourd usage de la représentation de Tits de (une extension de) W
dans notre construction de T(W) et la méthode générale pour traiter du cas des groupes
complexes n’est absolument pas claire et requiert un travail additionnel substantiel, si c’est
toutefois possible. Nous formulons le probléme suivant :

Probleme A5. Etant donné un groupe de réflexions complexe W, est-il possible de constru-
ire une W-variété (éventuellement compacte) généralisant la construction que nous avons
donnée dans le cas Coxeter ?
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Ensuite, si T est un tore maximal dans un groupe de Lie compact K, puisque le groupe
de Weyl W agit sur T, il agit aussi sur I'espace classifiant By ~ (CP>®)4™T de T et on peut
chercher une structure cellulaire W-équivariante sur By. En type A;, on a By = Bgi =
CP*> et I’élément non trivial s de W = G4 agit comme la conjugaison complexe sur CP°.
Premiérement, on partitionne CP™ en sous-espaces Ay ~ C? des éléments dont la derniére
coordonnée non-nulle est la d®™°. Ensuite, on décompose A4 comme suit :

d d
c?=rU| | ((Ck—l x (C\R) x Rd‘k) = caoU | | (el Uegy)
k=1 k=1
ol eqo = R? est la partie réelle et efit p = Ck-1 x H* x R4 F sont deux cellules de dimension

d + k échangées par s (on a noté H * les demi-plans supérieurs et inférieurs de C). Il est
pratique de numéroter les cellules par

suites a = (2,...,2,1,...,1,0,...), avec un signe ¢ = +1 si k > 0;
———— N —
k-fois d—k-fois
on pose elf = eéck, ou e, := eqo9 C RP* quand k = 0. Ainsi, e, et e(f sont des cellules
de dimension |a| = ), a; ; de plus, s fixe e, ponctuellement et échange les er. Ensuite,

on permet aux parametres de prendre des valeurs complexes. De plus, on a une dualité de
Koszul entre H*(T,Q) = A®*(Lie(T)*) et H*(Br,Q) = S*(Lie(T)) et il serait intéressant de
voir si cette dualité apparait en réalité a un niveau géométrique.

Concernant les variétés de drapeaux, une premiere chose potentielle & explorer est le
plongement G/B — P(V(p)), ot p= 1> .o+ a est la demi-somme des racines positives
et V(p) est le module irréductible de plus haut poids p (voir le théoréme [B.1.3). Plus
spécifiquement, puisque p est le plus petit poids dominant régulier de G, le plongement
G/B — P(V(p)) est en quelque sorte minimal parmi les plongements de la variété de
drapeaux dans un espace projectif. Il semble donc intéressant de 1’étudier, par exemple
pour relier Paction de W sur G/B et les propriétés de la représentation V(p), mais cette
approche semble difficile en général. En effet, on a dimV(p) = 2|‘I’+|, donc le nombre de
coordonnées explose avec le rang et de plus, 'expression de ’action du groupe de Weyl dans
ces coordonnées est difficile & manipuler (voir la Proposition [8.2.5)).

A propos de la combinatoire d’un potentiel complexe cellulaire C¢!(K /T, W;Z), nous
pouvons essayer de deviner une jolie formule plausible pour les rangs de ses composantes
homogenes. Soit

PS(q) = Z #{W-orbites de i-cellules de F(C)}q"

7

et on considere de méme Pj. pour les points réels F(R). Le polynome PI(,CV doit vérifier
deg(P§;) = 2N, ot N = |®7] est le nombre de réflexions de W, ainsi que P (—1) = 1,
puisque x(F) = |W/|. Une premieére supposition raisonnable pour P‘% repose sur le graphe
de GKM de W. A chaque racine positive o € ®* est associé le sous-groupe parabolique
minimal P, = (B, 5,) et on a que P, /B ~ CP' est stable sous ’action du sous-groupe (s,) ;
donc on a une “situation SLo” pour chaque racine positive, ce que 'on peut représenter
dans le diagramme suivant :
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Faisant ceci pour toute réflexion de W = &3 et prenant la cléture sous action de Gs,
nous obtenons un diagramme tout-a-fait similaire au graphe de GKM :

wo
e N
> =
N7
% N
(a) Le graphe de GKM (b) Plusieurs situations SL,

Figure B: Le graphe de GKM de S35 et le 1-squelette de F(R).

En extrapolant ceci en dimensions supérieures, nous pouvons espérer paramétrer les
orbites de i-cellules de F(R) par les sous-ensembles des racines positives de cardinal i et les i-
cellules seraient paramétrées par i parametres réels (un pour chaque racine). Ceci donnerait

+
PE(q) = [2],‘;1) |, ot [kl = 1+ q+---+¢* L. Pour trouver les cellules manquantes dans
F(C), nous permettons a certains parametres de prendre des valeurs complexes, de fagon
que chaque racine se voit attribuée une multiplicité 0, 1 (parametre réel) ou 2 (parametre
complexe) et nous obtenons des multi-ensembles de racines positives avec multiplicités,

menant & I'égalité PS (q) = [3]1;1)+‘. Cette formule a la saveur combinatoire du complexe de
de Concini-Salvetti, qui est une résolution libre de Z sur Z[W], valable pour tout groupe
de Coxeter fini W et construite en utilisant les chalnes croissantes de sous-ensembles des
réflexions simples. Ici, on regarderait plutot des chaines de longueur au plus 2 de parties de
®T. Pour SLs, nous obtiendrions

P%(q) = [2]2 = +3¢°+3¢+1 et Pl%(q) = [3]2 =¢*+3¢° +6¢* + 7¢° + 6¢° + 3¢+ 1.

Ceci donnerait une explication pour les rangs 1, 3, 3 et 1 du complexe du Théoréeme

Une autre formule possible, n’utilisant que les racines simples, pour ce nombre d’orbites
est donnée par [[,[2d; —1],, avec (d;); les degrés de W. Rappelons que les d; sont les degrés
des invariants fondamentaux de W et satisfont > ,(d; — 1) = N and [],d; = |W| et donc
on aurait bien deg ([[;[2d; — 1]q) = > ;(2d; — 2) = 2N et [[;[2d; — 1]-1 = 1. Sur R, des
considérations similaires donneraient [ [;[d;]4. Pour SL3, ceci donne

PE(q) = [2418]; = ®+26% +2q+1 et P5(q) = [3]4[5]4 = ¢* +2¢° +3¢* +3¢> +3¢* +2q + 1.
||

La premiere formule [3]; ' a un lien clair avec le graphe de GKM et semble plus simple
a porter de R a C, mais la seconde [[,[2d; — 1], présente moins de cellules. Malheureuse-
ment, comme le complexe du Théoreme est en réalité homotopiquement équivalent a
un complexe avec degrés 1, 2, 2 et 1, ce cas ne nous permet pas de nous décider entre les
deux possibilités. Cependant, nous n’avons pas (encore) de modele géométrique pour ce
complexe.

Cependant, la méthode la plus prometteuse pour construire une structure cellulaire
équivariante sur les variétés de drapeaux réelles en général semble étre I’approche riemanni-
enne. En effet, si F := K/T désigne la variété de drapeaux munie d’une métrique normale
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homogéne (i.e. une métrique provenant d’'une métrique bi-invariante sur le groupe de Lie
compact K) et W est le groupe de Weyl associé, alors on peut considérer le domaine de
Dirichlet-Voronoi associé

DY := {$ e F; d(l,l’) < d(w,x), Vw € W}7

ou d est la distance géodésique sur F. Remarquons que ceci est indépendant de la métrique
normale homogene choisie puisqu’une telle métrique est unique a dilatation pres. Alors,
DV est un domaine fondamental pour W agissant sur F (voir Proposition et I'on
souhaite utiliser son intérieur et son bord pour construire une structure cellulaire sur F.
On découpe le bord en utilisant les murs, i.e. les intersections de DV avec les hypersurfaces
médiatrices Hy, := {x ; d(1,2) = d(w,x)} et les intersections des murs sont supposées
étre les cellules de dimension inférieure de la décomposition recherchée. Par exemple, dans
le cas des variétés hyperboliques et en particulier pour les groupes fuchsiens, le domaine
de Dirichlet-Voronoi est un polyedre (géodésique) de facettes H,, N DV et son treillis des
faces fournit une décomposition cellulaire équivariante de la variété. Malheureusement, les
variétés de drapeaux sont a courbure positive (non-minorée en générale) et on a alors besoin
d’une condition, & savoir que le domaine DY doit étre inclus dans une boule métrique fermée
centrée en 1 et de rayon p < inj(F) strictement inférieur au rayon d’injectivité inj(F) de F.
Rappelons que ce rayon est défini comme étant le supremum des rayons de boules centrées
en 0 € T1.F sur lesquelles I’exponentielle riemannienne est injective. Si cette condition est
remplie, alors on sait au moins que le bord de DV est homéomorphe & la sphere S4imzF—1,
Cependant, estimer le rayon d’injectivité d’une variété est un probléme tres ardu et montrer
que le domaine DV est inclus dans une boule suffisamment petite est un probleme difficile
également ; et méme dans le cas ou la condition serait satisfaite, ceci ne garantit pas que
les murs seront des cellules. Par exemple, si I’on fait agir le groupe cyclique Cy sur S? par
I’antipode, le bord d’un domaine de Dirichlet-Voronoi centré en un pole est un équateur
S!. Néanmoins, si I'on se restreint & la sous-variété totalement géodésique F(R) de F et si
I'on considere un domaine de Dirichlet-Voronoi dans F(R), alors ceci donne effectivement
une décomposition cellulaire Gy-équivariante pour F(R) ~ S, puis pour F(C) ~ S2. Nous
conjecturons que ceci demeure en général pour les autres variétés de drapeaux.

Pour résumer, nous formulons les conjectures suivantes :

Conjecture B4 (alias[17.2.3] [17.2.1] et [17.2.2). Nous munissons F = K/T de la métrique
nduite par la forme de Killing.

1. Le rayon d’injectivité de F est la distance minimale entre deuz éléments de W, réalisée
par une réflexion de W.

2. Le domaine de Dirichlet- Voronoi DV associé a F et W est inclus dans la boule ouverte
centrée en 1 et de rayon inj(F).

3. Sila dernicre conjecture est vérifiée et si I C W, alors F(R)N(,c; Hw est une union
(possiblement vide) de cellules de dimension (N — |I]).

Se concentrant sur le type A ou K = SU(n), F, := SU(n)/S(U(1)") et W = &,,, nous
démontrons le résultat suivant, qui établit la premieére conjecture ci-dessus pour F,(R) :

Proposition B5 (alias|17.3.1|et|17.3.4). Les rayons d’injectivité de F,, et de F,,(R) vérifient
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Guide du lecteur

Le but du présent travail est de construire des structures cellulaires sur les tores des groupes
de Lie compacts et sur les variétés de drapeaux, qui soient équivariantes par rapport a
I’action du groupe de Weyl.

En guise de mise en train, on rappelle la définition et quelques propriétés basiques des
faisceaux équivariants. En se concentrant sur le cas ou le groupe agissant est discret (ce
qui est le cas des groupes que nous considérons dans la suite), on donne différentes définitions
équivalentes des faisceaux équivariants et ’on définit la catégorie dérivée équivariante comme
la catégorie dérivée des faisceaux équivariants sur notre espace. On définit ensuite la notion
de CW-compleze équivariant telle qu’introduite par Matumoto dans [Mat71]. La encore,
profitant du caractere discret du groupe agissant, on montre que cette définition se refor-
mule comme la donnée d’'un CW-complexe, avec des conditions supplémentaires concernant
laction du groupe (voir la Definition . On montre dans le Corollaire le fait
essentiel que si W est un groupe discret et X est un W-CW-complexe, alors le complexe des
chaines cellulaires C!'(X, W;Z) est un complexe de Z[W]-modules de permutation et que
RI(X,Z) = Cr (X, W;Z) dans D*(Z[W]). De plus, deux telles structures distinctes sur
X donnent deux complexes isomorphes dans la catégorie homotopique Kp(Z[W]). On clot
ce chapitre préliminaire en étudiant le comportement du complexe cellulaire C,feu(X W3 Z)
par rapport aux sous-groupes et aux quotients de W.

Dans le chapitre suivant, on détermine des structures cellulaires sur les tores des groupes
de Lie compacts via des données radicielles et des groupes de Weyl affines (étendus), qui ne
sont plus finis, mais toujours discrets. Plus précisément, si K est un groupe de Lie com-
pact simple, T' < K un tore maximal et ® le systeme de racines associé, alors le réseau des
caractéres X (T') et le réseau des cocaractéres Y (T') de T sont en dualité parfaite et le quadru-
plet (X(T),®,Y(T),®") est une donnée radicielle (voir la Definition qui détermine
completement le couple (K,7T") a isomorphisme pres. On a de plus un W-isomorphisme
de tores V*/Y(T) = T, on peut ainsi oublier le groupe K et juste travailler avec une
donnée radicielle irréductible donnée (X, ®,Y,®V), d’espace ambiant V := R ®z X et on
doit déterminer une structure de W-CW-complexe sur V*/Y. Dans ce but, on recherche
une structure de Wy-CW-complexe sur ’espace vectoriel V*, ou Wy :=Y x W est le groupe
de Weyl affine étendu. Dans le cas ou Y = QV est le réseau des coracines (qui correspond
au cas ou le groupe K est simplement connexe), le groupe Wy = W, est le groupe de
Weyl affine classique, qui est un groupe de Coxeter. On peut donc appliquer la combina-
toire des alcéves et des murs pour obtenir une triangulation W,-équivariante de V* pour
laquelle le complexe des chaines cellulaires peut étre calculé explicitement (voir le Théoreme
3.2.2). De plus, on donne une formule explicite pour le cup-produit sur le complexe dual
(voir le Théoréme et on obtient dans le Corollaire le complexe pour la W-
triangulation quotient de V*/Q" en appliquant un foncteur de déflation & C* | (V*, W,; Z)
depuis W, vers W = W,/QV, ce qui donne une W-dg-algebre, dont la cohomologie est
H*(V*/QV,Z) = A*(P). Dans le cas général, le groupe Wy n’est pas de Coxeter, le
probleme est alors que l'alcove fondamentale possede un groupe de symétries Qy < Wy,
qui n’est pas un groupe de réflexions. Par ailleurs, dans cette situation, la subdivision
barycentrique de I'alcove fondamentale (qui est un simplexe) donne toujours une triangu-
lation y-équivariante de l'alcove. Méme si la W-triangulation de V*/Y ainsi obtenue a
un grand nombre de simplexes, cette construction a I’avantage de fonctionner pour toute
donnée radicielle en plus d’étre effective. Le résultat principal est résumé dans le Théoréeme
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4.2.3] Enfin, le paquet Salvetti—and—tori—complexeslﬂ que nous avons développé pour GAP
permet de calculer les complexes sus-mentionné pour toute donnée radicielle (irréductible).

Le but du troisieme chapitre est d’étendre la combinatoire du chapitre précédent a
n’importe quel groupe de Coxeter fini. Plus précisément, étant donné un groupe de Coxeter
fini W, on construit une W-variété T(W) qui joue en quelque sorte le role d’un tore pour
W. Plus spécifiquement, on choisit une réflexion convenable ry de W et 'on considere le
groupe de Coxeter W, dont le diagramme de Coxeter est celui de W, pourvu d’un nceud
supplémentaire correspondant a la réflexion ryy, ¢’est-a-dire que 'on ajoute des arétes selon
les ordres des sry, pour s parcourant les réflexions simples de W. Nous choisissons la
réflexion ry de telle sorte que W soit un groupe de Coxeter affine si W est un groupe de Weyl,
auquel cas ry est la réflexion associée a la plus haute racine du systeéme de racines de W et
W = W, est alors le groupe de Weyl affine. Dans les cas restants (autrement dit les cas non-
cristallographiques), on choisit 7y pour que le groupe obtenu W soit un groupe de Cozeter
hyperbolique compaciﬂ. Ceci est résumé dans la Proposition-Définition On introduit
ensuite le sous-groupe @ := ker(WW — W) et on définit la variété T(W) comme ’espace
quotient du complexe de Coxeter E(W) de W sous I'action de Q. Ceci est bien défini car @
agit librement et proprement discontiniiment sur Z(/W) et ce, car il intersecte trivialement
tous les sous-groupes paraboliques propres de W (voir les Lemmes et . On
montre dans le Théoreme m que T(W) est une W-variété fermée, connexe, orientable,
compacte, W-triangulée de dimension rk(W'). De plus, si W est un groupe de Weyl, alors
ceci coincide en effet avec un rk(WW)-tore, et il s’agit d'une variété hyperbolique dans le cas
non-cristallographique. Apres la rédaction de ce chapitre, j’ai pris connaissance des travaux
de Zimmermann et Davis (|Zim93] et [Dav85|), qui ont défini les mémes variétés pour les
types Hs et Hy, avec des approches totalement différentes. On poursuit notre étude plus
avant en donnant une présentation générale pour le groupe fondamental 71 (T(W)) ~ @ dans
le Théoreme que 'on applique ensuite a Hs et Hy, pour lesquels les calculs complets se
trouvent dans I’Appendice Bl On se penche ensuite sur le cas des groupes diédraux : dans
le Corollaire et les Propositions et on montre que T (I3(m)) est une surface
de Riemann arithmétique (et méme une courbe elliptique si Io(m) est un groupe de Weyl,
ce qui donne un point de vue inhabituel sur ces tores) et on les classifie & isométrie pres. Il
est bon de noter que, dans le cas cristallographique (i.e quand m € {3,4,6}), les surfaces
T(I2(m)) correspondent aux points du domaine fondamental classique de Poincaré dont le
stabilisateur sous 1’action de PSS Ly(Z) sont non triviaux (deux d’entre eux sont dans la méme
orbite sous PSL2(Z)). Enfin, on utilise la W-triangulation de T(W) mentionnée plus tot
pour obtenir le complexe de chaines cellulaires C<(T(W), W; Z) et calculer le cup-produit
de son dual (voir Corollaire et on termine en détaillant la représentation d’homologie
de T(W). En utilisant la présentation de @ = w1 (T(W)) obtenue précédemment, on montre
que ’homologie est sans torsion et que les nombres de Betti sont donc palindromiques, tout
comme pour un véritable tore. Finalement, on utilise la formule de trace de Hopf pour
décomposer le caractere d’homologie en somme de caracteres irréductibles de W (voir les
Théoremes [6.2.5] [6.2.6| et [6.2.7]). Ceci vient enrichir les résultats de Zimmermann et Davis
pour Hs et Hy.

Dans la suite, on en vient aux variétés de drapeaux. Aussi, le quatrieme chapitre est
dédié a la construction d’une premiere structure cellulaire W-équivariante sur la variété de
drapeaux F(R) de SL3(R). On débute par quelques rappels d’ordre général sur les groupes
semi-simples et les variétés de drapeaux. En particulier, on définit et étudie I'algebre de

Shttps://github.com/arthur-garnier/Salvetti-and-tori-complexes
"voir la Proposition-Definition
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cohomologie rationnelle (7T-équivariante) de K /T, via les trois descriptions de Schubert,
Borel et Goresky-Kottwitz-MacPherson et on rappelle que la cohomologie H*(K/T,Q)
est le Q[W]-module régulier. Rappelons de plus qu’en général on a un difféomorphisme
F = K/T ~ G/B, ce dernier étant une variété projective complexe lisse et la variété de
drapeaux réelle F(R) s’interpréte alors comme ses points réels (pour la structure réelle in-
duite par la structure réelle déployée sur G). La premiere étape vers la suite est de réaliser
la variété de drapeaux complexe G /B comme une variété projective, ce qui peut se faire en
utilisant des modules irréductibles de plus haut poids et la demi-somme des racines positives
(voir le Théorérneet le Corollaire. Ensuite, apres avoir traité le cas trivial de S Lo,
on se concentre sur le cas spécial de la variété de drapeaux F(R) de SL3(R). En utilisant
le plongement précédent, on peut réaliser la variété complexe F comme une sous-variété de
CP7 et on donne un ensemble complet d’équations la décrivant, comme une base de Grébner
de 'idéal associé dans ’anneau de polyndomes ambiant, voir la Proposition [8.2.1l Dans la
Proposition on donne des équations pour l'action de W = &3 sur SL3(C)/B dans les
cartes locales. Pour construire une structure cellulaire équivariante sur F(R), on démarre
avec les éléments de W = &3 comme sommets. Ensuite, on utilise le graphe de GKM de &3
(voir Figure . Inspiré par le cas de S'Ls et par le graphe de GKM, on définit des 1-cellules
pour F(R) que l'on peut représenter dans le graphe comme sur la Figure[Bl On remarque que
le “I-squelette” ainsi obtenu est une union de sous-variétés fermées de la variété algébrique
(réelle) F(R). En relachant une partie des équations de définition et en imposant des condi-
tions intermédiaires de positivité on obtient des 2-cellules et le “2-squelette” ainsi obtenu est
une sous-variété algébrique réelle de F(R). Finalement, on prend les composantes connexes
du complémentaire et nous prouvons que ce sont bien la des cellules, fournissant ainsi une
structure cellulaire sur F(R) dont on montre qu’elle est effectivement S3-équivariante (voir
le Théoreme . Ensuite, quelques calculs nous permettent de déterminer les G3-orbites
des cellules ainsi que les bords de ces cellules, donnant ainsi le complexe d’homologie des
chaines cellulaires et le Théoreme principal On utilise par la suite ce complexe pour
déterminer la structure de Gz-module sur H*(F(R),Z). Une situation particulierement
agréable se produit en prenant la cohomologie a coefficients dans Fo. On réalise également
les classes de premiere cohomologie modulo 2 par neuf sous-variétés transverses deux a deux
de F(R) (voir la Définition [0.4.1)). Par transversalité et formule du produit de Poincaré,
on détermine dans le Théoreme et le Corollaire la structure de Fy[G3]-algebre
sur H*(F(R),F2), qui se trouve étre ’algebre des coinvariants modulo 2 de &3. En tant
Fy-algebre, ce résultat est connu depuis [Borb3a], mais ici on prend également en compte
I’action de &3. On termine en expliquant le lien entre nos cycles algébriques et les classes
de Stiefel-Whitney des fibrés en droites universels sur F(R) (voir la Remarque [9.4.9).

Dans le cinquiéme chapitre, on exhibe une structure cellulaire G3-équivariante sur F(R)
via une méthode radicalement différente. C’est un travail en commun avec R. Chirivi et M.

Spreafico [CGS20]. Plus précisément, on écrit F(R) ~ SO(3)/S(0(1)3), ot
S(0(1)*) = (diag(—1, —1,1),diag(1, —1, —1)) ~ Cy x Cy

est le groupe de Klein. Mais comme le revétement universel de SO(3) est la sphere S3, on
obtient une tour de revétements, dans laquelle Qg est le groupe des quaternions d’ordre 8
et O ~ Qg x B3 est le groupe octaédral binaire d’ordre 48, un groupe au dessus d’une fleche
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désignant un revétement admettant ce groupe pour fibre,

3
Cs
os| SO(3)
3 0
F(R) =S%/0s
&3

F(R)/S3 = S?/O.

Ainsi, au lieu de I'action &3 C F(R), on peut étudier I’action du groupe O sur S?, qui est un
espace plus simple. L’espace S3/O est une “spherical space form”, c’est-a-dire une variété
riemanienne compacte de courbure sectionnelle positive et constante. Cette classe d’espace
est bien étudiée (voir par exemple [Mil57; Wol67; ST31]). En s’inspirant de la série d’articles
IMMS13; [FGMS13; FGMS16], Chirivi et Spreafico ont développé dans [CS17] une méthode
générale pour construire des structures cellulaires sur les spheres, équivariantes pour ’action
libre d’un groupe fini d’isométries. En particulier, ceci donne une structure cellulaires sur les
“spherical space forms”. Les cas restants pour S? pour lesquels les déterminations explicites
de décomposition équivariante n’avaient pas déja été menées dans la littérature étaient le
groupe octaédral binaire O et le groupe binaire icosaédral Z d’ordre 120. Dans [CGS20],
nous appliquons la méthode des polytopes d’orbites de Chirivi-Spreafico & ces deux cas
afin d’obtenir des structures cellulaires équivariantes. L’idée principale est d’exhiber des
domaines fondamentaux polytopaux dans 1’enveloppe convexe du groupe (vu comme sous-
ensemble de R*) pour les projeter ensuite sur la sphere S>. On commence par rappeler les
résultats fondamentaux et le principe de la méthode et en particulier, on introduit le joint
courbe et les groupes polyédraux binaires. On applique ensuite la méthode & O et Z, ainsi
qu’au groupe binaire tétraédral 7 (pour lequel le résultat était déja connu). On suit le
méme plan pour ces différents groupes : on trouve un domaine fondamental pour le groupe
G € {T,0,Z} dans S? en y projetant un domaine fondamental polytopal et on construit
une structure cellulaire en utilisant son treillis des faces. Ensuite, on calcule le complexe
d’homologie cellulaire associé et on 1’utilise pour trouver une résolution libre 4-périodique
de Z sur Dalgebre de groupe entieére du groupe (voir les Théorémes [11.4.1} {12.3.1} [13.3.1]
et les Corollaires [11.4.2} [12.3.3} [13.3.2]). En particulier, on retrouve la cohomologie de ces
groupes. Enfin, on utilise le joint courbe pour généraliser ceci au cas des spheres S~ 1 et
interpréter la résolution libre comme une limite (quand n — oco) du complexe d’homologie
cellulaire des revétements universels des “spherical space forms” S*7~! /pP™(G), ol p est
inclusion de G dans SU(2) et p®" : G — SU(2n) (voir les Théorémes et
@ . 1l est encore bon de noter que pour G = Z, la structure cellulaire Z-équivariante
sur S induit une structure de CW-complexe sur la sphére de Poincaré S*/Z. On termine
en appliquant le cas octaédral a la variété de drapeaux F(R) de SL3(R) pour en obtenir
une structure cellulaire G3-équivariante, et ’on calcule son complexe d’homologie cellulaire
dans le Théoreme On remarque que cette décomposition a bien moins de cellules que
celle obtenue au quatrieme chapitre. De plus, ce complexe présente une jolie symétrie et est
compatible avec la premiere formule attendue sur les rangs des composantes homogenes.

Le dernier chapitre présente certains espoirs de construction d’une structure cellulaire
dans les cas supérieurs, au moins pour les variétés de drapeaux réelles. Plus précisément,
partant du fait que le groupe compact K admet une métrique riemannienne bi-invariante, on
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obtient une métrique riemannienne sur sa variété de drapeaux, que I’on peut restreindre aux
points réels. La variété de drapeaux F(R) de SL3(R) admet deux métriques naturelles : la
métrique bi-invariante héritée de SO(3) et celle induite en quotientant la métrique standard
de S? par le groupe des quaternions Qg. Apres avoir rappelé certains résultats élémentaires
de la géométrie riemannienne et des métriques bi-invariantes sur les groupes de Lie compacts,
on montre dans la Proposition[I5.4.2] que ces deux métriques sont proportionnelles. On décrit
ensuite les géodésiques de F(R) comme des orbites de sous-groupes a un parametre de SO(3)
(Proposition ce qui nous permet d’interpréter les cellules de F(R) construites au
chapitre 5 comme des unions de géodésiques (minimales) dans F(R) (voir le Corollaire
et le Théoreme et en particulier, les 1-cellules sont des (translatées de) géodésiques
minimales entre 1 et les réflexions de &3, vus comme points de F(R). Dans le cas plus
général ot W < Isom(M) est un groupe discret d’isométries d’une variété riemannienne
connexe complete (M, g), on introduit le domaine de Dirichlet-Voronoi

DV :={zxeM; YweW, dzg,x) < dwzgy,z)},

avec d la distance géodésique sur M et xg € M est un point régulier. On prouve en général
(voir Proposition que DV est un domaine fondamental connexe par arcs pour W
agissant sur M. Ensuite, nous nous concentrons sur le cas ou M = F = K/T, avec K un
groupe de Lie compact et W le groupe de Weyl, F étant munie d’une métrique normale
homogene. Nous énoncons alors la Conjecture sur le rayon d’injectivité de F(R). Un
premier pas vers la construction effective d’une décomposition cellulaire est que, sous la
condition d’injectivité, le domaine de Dirichlet-Voronoi ouvert est une cellule de dimension
2N. Par la suite, nous nous restreignons au cas ou F,, := SU(n)/T est de type A,_1 et nous
donnons une estimation du rayon d’injectivité de F,, et F,(R) dans le Proposition
et le Lemme Nous voyons de plus que la métrique g, sur F, est (proportionnelle
a) la restriction de la métrique produit de Fubini-Study sur (CP"~!)" ot le plongement
Fn = (CP" 1" est donné en envoyant une matrice unitaire sur le n-uplet des droites
orthogonales dans C" correspondant a ses colonnes, chacune d’elles étant vue comme un
élément de I’espace projectif CP"~!. La distance induite dpg sur JF, (qui est inférieure & d)
se comporte bien par rapport a I’action du groupe de Weyl &,,. Plus précisément, nous avons
une formule pour calculer des distances dpg(1,x) et dpg(1l,xw) pour w € &, en termes
des coefficients de la matrice sous-jacente a x € F, voir le Lemme Nous concluons
notre étude par I'inspection du cas de F3(R) = SO(3)/{%1}2. En particulier, nous donnons
dans la Proposition la distance maximale entre 1 et un élément x € DV. Nous
prouvons en particulier qu’il y a exactement vingt-quatre points réalisant cette distance. Ce
seront quelques-unes des 0-cellules d’une troisieme décomposition cellulaire G3-équivariante
sur F3(R). En effet, dans ce cas le domaine est combinatoirement équivalent & un cube
tronqué et nous en déduisons facilement une décomposition cellulaire (polyédrale) de F3(R).
Cependant, par manque de temps nous avons uniquement vérifié ceci numériquement. Nous
avons trouvé une orbite de 3-cellules, sept orbites de 2-cellules, douze orbites de 1-cellules et
six orbites de O-cellules. Nous terminons en décrivant le complexe de chaines qui en résulte.
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Introduction

Setting the stage

There are plenty of mathematical circumstances where a topological or geometric space
naturally comes with an action of some group. In particular, the associated orbit spaces
provide interesting examples of spaces. For instance, we can make the cyclic group Cs act
on the n-sphere S™ via the antipode and the resulting orbit space is the real projective space
RP™ = S™/C5. But there are also occurrences of infinite groups acting and producing nice
spaces, such as the n-torus R"/Z". Studying the structure and properties of such spaces
and the actions they carry is the goal of equivariant algebraic topology.

To fix ideas, consider a topological space X, acted on by a group W. As for classical
topology, we aim to attach to the pair (X, W) algebraic invariants (functorial if possible)
which describe the action of W on X. As an example, the homology H,(X,Z) is endowed
with the structure of a Z[W]-module. Hence, we still look at the classical (co)homology of
X, but as an integral representation of W (resp. as a graded Z[W]-algebra) rather than
only as an abelian group (resp. a graded ring); therefore keeping track of the action of W.
We could also consider the equivariant cohomology algebra Hjy,(X,7Z) of X (see |Bor60| or
[Hsi75] among others). When the action is free, this is the usual cohomology algebra of the
orbit space. Notice that all this holds for any ring of coefficients, not only the integers.

Besides, it is natural to consider the inverse problem: given a representation of a group,
can we find a space on which the group acts and whose (co)homology yields the desired
representation; giving it a geometric or topological interpretation. As an example, every
complex irreducible character of a finite reductive group occurs as a component of a Deligne-
Lusztig character, constructed taking the f-adic cohomology of algebraic varieties over I,
(see |DL76]).

This being said, cohomology sometimes doesn’t bestow enough information, as we shall
see later on. A suitable framework lies in the theory of equivariant sheaves. In the classical
case, the theorem |Bre97, Theorem III.1.1] ensures that for a reasonable space X (locally
contractible and hereditarily paracompact, which is the case for all spaces we are looking at)
the cohomology H*(X,Z) of a reasonable space X can be obtained as the sheaf cohomology
of X with coefficients in the constant sheaf Z (here again, this holds for any coefficient
ring). This is the cohomology of a complex RI'(X,Z), given by applying the right derived
functor RT'(X, —) of the global section functor I'( X, —) to the sheaf Z. If Ab(X) denotes the
category of sheaves of abelian groups on X, then the left exact functor I'(X, —) : Ab(X) —
Ab gives rise to a derived functor RT'(X, —) : D*(X) — D’(Ab), where we have denoted
Db(X) := DP(Ab(X)) for short. In the equivariant setting where a group W acts on X,
Bernstein and Lunts ([BL94]) have defined the equivariant derived category Dy (X) and if W
is discrete, the global section functor I'(X, —) yields a functor Dy (X) — D*(Z[W]-Mod).
Moreover in this case, the category Dy (X) can be interpreted as the derived category of the
category Aby (X) of W-equivariant sheaves on X and the functor Dy (X) — D°(Z[W])
then coincides with the derived functor of I'(X, —) : Aby (X) — Z[W]-Mod.

Besides, in the classical case the complex RI'(X,Z) is represented by the singular cochain
complex of X, consisting of abelian groups and since the ring Z is hereditary, this complex is
therefore quasi-isomorphic to its cohomology. Hence, we do not get more precise information
by looking at RI'(X,Z) rather than by looking at its cohomology. However, the ring Z[W]
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is not hereditary and there is no longer an isomorphism RI'(X,Z) ~ H*(X,Z) in D*(Z[W]).
Henceforth, in the equivariant setting, the complex RI'(X, Z) indeed yields more information
than the cohomology, in the derived category D°(Z[W]).

These derived functors tend to be unwieldy and hard to calculate explicitly. Also, we
need practical methods to help describe RI'(X,Z). In the classical case, it is well-known
that exhibiting a cellular structure on X (in other words, describing X as a CW-complex)
yields a complex of free abelian groups representing RT'(X,Z) in D*(X). The same idea
works in the equivariant case, provided that the acting group W is discrete and under some
compatibility conditions between the cellular structure and the action; namely W should
permute the cells and, if an element of W stabilizes a cell, then it should fix it pointwise.
The resulting notion is that of a W-CW-complex and such a structure on the space X yields
a cellular homology cochain complex, which indeed is a model for RT'(X,Z) in D*(Z[W]).
Henceforth, the question of describing RI'(X,Z) in the derived category of Z[W]-modules
reduces to determine a W-CW-complex structure on the W-space X, at least when the
group W is assumed to be discrete.

An interesting case to emphasize is when W is a Weyl group acting on a space X coming
from Lie theory. Two of the main classes of spaces arising in this context are maximal tori
of compact Lie groups and flag manifolds. More precisely, given a compact Lie group K and
a maximal torus 7' < K of K, the Weyl group is the finite group W := Ng(T')/T whose
elements act naturally on 7', by conjugation by representative elements in Ny (T') (this is
well-defined as T' is abelian). On the other hand, the flag manifold is the homogeneous
space K/T, endowed with a free right action of W (by multiplication by a representative
element in Ng(7T)).

This notation being settled, we summarize the aim of this thesis in two main problems.
The first one concerns tori and their potential generalizations to finite Coxeter groups:

Problem A. We split the problem into two parts:

1. Ezxhibit a W -equivariant cellular decomposition of the torus T and describe the asso-
ciated equivariant cellular homology chain complex.

2. Is it possible to construct spaces that are analogous to tori of maximal compact Lie
groups for non-crystallographic finite Coxeter groups?

The second problem is the central one and is about the flag manifold K /7.

Problem B. Ezhibit a W -equivariant cellular decomposition of the flag manifold K /T and
describe the associated equivariant cellular homology chain complex.

An enlightening example of flag manifolds is in type A,,—1 (for n > 2): let K = SU(n)
be the special unitary group and take T to be the group of diagonal matrices of K, that is

£ 0 - 0

r={ | * N esum b = swm.
: o0
0 -~ 0 =

The normalizer of T consists of monomial matrices and the Weyl group is the symmetric
group &,,. Now, the group K acts naturally on the set of n-tuples of lines in C" and it
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(globally) stabilizes the subset of pairwise orthogonal lines. It is easy to see that this action
yields a bijection

1 1 1
U(?’L)/T—>{(L1,,Ln) ; LzSCn, dlm(LZ)zland Ll@LQ@@Ln:Cn}

and that W = &,, acts on it by simply permuting the lines.

The reason for K/T to be called a flag manifold lies in the following fact: from an
n-tuple (Lq,...,Ly), we can define the nested subspaces V; := L1 @ --- @ L; and form the
flag (V1,...,V, =C") and we get a map

Un)/T — {(Vi,..., V) ; V; < Viy1 < C" and dim(V;) =i},

the later set being the set of flags of C™. The point is that this map is in fact a bijection.
Indeed, if (V1,...,V,) is a flag in C™, then we may consider the orthogonal L; of V;_1 in V;

(with Vo = 0, by convention) and then L; GLB GLB L,, = C". This can also be constructed
by choosing a basis of C™ which is adapted to the flag and apply the Gram-Schmidt process
to it. The resulting n-tuple of lines is independent of the chosen adapted basis. On the
other hand, there also is a natural way of interpreting the set of flags as a homogeneous
space. To do this we can consider the transitive action of G := SL,(C) on flags (on each
component) and the stabilizer of the standard flag is the subgroup

B={ " * | e sL.(C)
0 0

Therefore, we have a bijective map
U(n)/T — SL,(C)/B,

which turns out to be a diffeomorphism. See Section [7.4] for more details.

Back to the general case, the latter diffeomorphism has an analogue for every compact
Lie group K: consider the complexification G of K. This is a reductive complex algebraic
group containing K as a maximal compact subgroup, whose Lie algebra is the classical
complexification of the Lie algebra of K and we may choose a Borel subgroup B < G
containing 7'. In this context, the Iwasawa decomposition yields a diffeomorphism K/T =
G /B and this gives a way of making W actually act (non algebraically) on the projective
variety F := G/B. On another hand, if Ggr denotes a split real form of G, then it endows
F with a real structure and letting Br := BN GR, we get an identification of the real points
F(R) ~ Gr/Bg. For instance, in the case where G = SL,,(C), the group K = SU(n) is the
compact real form of G and Gg := SL,(R) is its split real form. The group Bg consists of
the upper-triangular matrices in SL,,(R). In fact, we have two commuting anti-holomorphic

involutions 6.(z) := x* 47 and Os(x) := T defined on SL,(C) and yielding the following

/\
\

SU(n) = C)9:0s C)% = SL,(R)

){6es0s)

SLy(
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Furthermore, the Gram-Schmidt process induces a diffeomorphism
SLn(R)/Br ~ 5O(n)/S(O(1)"),

where S(O(1)") is the subgroup of diagonal matrices in SO(n), which is isomorphic to
(z/2)" 1.

The real flag manifold F(R) is a first step toward a solution of the general problem.
Next, we can try to construct a cellular decomposition of F(C), equivariant with respect to
the action of the group W x (fs), from a W-equivariant decomposition of F(R).

In the sequel, we always endow the flag manifold F = G/B with the real
structure induced by the split real structure on G and we shall denote by F(R)
the real points of 7, with respect to this structure.

Notice moreover that the fact that G is the complexified group of K endows it with a
real structure, therefore F is also endowed with a real structure and we may consider its
real points F(R). We will adopt this notation in the sequel.

A motivation for studying the complex RI'(G/B,Z) is Springer theory, which relates
the irreducible representations of W with the geometry of the nilpotent cone N' C g =
Lie(G). We denote by g,s the open subset of regular semisimple elements of g. We define
g := {(z,9B) € g x G/B ; = € 9b}. The first projection my : g — g is called the
Grothendieck simultaneous resolution. It is a proper morphism. We denote N = 7 Y N)
and s := 7 !(grs). We then get two Cartesian squares

N> § <3,
WNiﬂﬁl | lw L i”ﬁrs:”fs
N——s g <r)grs

The morphism mys is the Springer resolution of the nilpotent cone. As observed by Lusztig
in [Lus81], since the morphism 7 is proper and small (a condition on the dimension of its
fibers), the shifted complex G := Rm,Q[dim g] equals the intersection complex IC(g, 75« Q),
alias the intermediate extension jygi« (s« @Q[dim g]). The local system 7, Q identifies with
a representation of the fundamental group (grs), which is the braid group of W. This
representation factorizes through the quotient W and this turns out to be the regular rep-
resentation of W. The functor jg. being fully faithful, we deduce an isomorphism

@[W] ;) EndDb(g) (g) .

From this we get an action of W on the cohomology H*(B,,Q) of the Springer fiber B, =
7n~1(x) at x € V. Lusztig conjectures that this leads to a new construction of the Springer
correspondence. For x = 0, we have By = G/B and the action on RI'(G/B,Q) coincides
with the one induced by the action of W on G/B mentioned above.

The Springer sheaf is the object S := Rmp,Q[dim N] of DP(N). As my is proper and
semi-small, by the decomposition theorem, S is a semisimple perverse sheaf on A. A crucial
point proved in [BM83] is that the restriction to the nilpotent cone induces an isomorphism

QW] — Endpe4)(G) — Endps(n)(S)

To do this, Borho and MacPherson show that these two algebras have the same dimension
and then that the morphism is injective, by noticing that the action on the cohomology of
the O-stalk is faithful, since it is the regular module.
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In [Jut09], Daniel Juteau establishes a modular versionF_;] of the Springer correspondence,
but for this he rather uses the Fourier-Deligne transform: indeed Borho-MacPherson’s argu-
ment cannot be applied directly, because the cohomology of the 0-stalk is no longer faithful,
as we can see on the example of SLy: we have H*(SL2(C)/B,Q) = 1 &¢[—2], where ¢ is the
sign character of Gg; and thus H*(SL2(C)/B,Fs) = 1y, ® 1p,[—2], which is not faithful.
Perhaps we should consider the complex RI'(SL2(C)/B,F2) rather than its cohomology?

There is an isomorphism of varieties

SLy(C)/B — CP!'~§?
(ba)B  +—  [a:0]

and pre-composing this with the diffeomorphism SU(2)/T = SLy(C)/B where T = S(U(1)?),
we obtain another diffeomorphism

SU(2)/T = CP!
(%%E)T —  [a: b

and the action of &y = {1,s} on CP! obtained by transporting the action on SU(2)/T is
given by [a : b] - s = [~b:@]. On the open subset {ab # 0}, this reads [L: 2] - s = [-Z: 1] =
[1:—1/Z] and the action on S? obtained by transporting this again using the stereographic
projection CP! ~ S? is the antipode, that is, for z € S> C R® we have z - s = —z. It
is now easy to find an Gg-equivariant cellular structure on S?: take the particular point
e :=(0,0,1) € S? (which corresponds to 1 € SLy(C)/B). It is sent to € - s := (0,0, —1) by
s and these two points form a Gs-orbit: they shall form our 0O-skeleton. Next, we define a
1-cell by taking the geodesic arc e! := {(z,y,2) € S* ; 2 =0, = > 0} joining " and €° - s.
It is sent by s to its opposite e! - s. These two 1-cells form the 1-skeleton. Then we take e?
to be the upper spherical cap of S?, and its image under s is the other cap es - s. These cells
form our 2-skeleton and we are done. The resulting decomposition is depicted in Figure [A]

€2

€9 S
Figure A: A Cy-equivariant decomposition of S2.

The associated cellular complex (with cohomology H*(SLy/B,Z)) is given by

Z[G2) 5 7[Sy] —> Z[S,).

Now, the action of &9 on this complex is faithful, even after reduction modulo 2. This
explains the slogan mentioned earlier: “taking cohomology looses too much information

8see also [JTMW12| and [AHJR14)
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and we have to work at a derived level”. This is why we have to compute RI'(G/B,Z);
and describing the homology (co)chain complex associated to a cellular structure on G/B
is a natural and efficient way to achieve this. It should be noted that such a structure
abstractly exists by a general result of Matumoto ([Mat73]), since the Bruhat decomposition
(see |[Bum13|) gives G/ B the structure of a CW-complex; but this structure of course doesn’t
behave well under the action of W.

Main results

This section presents some of the main results obtained in this thesis. In order to moti-
vate the study of equivariant cellular structures, we first have to show that the associated
cohomology cochain complex indeed computes RI'(X,Z) in the derived category of Z[W]-
modules. This is done in the following preliminary result, which states further that all the
complexes obtained this way are homotopy equivalent. We restrict our study to the action
of a discrete group, which is enough for the sequel.

Theorem 0 (alias [2.1.11)). Let W be a discrete group and X be a W-CW-complex. Then,

the associated cellular cohomology cochain complex C? (X, W;Z) satisfies

RI(X,Z) ~ C}

sing

* . b
(X, Z) = Cin(X, W3 Z) in D*(Z[W]).
Furthermore, the complex C (X, W;Z) is independent of the chosen W-CW-structure on
X, up to equivariant homotopy, i.e., any two such structures give complexes that are iso-
morphic in the bounded homotopy category KP(Z[W]).

As mentioned before, we look for equivariant cellular structures on tori and flag mani-
folds. The following table summarizes the main results of this work:

’ Problem Maximal tori H Problem Flag manifolds
Theorem Equivariant triangulation | Theorem Equivariant cell structure on
of T < K and dg-algebra in the case F3(R) := 50O(3)/S(0(1)3) using P(Onin)
where T (K) = 1. and the GKM graph.

Theorem Fquivariant triangulation | Theorem Fquivariant cell structure on
of T < K in the general case. F3(R) from the binary octahedral group
O < S? of order 48.

Theorem Construction of a Theorem FEquivariant cell structure on
W -triangulated analogue of tori for all F3(R) from a normal homogeneous metric
finite irreducible Cozeter groups. and a Dirichlet-Voronoi fundamental domain.

Proposition Determination of the
injectivity radius of SO(n)/S(O(1)") and an
estimate for the one of SU(n)/S(U(1)").

The missing point [B4] is a conjecture, that allows to generalize the Dirichlet-Voronoi
approach to higher cases; Proposition is a first result in this direction. Moreover, we
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provide two packages for GAP. The first oneﬂ allows to work with free modules over a group
algebra using the meta-package CAPE In the second on@ we implement the complexes
defined in Theorems [AT] [A2] and

Maximal tori of compact Lie groups and extension to non-crystallographic Cox-
eter groups

First, we study the case of Weyl groups acting on (maximal) tori of semisimple compact Lie
groups. We use the vocabulary of root data, affine Weyl groups and alcoves to formulate
the following first result, which assumes that the ambient Lie group is simply-connected.
The affine Dynkin diagrams are displayed in Table

Theorem A1 (alias . Let K be a simply-connected simple compact Lie group, T < K
be a mazximal torus and W = Ng(T)/T be the associated Weyl group. If W, denotes the
affine Weyl group, then the fundamental alcove induces a Wy-equivariant triangulation of
the Lie algebra Lie(T') of T', whose Wy-dg-algebra C¥,,(Lie(T'), Wa; Z) is described in terms
of parabolic cosets. This induces a W -equivariant triangulation of T and the associated
W -dg-algebra is given by

cen(T, W3 Z) = Defyp (Clo(Lie(T), Wa; Z)),

cell cell

where Def%a : Z[W,]-dgAlg — Z[W]-dgAlg is the deflation functor.

In particular, we retrieve indeed

H(C* (T, W3 Z)) = H*(T,Z) = A*(P).

cell

In the general case (where we no longer assume 71 (K) = 1), the cocharacter lattice Y (T')
of T does no longer equal the coroot lattice @V and the previous combinatorics doesn’t
apply, because the extended group Wy (1 := Y(T) x W is no longer a Coxeter group.
However, we may apply a barycentric subdivision to the fundamental alcove A (which is an
n-simplex), which induces an Qy(r)-equivariant triangulation of it, where Qy (p) 1= {@ €
Wy () ; W(A) = A} =~ 71 (K). We have obtained the following explicit result:

Theorem A2 (alias . The barycentric subdivision of the fundamental alcove of the
root system of (K, T') induces an Wy ()-equivariant triangulation of Lie(T). We describe the
combinatorics of the resulting cohomology cochain complex Cf,) (Lie(T), Wy (1y;Z), as well
as its cup product. This triangulation induces a W -equivariant triangulation of T and the

associated W -dg-algebra is given by applying the functor Def;V,Y(T) to Oy (Lie(T), Wy (1y; Z).

cell

We notice that the combinatorics of the complex in the simply-connected case makes
sense for every pair (W, r) with W a finite irreducible Coxeter group and r € W is a reflection
in W. The second part of Problem [B| is quite natural: if W is non-crystallographic, is it
possible to choose such a reflection » € W for which this complex is the simplicial chain
complex of some triangulated W-manifold, in such a way that in the crystallographic case,
with r the reflection associated to the highest root, we find indeed a maximal torus? The
following result affirmatively answers the question:

%https://github.com/arthur-garnier/FreeIntegralModules
Ohttps://github.com/homalg-project/CAP_project
“https://github.com/arthur-garnier/Salvetti-and-tori-complexes
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Table 1: Extended Dynkin diagrams of irreducible root systems.
The white dots stand for the roots corresponding to minuscule weights and the crossed dots
represent the lowest root & := —ay.

Theorem A3 (alias . Let (W, S) be a finite irreducible Coxeter system of rank n.
Given a reflection r € W, we consider the Cozeter system (/W,S U {7}) whose diagram is
the one of W, with the additional node 7 corresponding to r and with associated edges given
by the orders of sr for s € S. Then there is a reflection ryw € W such that the extension W
is affine if W is a Weyl group and compact hyperbolic otherwise. If moreover n > 2, then
the reflection rywy is unique with this property.

['/f\/W is such an extension, if we denote by S the Cozeter complex of W and Q =
ker(W — W), then T(W) := ¥/Q is a connected, orientable, compact, W -triangulated
Riemannian W-manifold of dimension n such that,

o if W is a Weyl group, then T(W) is W-isometric to a mazimal torus of the simply-
connected compact Lie group with root system that of W,

e otherwise, the manifold T(W) is hyperbolic.
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The particular case of the dihedral groups Iz(m) has some interesting features, which
we summarize in the following statement:

Corollary (5.5.1} [5.5.5(and [5.5.6). For g € N*, the surfaces T(I2(2g + 1)), T(I2(4g)) and
T(I2(4g + 2)) are Riemann surfaces of genus g and definable over Q. In particular, for
g = 1 these are rational elliptic curves. Moreover, we have an isometry T(I2(2g + 1)) ~
T(I2(4g + 2)) and these two are not isometric to T(I2(4g)).

Our approach also allows to determine a presentation for the fundamental group of
T(W), using Poincaré’s fundamental polyhedral domain theorem and to characterize the
homology representation of T(W), using Hopf’s trace formula.

Proposition (5.4.4} [6.2.2] |6.2.5} [6.2.6| and [6.2.7)). The fundamental group 7 (T(W)) ~ Q
admits an explicit presentation with [W : Cy (7)] generators, where 7 is the additional reflec-
tion in the extension W. From this presentation, we derive that the homology H.(T(W),Z)
1s torsion-free and so the Betti numbers are palindromic. Moreover we obtain a decomposi-

tion of the homology representation H,(T(W),k) into irreducible characters, where k is a
splitting field for W.

Three equivariant cell structures on the flag manifold of SL3(R)

After this, we study the action of the Weyl group on flag manifolds. More specifically, we
study the real flag manifold F(R) of SL3(R), which already is a non-trivial example to
treat. Using the embedding F(R) < RP” induced by the embedding of F = P(Opi,) into
P(sl3) ~ CP’, where Oy is the minimal nilpotent orbit of SL3(C), as well as the Goresky-
Kottwitz-MacPherson (GKM) graphlE of W = &3, we obtain a first equivariant cellular
structure on F(R). This is summarized in the following result:

Theorem B1 (alias and [9.2.2). The real flag variety F(R) of SL3(R) admits a semi-
algebraic reqular Ss-equivariant cellular structure whose cellular homology chain complex is
given by

o P P
Z[S3]* — Z[63]° —> Z[G3]* —— Z[S3]

where the boundaries 0; are given by left multiplication by the following matrices

81:(1—sa 1—sg 1—w0),

-1 1 1 Sa wo — 8453 S8 — SBSa
Oy = |585—53 Sa—1 —wp wo 5058 5058 ,
83 5880 Sa—1 Sasg— wo —Sg 535a
0 Sa 0 1
—588q 0 —wy 0
0 S3S 1 0
Oy = pa
3 1 0 0 585a
—5488 SaSp 0 0
0 0 5458 —SaSp

12Recall that the GKM graph of a Weyl group W has the elements of W as vertices and we put an edge
between w and w’ if there is a reflection » € W such that w’ = wr and £(w’) > £(w).
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where s, and sg are the simple reflections of &3 and wo := 545354 = SSasa s its longest
element.

This approach also allows to determine the action of &3 on the (co)homology of F(R)
and in particular, we give the Fy[G3]-algebra structure on H*(F(R),F3). More precisely,
we have the following result:

Corollary (9.4.7). Let Fa[z,y, z]a, be the mod 2 coinvariant algebra of S3. There is a
zero-graded isomorphism of Fa[S3]-algebras

F2[$7y7 Z]@S — H*(‘F(R)7F2)

sending the indeterminates x, y and z to irreducible algebraic 1-cocycles.

Next, we take a new look at F(R). Specifically, it turns out that there is a diffeomorphism
F(R) ~ S§3/Qg, where Qg is the quaternion group of order 8. This makes the manifold
F(R) into a spherical space form and we thus have to determine a cellular decomposition
of the sphere S?, equivariant with respect to the action of the binary octahedral group
O = Qg x &3, using the method of Chirivi-Spreafico. Furthermore, since the case of the
binary icosahedral group Z ¢ S* has not been treated in the literature before, we study it
as well. In the octahedral case, modding out by the quaternion group of order 8 yields the
following consequence:

Theorem B2 (alias(14.0.5)). The real flag manifold F(R) of SL3(R) admits an &3-equivariant
cellular structure, whose cellular homology chain complex is given by

P P P
7|83 —= Z[Gs]® — Z[&3]> ——=Z[S3] ,

where
504583 1 wo — 1 1—sg
31:(1—55 1 — wy 1—sa), Or=|5a—1 35453 1 , O3=|1—wp
1 sg—1 sasp 1— s,

We also notice that the cellular structure from the previous theorem has some nice
features, regarding the Riemannian metric on F(R) induced by the bi-invariant Riemannian
metric on SU(3).

Proposition (16.2.2). We endow the complez manifold F = SU(3)/T with the metric
induced by the bi-invariant Einstein metric on SU(3) and we restrict it to F(R). Then the
cells of the previous cellular structure on F(R) are unions of minimal geodesics of F(R). In
particular, the 1-cells are orbits of one-parameter subgroups of SO(3).

Taking our study of the Riemannian geometry of the manifold F(R) further and in order
to obtain a more intrinsic statement, we finish by studying a Dirichlet- Voronoi domain for
S5 acting on F(R):

DY :={ze FR); d1,z) < d(w,z), Yw e W},

where d is the geodesic distance on F(R) associated to the metric. We prove the following
result:
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Theorem B3 (alias [17.4.2). The Dirichlet-Voronoi domain DV is a fundamental domain
for &3 acting on F(R) and admits a cellular structure inducing an Ss-equivariant cellular
decomposition on F(R), whose associated cellular homology chain complex is given by

2[&3) — 2 7[G5)T 2> 7[&5)12 — 2 s 7S]

with boundaries

0 0 0 0 0 sg —sg 0 0 -1 0 1
0 0 0 1 -10 0 0 sgsa O 0 -1
a o —wo 0 0 0O 0 O 0 wo 0 sg —wo O
L= | sgsa —8g5a 0 0 sa =S¢ 0 0 O 0 0 O
0 sgsa —8gsa 0 0 0 0 0 —wg O we O
0 0 1 -10 0 sg —s3 0 0 0 O
1 0 wo 0 0 0 —wo
1-sasg 0 0 -1 0 0
1 sg 0 —-sg 0 0 0 1—sq
1 0 sa 0 0 -1 0 1-s5
1 0 -1 0 -wp 0 O 1—wg
9, — | 1 ®e 0 0 0 0 -1 O i | 1-sps
=11 -1 0 0 0 —sg O R poa
1 0 —sgsa -1 0 0 O l_sasﬂ
0 -1 —wy 0 —s3 0 O 1:25?
0 s 1 0 0 0 —sg «p
0 wo —wg —1 0 0 0
0 —sgsa 1 0 0 -1 0

Each one of the three decompositions we found for SO(3)/S(0O(1)?) has its own advan-
tages and caveats: the first one from Theorem has a 1-skeleton that fits in the GKM
graph of &3 but works because of the small dimension of the manifold and seems hard to
generalize. The second one from Theorem has few cells and nice degrees as we shall see
below but uses the very special equivariant diffeomorphism F(R) ~ S3/Qg. Such an identi-
fication between a real flag manifold and a free orbit space of a sphere can of course not be
hoped in higher cases. The last one in Theorem has too many cells, but is expected to
be generalized to other real flag manifolds, as it only relies on the intrinsic geometry of the
considered manifold. For more details about this, we refer the reader to Conjecture [B4] and
Proposition [B5] below.

Some perspectives and conjectures

After writing this work, many themes are to be studied further.

As a first perspective of research, we can mention the étale case for tori. In the second
chapter we exhibit a triangulations of tori of compact Lie groups, equivariant with respect
to the action of the Weyl group W. A naturally related question is to see what could be
said in the case of finite reductive groups. More precisely, we take a reductive group G over
a field F, and defined over F,, with associated Frobenius endomorphism F : G — G and
a given F-stable torus T < G. The associated finite reductive group is the group G¥ of
F-fixed points of G, and the associated torus is T". In this case, the notion of CW-structure
does no longer make any sense, but we can expect that the Rickard complex RT.(T,Z/nZ)
(which is a complex of permutation modules, analogous to the cellular complex coming from
a CW-structure, see |[Ric94]) can be computed using similar combinatorics as for the Lie
group case. In the étale case, one should also take the action of the Frobenius into account.
We summarize this in the following problem:
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Problem A4. Describe the combinatorics of the Rickard complex RT.(T,Z/n) as an object
of D*(Z/n[W x (F)]).

A second possible track concerns our extension of the construction of tori for Coxeter
groups. Basically, the slogan is: “there are analogues of tori for non-crystallographic Coxeter
groups, but they are no longer Lie groups”. This has the flavour of spetses. Roughly
speaking, spetses are “fake algebraic groups”, first associated to Coxeter groups (see the
pioneer work of Lusztig in |[Lus93|) and later to complex reflection groups by Broué, Malle
and Michel in [BMM99]. We could say that T(W) is the “torus” of the spets of the Coxeter
group W. Therefore, it is a reasonable question to ask if the construction of T(W) could
be extended to (irreducible) complex reflection groups, yielding a “torus” for any spets.
However, we made heavy use of the Tits representation of (an extension of) W in our
construction of T(W) and the general method to deal with complex reflection groups is not
clear at all and requires substantial additional work, if even possible. We formulate the
following problem:

Problem A5. Given a complex reflection group W, is it possible to construct a (possibly
compact) W-manifold generalizing the construction we gave in the Cozxeter case?

Next, if T' is a maximal torus in a compact Lie group K, as the Weyl group W acts
on T, it also acts on the classifying space Br ~ (CP>®)4mT of T and we can look for a
W-equivariant cellular structure on Bp. In type A, we have By = Bgi = CP* and the
non-trivial element s of W = &5 acts as complex conjugation on CIP*°. First, we partition
CP> by subspaces A4 ~ C% of elements whose last non-zero coordinate is the d*" one. Then
we decompose Ay as follows:

d d
C=RIU| | (T % (C\R) x R F) = eqo U | ] (e, Uegy)
k=1 k=1

where eq9 = R? is the real part and ezltk = CF 1 x H* x R%* are two cells of dimension

d + k exchanged by s (we have denoted by H + the upper and lower open half planes in C).
It is convenient to label the cells by

sequences a = (2,...,2,1,...,1,0,...), with a sign e = +1 if k > 0;
k times d—Fk times

we set ecjf = ef o O €q 1= eqo C RP> when k = 0. Thus e, and ef are cells of dimension

la| = Y, a;; furthermore, s fixes e, pointwise and exchanges the ef. Then we allow some
parameters to take complex values. Moreover, there is a Koszul duality between H* (T, Q) =
A*(Lie(T)*) and H*(Br,Q) = S*(Lie(T)) and it would be interesting to see if this duality

actually occurs at a geometric level.

Concerning flag varieties, a first potential thing to explore is the embedding G/B —
P(V(p)), where p = 33" 4+ o is half the sum of positive roots and V (p) is the irreducible
highest weight module of highest weight p (see theorem . More specifically, since p is
the smallest regular dominant weight of G, the embedding G/B —— P(V(p)) is somewhat
minimal among the embeddings of the flag variety F = G/B into projective spaces. There-
fore, it seems interesting to study it, in order for instance to relate the action of W on F and
the representation V'(p), but this approach seems difficult to carry in general. Indeed, we
have dim V (p) = 2/®"1 so the number of coordinates explodes with the rank and moreover,

32



the expression of the action of W using these coordinates is hard to handle (see Proposition
8.2.5)).

About the combinatorics of a potential cellular complex C\(K /T, W;Z), we can try to
guess a nice and plausible formula for the ranks of its homogeneous components. Let

PS(q) = Z #{W-orbits of i-cells of F(C)}¢*

(2

and similarly consider P‘]}} for the real points F(R). The polynomial P&, must verify
deg(P5;) = 2N where N = |®7| is the number of reflections of W, as well as P$(—1) = 1,
since x(F) = |W|. A first reasonable guess for P§; starts with the GKM graph of W. To
each positive root a € ®T is associated the minimal parabolic subgroup P, = (B, $,) and
we have that P,/B ~ CP! is stable under the action of the subgroup (s,); so there is an
“S Ly situation” for each positive root, which we may represent in the following diagram:

Sa

y

1

Doing this for any reflection of W = &3 and taking the closure under the action of G,
we obtain a diagram which is very similar to the GKM graph:

wo wWo
54583 5854 5458 5854
Y Y
Sar 53 Sar 53
\ /
NP A
(a) The GKM graph (b) Many SLs situations

Figure B: The GKM graph of &3 and the 1-skeleton of F(R)

Extrapolating this to higher dimensions, we can hope to parametrize the orbits of i-cells
of F(R) by subsets of positive roots of cardinal i and the i-cells would be parametrized
by i real parameters (one for each root). This would give Pk-(gq) = [2]‘qq)+|, where [k], =
1+q+---+¢"1. To find the missing cells in F (C), we allow some parameters to take
complex values, so that each positive root would have a multiplicity 0, 1 (real parameter)

or 2 (complex parameter) and we get multisets of positive roots with multiplicities, yielding
PS(q) = [S]E;Dﬂ. This formula has the combinatorial flavour of the de Concini-Salvetti
complex, which is a free resolution of Z over Z[W], valid for any finite Coxeter group W and
constructed using increasing chains of subsets of simple reflections. Here, we should rather
look at chains of subsets of &1 of length at most 2. For SL3, we would get

PR(q) = [2]2 =@ +3¢74+3¢+1 and Ptﬂcv(q) = [3}2 =" +35 +6¢* + 73 +6¢> + 3¢+ 1.
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This would give an explanation for the ranks 1, 3, 3 and 1 of the complex in Theorem

Another possible formula, involving only the simple roots, for this number of orbits is
given by [[,[2d; — 1], with (d;); the degrees of W. Recall that the d;’s are the degrees of
fundamental invariants of W and satisfy ) .(d; — 1) = N and [[,d; = |W| and we would
have indeed deg (] [;[2d; — 1]4) = >_;(2d; —2) = 2N and [[;[2d; — 1]_1 = 1. Over R, similar
considerations would give [[,[d;]q. For SL3, we would get

Py (q) = [2)4[3]g = ¢*+24° +2¢+1 and Py (q) = [3]4[5]q = ¢°+2¢° +3¢" +3¢° +3¢° + 29 +1
The first formula [3]l]¢+‘ has a clear link with the GKM graph and seems easier to pass from
R to C, but the second one [];[2d; — 1], yields fewer cells. Unfortunately, since the complex
in Theorem is in fact homotopy equivalent to a complex with degrees 1, 2, 2 and 1,
this case doesn’t let us decide between the two possibilities. However, we have found no
geometric model for this complex (so far).

But the most promising method to build an equivariant cellular structure on real flag
manifolds in general seems to be the Riemannian approach. Indeed, if the flag manifold
F = K/T is equipped with a normal homogeneous metric (i.e. a metric coming from a
bi-invariant metric on the compact Lie group K) and W is the associated Weyl group, then
we may consider the associated Dirichlet- Voronoi domain

DY = {CC e F ; d(l,ﬂ?) < d(w,x), Vw € W}7

where d is the geodesic distance on F. Notice that this is independent of the chosen normal
homogeneous metric, since such a metric is unique up to scaling. Then DV is a funda-
mental domain for W acting on F (see Proposition and we want to use its interior
and boundary to construct a cell structure on F. We split the boundary using walls, i.e.
intersection of DV with the dissecting hypersurfaces Hy, = {x ; d(1,z) = d(w,x)} and
the intersections of walls are supposed to be the lower cells of the wanted decomposition.
For example, in the case of hyperbolic manifolds and in particular, for Fuchsian groups,
the Dirichlet-Voronoi domain is a (geodesic) polyhedron with facets H,, N DV and its face
lattice yields an equivariant cellular structure on the manifold. However, flag manifolds are
non-negatively curved and we need a technical condition, namely the domain DV should
be included in a closed metric ball with center 1 and of radius p < inj(F) smaller than the
injectivity radius inj(F) of F. Recall that this radius is defined to be the supremum of the
radii of balls centered at 0 € T1.F on which the Riemannian exponential map is injective.
If this condition holds, then we know at least that the boundary of DV is homeomorphic
to the sphere S¥m&7—1  Yet, estimating the injectivity radius of a manifold is a very hard
problem and proving that the domain DV is included in a small enough ball around the
central point is a difficult problem too; and even if the condition is satisfied, it doesn’t
guarantee the walls to be cells. As an example, letting the cyclic group Cy act on S? as the
antipode, the boundary of a Dirichlet-Voronoi domain centered at a pole is an equatorial
line S!. Nevertheless, if we restrict our attention to the totally geodesic submanifold F(R) of
F and consider a Dirichlet-Voronoi domain on F(R), then it gives indeed an &a-equivariant
cellular decomposition of F(R) ~ S! and then of F(C) ~ S%. We conjecture that this is still
the case for other real flag manifolds.

Summarizing, we formulate the following conjectures:

Conjecture B4 (alias [17.2.3] [17.2.1] and [17.2.2). We endow F = K/T with the metric
nduced by the Killing form.
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1. The injectivity radius of F = K/T is the minimal distance between two elements of
W, realized by a simple reflection in W.

2. The Dirichlet-Voronoi domain DYV associated to F and W is included in the open ball
centered at 1 and of radius inj(F).

3. If the later holds and if I C W, then the wall F(R) N(,c; Hw is a (possibly empty)
union of (N — |I|)-cells.

Focusing on the type A where K = SU(n), F, := SU(n)/S({U(1)") and W = &,,, we
prove the following result, which establishes the first conjecture above for F,(R):

Proposition B5 (alias|17.3.1|and [17.3.4). The injectivity radii of F,, and F,(R) verify

inj(Fn,gn)zw\/Z and nj(Fn(R), gn) = mv/n.

A reader’s guide

This work’s aim is to build cellular structures on tori of compact Lie groups and flag mani-
folds, that are equivariant with respect to the Weyl group actions.

As a warm-up, we recall the definition and some basic facts about equivariant sheaves.
Focusing on the case where the acting group is discrete (which is the case for the groups
we shall consider in the sequel) we give equivalent definitions of an equivariant sheaf and
define the derived equivariant category as the derived category of equivariant sheaves on the
space. Next, we define the notion of equivariant CW-complex as introduced by Matumoto in
[Mat71] and here again, taking advantage of the discreteness of the acting group, we rephrase
this as just being a CW-complex, with an additional condition regarding the action of the
group (see Definition . We prove in Corollary the essential fact that if W is a
discrete group and X is a W-CW-complex, then the cellular chain complex C¢ (X, W;Z) is
a complex of permutation Z[W]-modules and that RI'(X,Z) = C* (X, W;Z) in D*(Z[W]).
Moreover, any two such W-CW-complex structures on X give two complexes that are iso-
morphic in the homotopy category ICp(Z[W]). We finish this preliminary chapter by study-
ing the behaviour of the cellular complexes C<'(X,W;Z) with respect to subgroups and
quotients of W.

In the next chapter, we solve the question of finding equivariant cellular structures
on tori of compact Lie groups by means of root data and (extended) affine Weyl groups,
which are no longer finite, but still discrete. More precisely, if K is a simple compact Lie
group, if T < K is a maximal torus and if ® denotes the associated root system, then
the character lattice X(T') and the cocharacter lattice Y (T') of T are in perfect duality and
the quadruple (X (T),®,Y(T),®") is a root datum (see Definition which completely
determines the pair (K,T) up to isomorphism. Moreover, we have a W-isomorphism of tori
V*/Y(T) = T; thus we may drop the group K and just work with a given irreducible root
datum (X, ®,Y,®"), with ambient space V := R ®z X. We have to find a W-CW-complex
structure on V*/Y. To do this, we look for a Wy-CW-complex structure on the vector space
V*, where Wy :=Y x W is the extended affine Weyl group. In the case when Y = QV is the
coroot lattice (which corresponds to the case where the group K is simply-connected), the
group Wy = W, is the classical affine Weyl group and this is a Coxeter group. Hence we
may apply the combinatorics of alcoves and walls to obtain a Wy-equivariant triangulation
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of V* for which the cellular chain complexe can be explicitly computed (see Theorem .
Moreover, we give an explicit formula for the cup product on the dual complex (see Theorem
and we obtain in Corollary the complex for the quotient W-triangulation of
V*/QY by applying a deflation functor to C*,(V*, Wa;Z) from W, to W = W,/Q" and
this gives a W-dg-algebra, whose cohomology is H*(V*/QY,Z) ~ A®*(P). In the general
case, the group Wy is no longer Coxeter and the issue is that the fundamental alcove has
a group of symmetries Qy < Wy, which is not a reflection group. However, it is a general
fact that, in this situation, the barycentric subdivision of the fundamental alcove (which is
a simplex) forms an Qy-equivariant triangulation of the alcove. Though the resulting W-
triangulation of V*/Y has many simplices, this construction has the advantage to work for
every root datum and is quite effective. The main result is summarized in Theorem
Finally, the package Salvetti—and—tori—complexeslg we have developed for GAP allows to
compute the previously mentioned complexes for any (irreducible) root datum.

As for the third chapter, we extend the combinatorics from the second chapter to any
finite Coxeter group. More precisely, given an irreducible finite Coxeter group W, we con-
struct a W-manifold T(W'), which somehow plays the role of a torus for W. Specifically,
we pick a suitable reflection ryy € W and consider the Coxeter group W, whose Coxeter
diagram is the one of W, with one more node corresponding to the reflection ry that is, we
add edges according to the orders of sry, for s a simple reflection of W. We choose the re-
flection ry in such a way that the group W is an affine Coxeter group if W is a Weyl group,
in which case ryy is the reflection associated to the highest root of the root system of W and
W= W, is the affine Weyl group. In other cases, (the non—crystallographlc ones), we choose
rw in order for the group W to be a compact hyperbolic Cozeter grou This is summa-
rized in Proposition-Definition Next, we introduce the subgroup @ := ker(W —» W)
and we define the manifold T(W) as the orbit space of the Cozeter complex E(ﬁ/\) of W
under the action of Q. This is well-defined since @ acts freely and properly discontinuously
on E(W) because it trivially intersects each proper parabolic subgroup of 1% (see Lemmas
15.2.1] and |5.3.2)). We prove in Theorem that T(W) is a W-triangulated, closed, con-
nected, orientable, compact W-manifold of dimension rk(W). Moreover, if W is a Weyl
group, then this indeed coincides with an rk(W)-torus and T(W) is a hyperbolic manifold
in the non-crystallographic cases. After writing this chapter, I learned about the work of
Zimmermann and Davis ([Z2im93] and [Dav85|), in which they define the same manifolds in
types Hs and Hy4, with totally different approaches. We carry our study further by giving a
general presentation of the fundamental group 71 (T(W)) ~ @ in Theorem and then
we specialize it to Hs and Hy, for which the full computations are available in Appendix
Next we investigate the case of dihedral groups: in Corollary and Propositions
[5.5.5 and [5.5.6, we show that T(Iz(m)) is an arithmetic Riemann surface (and even an
elliptic curve if Is(m) is a Weyl group, which gives an unusual point of view on these tori)
and we classify them up to isometry. It should be noted that, in the crystallographic case
(i.e. when m € {3,4,6}), the surfaces T(Iz(m)) correspond to the points in the classical
Poincaré fundamental domain which have non-trivial stabilizers in PSLs(Z) (two of which
are in the same PSLy(Z)-orbit). Finally, we use the W-triangulation of T(W) mentioned
earlier to derive the homology chain complex C<'(T(W), W;Z) and compute the cup prod-
uct on its dual (see Corollary and we finish by detailing the homology representation
of T(W). Using the previously found presentation of @ = m(T(W)), we prove that the
homology is torsion-free and the Betti numbers are therefore palindromic, just as for actual
tori. Lastly, we use the Hopf trace formula to decompose the homology character as sum

3https://github.com/arthur-garnier/Salvetti-and-tori-complexes
45ee Proposition-Definition
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of irreducible characters of W (see Theorems [6.2.5] [6.2.6] and [6.2.7]). These complete the
results of Zimmermann and Davis for Hy and Hjy.

In the sequel, we come to flag manifolds. Also, the fourth chapter is dedicated to
the construction of a first W-equivariant cellular structure on the flag manifold F(R) of
SL3(R). We start with some general reminders on semisimple groups and flag manifolds.
In particular, we define and study the (T-equivariant) rational cohomology algebra of K/T,
through the three descriptions of Schubert, Borel and Goresky-Kottwitz-MacPherson and
we recall that the cohomology H*(K/T,Q) is the regular Q[W]-module. Recall moreover
that, in general, we have a diffeomorphism F = K/T ~ G/B, the later being a smooth
projective complex variety and the real flag manifold F(R) can be interpreted as the set of
its real points (with respect to the real structure induced by the split real structure on G).
The first step toward the sequel is to realize the complex flag variety G/B as a projective
variety, and this can be done using irreducible highest weight modules and half the sum of
the positive roots (see Theorem and Corollary . Next, after having investigated
the trivial case of SLg, we focus on the special case of the flag manifold F(R) of SL3(R).
Using the previous embedding, we can realize the complex variety F as a subvariety of
CP7 and we give a complete set of equations defining it, as a Grobner basis of the defining
ideal in the ambient polynomial ring, see Proposition In Proposition we give
equations for the action of W = &3 on SL3(C)/B in local charts. To build an equivariant
cellular structure on F(R), we begin with the elements of W = &3 as vertices. Then,
we use the GKM graph of &3 (see Figure . Inspired by the case of SLs and the GKM
graph, we define 1-cells for F(R) that we can represent in the graph as in Figure We
notice that the resulting “l-skeleton” is a union of closed subvarieties of the (real) algebraic
variety F(R). Relaxing a part of the defining equations and imposing some intermediate
positivity conditions we obtain 2-cells and the resulting “2-skeleton” is a real algebraic
subvariety of F(R). Finally, we take the connected components of the complement and
prove that these are cells, therefore providing a cellular structure on F(R) and we show
that this structure is indeed S3-equivariant (see Theorem . Next, some calculations
allow us to compute the Gs-orbits of cells as well as the boundaries of the cells, yielding
the associated cellular homology chain complex and the main Theorem Next, we use
this complex to determine the &3-module structure on H*(F(R),Z). A particularly nice
situation occurs when taking the cohomology with coefficients in Fo. Also, we realize the
mod 2 first cohomology classes by nine pairwise transverse 2-dimensional subvarieties of
F(R) (see Definition [0.4.1)). By transversality and Poincaré’s product formula, in Theorem
and Corollary we derive the Fy[G3)-algebra structure on H*(F(R),Fq), which
turns out to be the coinvariant mod 2 algebra of G3. As an Fa-algebra, this result is known
since [Bor53aj, but here the action of &3 is also taken into account. We finish by explaining
the link between our algebraic cycles and the Stiefel-Whitney classes of the universal line
bundles over F(R) (see Remark [0.4.9).

In the fifth chapter, we exhibit an S3-equivariant cellular structure on F(R) using a
deeply different method. This is a joint work with R. Chirivi and M. Spreafico [CGS20].
More precisely, we write F(R) ~ SO(3)/S(O(1)3), where

S(0(1)%) = (diag(—1, —1,1),diag(1, -1, —1)) ~ Cy x Cy

is the Klein four-group. But since the universal cover of SO(3) is the sphere S, we get a
tower of covering spaces, where Qg is the quaternion group of order 8 and O ~ Qg x G3
is the binary octahedral group of order 48 and a group over an arrow denotes the covering
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space with this group as fiber,

3
Cs
os| SO(3)
3 0
F(R) =S%/0s
&3

F(R)/S3 = S?/O.

Therefore, instead of the action &3 © F(R), we can study the action of the group O on
S3, which is a simpler space. The space S*/O is a spherical space form, that is, a com-
pact Riemannian manifold with constant positive sectional curvature. This class of spaces
is well-known (see for instance [Mil57; Wol67; ST31]). Inspired by the series of papers
IMMS13; [FGMS13; FGMS16|, Chirivi and Spreafico developed in [CS17] a general method
for constructing cellular structures on spheres, that are equivariant for the free action of
a finite isometry group. In particular, this provides a cellular structure on spherical space
forms. The remaining cases for S? for which the determination of an explicit decomposi-
tion had not yet been done in the literature were the binary octahedral group O and the
binary icosahedral group Z of order 120. In [CGS20|, we apply the orbit polytope method
of Chirivi-Spreafico to these two cases and exhibit equivariant cellular structures. The key
idea is to exhibit a polytopal fundamental domain in the convex hull of the group (as a
subset of R*) and then project it on the sphere S®. We start by recalling the main results
and principles of the method and in particular, we introduce the curved join and the binary
polyhedral groups. Next, we apply the method to O, Z and the binary tetrahedral group
T for completeness (this case is not new). For each of those, we follow the same outline:
we find a fundamental domain for the group G € {O,Z, T} in S by projecting a polytopal
fundamental domain and we derive a cell structure using its face lattice. Then, we calculate
the associated cellular homology complex and use it to find a 4-periodic free resolution of
Z over the integral group algebra of the group (see Theorems [11.4.1} [12.3.1} [13.3.1] and
Corollaries [11.4.2] [12.3.3} [13.3.2)). In particular, we recover the cohomology of these groups.
Finally, we use the curved join to generalize it to the spheres S**~! and interpret the free
resolution as a limit (when n — o0) of the cellular homology complexes of the universal
covers of the spherical space forms S*~1/p®"(G), where p is the inclusion of G into SU(2)
and p®" : G — SU(2n) (see Theorems [11.4.7} [12.3.6| and [13.3.4)). It is worth noticing that
when G = Z, the T-equivariant cellular structure on S? induces a CW-complex structure on
the Poincaré sphere S®/T. We finish by applying the octahedral case to the flag manifold
F(R) of SL3(R) and obtain an G3-equivariant cellular structure on it, and we compute its
cellular homology chain complex in Theorem We notice that this decomposition has
much fewer cells than the one given in the fourth chapter. Moreover, the resulting complex
has a nice symmetry and is compatible with the first expected formula for the ranks of the
components.

The final chapter presents some hope of construction of a cell structure in the higher
cases, at least for real flag manifolds. More precisely, starting with the fact that the compact
group K admits a bi-invariant Riemannian metric, we obtain a Riemannian metric on its
flag manifold and we can restrict it to the real points. The flag manifold F(R) of SL3(R)
carries two natural metrics: the bi-invariant one inherited from SO(3) and the one induced
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by modding out the (standard) round metric on S* by the quaternion group Qs. After
recalling some elementary facts from Riemannian geometry and bi-invariant metrics on
compact Lie groups, we prove in Proposition [15.4.2] that these two metrics are proportional.
Next, we describe the geodesics of F(R) as orbits of one-parameter subgroups of SO(3)
(Proposition and this allows us to interpret the cells of F(R) constructed in the
chapter 5 as unions of (minimal) geodesics in F(R) (see Corollary and Theorem
and in particular, the 1-cells are (translates of) minimal geodesics between 1 and
the reflections of &3, seen as points of F(R). In the general case where W < Isom(M) is a
discrete isometry group of a connected complete Riemannian manifold (M, g), we introduce
the Dirichlet-Voronoi domain

DV :={x e M; YVweW, dxozx) <dwzy,z)},

where d is the geodesic distance on M and zg € M is a regular point. We prove in general
(see Proposition that DV is a path-connected fundamental domain for W acting on
M. Next, we focus on the case where M = F = K/T, where K is a compact Lie group and
W is the Weyl group, F being equipped with a normal homogeneous metric. Then, we state
the Conjecture [B4|on the injectivity radius of F(R). A first step toward constructing a cell
decomposition is that, under the injectivity condition, the open Dirichlet-Voronoi domain is
a 2N-cell. Next, we focus further on the case where F,, := SU(n)/T is of type A,_1 and we
give estimates on the injectivity radius of F,, and F,(R) in Proposition and Lemma
We see moreover that the metric g, on F, is (proportional to) the restriction of the
product Fubini-Study metric on (CP"~1)", where the embedding JF,, < (CP"~1)" is given
by sending a unitary matrix to the n-tuple of orthogonal lines in C" corresponding to its
columns, each one of which being seen as an element of CP"~!. The induced distance dpg on
Fn (which is lower or equal to d) is well-behaved with respect to the Weyl group &,,. More
precisely, we have a formula for distances drg(1,z) and dpg(1, zw) for w € &,,, in terms of
the entries of the underlying matrix of x € F, see Lemma We conclude our study
by investigating the case of F3(R) = SO(3)/{£1}2. In particular, we give in Proposition
the maximal distance from 1 to an element x € DY. We prove in particular that
there are exactly twenty-four points realizing this distance. These will be some of the 0-cells
of a third &3-equivariant cellular structure on F3(R). Indeed, in this case the domain is
combinatorially equivalent to a truncated cube and we easily derive a (polyhedral) cellular
decomposition of F3(R). However, by lack of time we only have verified this numerically.
We found one orbit of 3-cells, seven orbits of 2-cells, twelve orbits of 1-cells and six orbits
of 0-cells. We finish by describing the resulting chain complex.
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Part I

Representing derived global sections using
equivariant cellular structures for discrete
group actions

In this preliminary part, we consider a topological group G acting on a space X, and we
recall the definition of the category of G-equivariant sheaves on X. In case the group G is
discrete, we also remind the definition of the equivariant derived category Dg(X) and the
derived global sections functor can then be seen as a functor

RT(X,-) : Da(X) — D(Z[G)).

Next, we introduce the notion of a G-CW-complex. Focusing again on the case where GG
is discrete and given a G-CW-complex X, we consider its cellular homology chain complex
CeN(X,G;Z), which is a complex of permutation Z[G]-modules. Dually, we may consider
the cochain complex C} (X, G;Z). The main result is the Corollary which states
that C (X, G;Z) is independent of the chosen cell structure on X, up to isomorphism in
the homotopy category K?(Z[G]), and is isomorphic to RT(X,Z) in D*(Z[G]). We finish by
studying the behaviour of the cellular (co)chain complexes with respect to subgroups and
quotients. For the quotients, we use the deflation functor.

1 Preliminaries on equivariant sheaves

In this first section, we review some basic facts about equivariant sheaves. There are at least
three different definitions of an equivariant sheaf that we shall review, which are equivalent
in case the acting group is discrete. A standard reference for this topic is [BL94].

We fix a topological group G, a G-space X, with anti-action map a : G x X — X given
by (g,7) +— g 'x. Definep: Gx X — X by p(g,2) =x and ¢t : X — G x X by «(z) = (1, )
and define the following maps

GxGxX L GxX GxGxX % GxXx GxGxX 5 GxX
(g:h,x) = (hg 'x) (g, h,x) = (gh,z) (g:h,x) = (g,7)

In [BL94], these maps are respectively called dy, d; and ds and are viewed as the first face
maps of the simplicial set X//G = EG xg X. We can now define what is meant by an
equivariant sheaf.

Definition 1.0.1 ((BL94, §0.2]). Let X be a G-space.

1. A G-equivariant sheaf on X is a pair (F,0) where F € Ab(X) is an abelian sheaf on
X and 0 is an isomorphism
0:p*F > a*F
such that
nNQon™ 0 =p*0 and 0 =idr.
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2. We say that a morphism f : (F,07) — (G,09) between equivariant sheaves is a mor-
phism of equivariant sheaves if the following square is commutative

0F

p*F ——a*F

p*fl la*f

* *
PG —5=a'g
3. The subcategory of Ab(X) whose objects are equivariant sheaves and whose maps are
morphisms of equivariant sheaves is denoted by Abg(X).

Remark 1.0.2. In [Let05, Proposition 4.2.7], it is proved that if G is connected, then the
category Abg(X) is a full subcategory of Ab(X). In other words, for a sheaf F € Ab(X),
if there exists some isomorphism 0 : p*F = a*F satisfying the conditions of the previous
definition, then it must be unique. Hence in this case, the fact of being “equivariant” for a
sheaf is more like a property of the sheaf, rather than an additional structure.

This definition is as general as possible, though not very handy. However, one has the
following result:

Proposition 1.0.3. Let G be a topological group, X be a G-space and F be an abelian sheaf
on X. Then, the following first condition implies the other two, which are equivalent to each
other:

(i) There exists an isomorphism 6 : p*F — a*F such that (F,0) is an equivariant sheaf
on X,

(it) There are isomorphisms og @ F 5 g*F for all g € G, verifying the cocycle condition

Vg,h € G, agy, =h*(ag)oay and oq =idF,

(iii) The group G acts on the espace étalé Et(F) and the projection Et(F) — X is a
G-bundle.

In the second statement, a morphism of sheaves f : F — G is G-equivariant ifagof =g*(f)o
agf for all g € G and in the third statement, f is a G-equivariant if Et(f) : Et(F) — Et(G)
18 a homomorphism of G-bundles.

Moreover, if the group G is discrete, then the three conditions above are equivalent.

Proof. First, we prove that (ii) < (i4i). So assume that we have isomorphisms «y :
F — g*F satisfying the cocycle condition. Recall that, set-theoretically we have Et(F) =
[l,ex Fz- Given x € X and g € G, we can consider the homomorphism between stalks
(ag)z : Fo — (9" F)g = Fye and these induce a continuous map ay : Et(F) — Et(F). The
cocycle condition applied to the stalks at = gives the identity (cgn )z = (0g)ne © (), hence
Qgh = g o ay and the fact that oy = idr gives of course a1 = idgy(r). This makes Et(F)
into a G-space. Note that, by construction, if ¢ : Et(F) — X denotes the projection, then
we have g o ay = a(g™!,—) o ¢ so that Et(F) — X is indeed a G-bundle. Moreover, if

two sheaves F and G verify condition (i7) and if f : F — G verifies ozg of =g*(f)o a; ,
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then reading this equation on stalks shows that Et(f) : Et(F) — Et(G) is a G-bundle
homomorphism.

Conversely, suppose that Et(F) is equipped with the structure of a G-bundle. Given
g € G, we have to define an isomorphism «g4. Note that for any sheaf & € Ab(X), as
g =a(g,—): X — X is a homeomorphism, the presheaf

Ur lim &(V)=¢E(gU)
VDg(U)

is a sheaf, so the inverse image ¢*€ is given by (¢*€)(U) = &£(gU). Take an open subset
U C X. Since F(U) is the group of continuous local sections of ¢ : Et(F) — X,

FU)={¢:U—Et(F); qop =idy},

we may define ay(U) at a local section ¢ as

@)= (% 2 0.

r = gplgT e

It is straightforward, using the fact that g sends a stalk F; to Fg,, to check that oy (U)(p) €
F(gU) = (¢* F)(U) and that this induces a homomorphism of sheaves ay : F — ¢*F and it
is clear that a; = idr. We have to verify the cocycle condition. Interpreting the stalk at
x € X as germs of sections around z, we find that (ay), : Fr — Fyq is given by the action of
g on F,. Thus, we have (h*(ag)oan)s = (ag)hzo(an)zs = (agn), and thus h*(ay)oay, = agp,
as required. Furthermore, if a morphism f : F — G between sheaves verifying (iii) induces
a homomorphism of G-bundles Et(F) — Et(G), then we have

Vg € G, Vx € X, (045 o f)e= (ag)x o fu=1(9)s0 fo = fgz0(9)a = (g"(f) Oa;)za
and thus ag of=g*(f) oa;.

Now, we prove (i) = (ii). For g € G, define the map

¢+ X — GxX
r — (9,7)

and define also g := (15;,10. Since qﬁ;,lp* = (pgpy-—1)* = idr and d)Z,la* = (agy—1)" = g,
this gives a morphism F — ¢g*F and since ¢1 = ¢, we have that oy = +*0 = idr. Now, given
g,h € G and = € X, we compute

(agn = h¥(ag) © an)e = (¢(ypy-10)e = (¢g-10)ha © (D-10)a = On-14-1 2) = O(g=1 ha) © O (1.2

= (M*H)(hfl,gfl,x) - (n*e)(hfl,gfl,x) © (W*Q)(hfl,gfl,x) = (:U*Q - 77*9 ° W*H)(hfl,gfl,m)a

so if u*0 = n*0 o m*0, then «, satisfies the cocycle condition. Moreover, if f: F — G is a
morphism of equivariant sheaves, then we have

Vge G, Yz e X, (¢°(f) o agf - ag of)e=(a*fob” —09 P f)g-1,2)5
thus f verifies (i7) if and only if it is a morphism of equivariant sheaves.

Finally, suppose (ii) and that G is discrete. We have to define 6 : p*F — a*F. Since
p*F € Ab(G x X), it suffices to define (2 x U) for 2 C G and U C X two open subsets.
As G is discrete, using coproducts we may assume that Q = {g} is a singleton. Denote

42



by (p*F)~ the presheaf U — lim F(V), so that p*F is the sheafification of (p*F)~.

Consider

Vop(U)

* — @ 71(U) — *
(" F) ({9} x U) = F(U) — " F(g~'U) = (a"F){g} x U).
This gives a map (p*F)~ — a*F and the universal property of the sheafification yields a
map ¢ : p*F — a*F. We have 0, ,) = (ag-1); so 0 is an isomorphism and the following
equation still holds

Vg,h € G, Vz € X, (1“’*9 - 77*9 ° 7-‘-*9)(h*1,g*1,z) = (agh - h*(ag) ° ah):m

showing that p*0 = %6 o 7*0 and the fact that 0(; ;) = (1), = id ensures that :*0 = idr
and this finishes the proof. O

Remark 1.0.4. In general, if F € Abg(X) is an equivariant sheaf on X, then T'(X, F) is
naturally a Z[G]-module through the following composition of isomorphisms

a* —1
rx,F) e x x,aF) ") 16 x X, p"F) = Z[G] 91 T(X, F).

More generally, if U C X is open, then we have a map
Z|G)« T'(U,F) — I'(gU, F),
this can be seen using the condition (ii) in the above Proposition. Hence, we obtain a functor
I'X,—): Abg(X) — Z[G]-Mod.
Notice that this can be extended to any (commutative) coefficient ring k.

Proposition 1.0.5. Let G be a discrete group and X be a paracompact locally contractible
G-space. The singular cochains restricted to open subsets of X gives a complex of presheaves
C* on X. We denote by C* its sheafification. Then, C* is a flasque resolution of the constant
sheaf Z in Abg(X).

Proof. For an open subset U C X, the presheaf C"(U) is defined by C"(U) := Homz(C,(U), Z)
where C,(U) = Z (A™ — U) is the group of singular chains in U. The restriction maps being
obvious, this defines a presheaf C™ on X and singular differentials yield that C* is a complex
of abelian presheaves on X. The sheafification of this complex is C*. The fact that this
gives a resolution of the constant sheaf Z is well-known, see for instance [Bre97, Theorem
IT1.1.1]. We have to see that Z and C™ are naturally equivariant sheaves and that the com-
plex C* is a complex in Abg(X). For every x € X, we have Z, = Z, so Et(Z) =[], Z and
we may simply consider the trivial action of G on Z and extend it to an action on Et(Z).
This endows Z with the structure of an equivariant sheaf on X. Now, G acts naturally
on singular chains, sending a local singular simplex ¢ : A" — U to go : A" — gU simply
defined by (go)(x) := g - o(x). This induces a map g- : C"(U) — C"(gU) which in turn,
by sheafification, yields a map o4 : C" — ¢*C" and we immediately see that « satisfies
the cocycle condition. As G is discrete, this gives an equivariant structure to C". Now, by

construction of C™"(U) — C"(gU), we see that the singular differential C™(U) <, cHi ()
fits into a commutative square

c(U) c"(gU)

| Ja

Cn—l—l (U) s Cn—i—l (gU)

and hence, the differential d : C* — C™*! is a morphism of equivariant sheaves. O
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Definition 1.0.6. If X is a G-space, with G a discrete group, then the equivariant derived
category D¢ (X) is the derived category of the abelian category of equivariant sheaves on X

Da(X) := D(Abg (X)),
We can similarly define the bounded equivariant derived category D%(X) := D?(Abg(X)).

Remark 1.0.7. We still can define the derived equivariant category in the general case
where G is not supposed to be discrete, but this is far more subtle. In this context, one needs
to use n-acyclic resolutions of X and define Dg(X) as a limit (see (BL94, I §2]). It is worth
noticing that, if the G-space X 1is free, then we have a natural derived equivalence

Da(X) ~ D(X/G).

Corollary 1.0.8. If G is a discrete group and if X is a G-space, then the constant sheaf Z
18 naturally endowed with the structure of a G-equivariant sheaf on X and, denoting by C*
the sheafification of the local singular cochain complex, in the equivariant derived category
Da(X), one can compute the total derived global section functor on Z as

RT(X,Z) =T(X,C*) € D*(Z[G)).

Proof. This is clear using the Proposition and the fact that flasque sheaves are acyclic
for T'(X, —). O

2 Equivariant cellular and simplicial structures

2.1 Definitions of equivariant structures and related (co)chain complexes

In this section we recall the definition of a G-CW-complex X, for a given group G. We shall
be most interested in the case where G is discrete, or even finite since we are dealing with
at most extended affine Weyl groups. For more on G-CW-complexes and their use in the
homotopy theory of G-spaces, see [May93|, [Shal0] or [Die87].

The notion of G-CW-complex was first introduced in [Bre67| for discrete groups and
later generalized to arbitrary groups in [Mat71].

Definition 2.1.1. Let G be a topological group and X be a G-space.

1. The G-space X is a G-CW-complex if X is the colimit X = l'i)nneN X, of G-spaces
X, with inclusions i, : X, — Xp4+1 such that Xy is a disjoint union of orbits G/H
(for H < G a closed subgroup) and X, is obtained from X, _1 by attaching equivariant
n-cells G/H x D" via G-maps G/H x S*~! — X,,_1 (D" and S ! are considered as

trivial G-spaces) as in the following pushout diagram

[Tie; G/Hi % Sl —— X,

l_ [inl

Xn

[Lic; G/Hi x D"
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2.1 Definitions of equivariant structures and related (co)chain complexes

2. If X is a CW-complex, we say that it is a G-cellular CW-complex if G acts on the set
of n-cells of X for all n and if, as soon as g € G lets a cell globally invariant, then it
restricts to the identity on this cell.

Remark 2.1.2. Any G-map ¢ : G/H x S" — X determines a map ¢ : S* — XH by
letting ¢'(x) := ¢(H, ) and conversely, one has ¢(gH,x) = g¢'(x). This allows sometimes
to reduce the equivariant theory to the non-equivariant case.

Proposition 2.1.3 (/Die87, Propositions 1.15 and 1.16 and Exercise 1.17 (2)]). Let G be
a discrete group and let X be a G-space.

1. If X is a G-cellular CW-complex, then it is also a G-CW-complex with the same
skeleton.

2. Let H < G be a subgroup of G. If X is a G-CW-complex, then considered as an
H-space, is a H-CW-complex with the same skeleton.

3. In particular, the two notions of G-cellular CW-complex and G-CW-complex coincide.

4. If X is a G-CW-complex with n-skeleton X,, such that the orbit space X/G is Haus-
dorff, then X/G is a CW-complex with n-skeleton X,,/G.

Of course, we have a simplicial version of this notion:

Definition 2.1.4. Let G be a topological group. A G-simplicial complex is a simplicial
complex (V,X) such that V' and ¥ are G-sets and such that for S € ¥ and g € Gg, we have
guv="uv forallves.

Of course, for a discrete group G, the geometric realization |V| of a G-simplicial complex
is a regular G-CW-complex. Here, the term regular means that the closure of each cell in
|V'| is homeomorphic to a closed ball.

Lemma 2.1.5 ([Wan80, Lemma 4.3]). For a topological group G, any G-CW-complex is
G-homotopy equivalent to a colimit of finite dimensional G-simplicial complexes.

Though hard to determine explicitly, equivariant cellular structures arise frequently.

Proposition 2.1.6 (/Mat75, Proposition 0.5]). If G is a compact Lie group, then any
compact G-manifold has a finite G-equivariant CW-complex structure.

For a given CW-complex X, we can consider its cellular homology chain complex CM(X,Z),
where each C2 (X, Z) = @, Ze; with e; the n-cells of X (see [Hat02]). If X is a G-CW-
complex (with G discrete), then its cellular chain complex C¢(X,Z) becomes a chain
complex of Z[G]-modules, which we denote by C®(X,G;Z) if the acting group G is am-
biguous. Moreover, if &, is the (possibly infinite) set of n-cells of X, with n € N, then G
acts on &, and the Z-module C<®"(X,7) is free with basis &,, i.e.

cell(X,72) = ZIE,).

This means by definition that C<(X, G;7Z) is a permutation module. Furthermore, decom-
posing &, = | |, G/H; into orbits, we have

CeN(X, G5 Z) ~ @D ZIG/Hi),
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2.1 Definitions of equivariant structures and related (co)chain complexes

where H; runs through a representative set of stabilizers of n-cells of X. Since the action
of G on X is cellular, this implies that each H; is in fact the stabilizer of any point of the
corresponding cell.

We may describe the dual complex C% (X, G;Z) in a similar way, but we have to take
care of the dualisation when the number of cells is infinite. For an arbitrary set .S, we denote
by Z[[S]] the set of families x = (z5)ses of integers, indexed by S. It will be convenient to
prefer the formal notation = ) ¢ x,s. Notice that, for an arbitrary group G and H < G,

we have a canonical isomorphism of right Z[G]-modules

Z|G/H])Y € Hom(Z[G/H],Z) — Z[[H\G]]
(gH)* —  Hg™!

and this yields an isomorphism Z[G/H]Y — Z[H\G] in case H is of finite index. This allows
to give a general description for the homogeneous components of the dual complex:

Cr (X, G 7)) = HZ [H\G]]

where the H;’s are as above. This is indeed a right Z[G]-module, but it is a permutation
module only when the number of cells is finite. If we only suppose G finite, then it is a
product of permutation modules.

Summarizing, we have obtained the following standard result, which is a cellular version
of |Ric94, Theorem 3.2]:

Proposition 2.1.7. Let G be a discrete group and X be a G-CW-complex. Then the cellular
homology chain complex CN(X,G;7Z) is a chain complex of permutation Z[G]-modules,
each of which being of the form Z|G/H| where H runs through the stabilizers of points of
X. In particular, if the G-space X is free, then C<"(X,G;Z) is a chain complex of free
Z|G]-modules.

We also have the following version of |Ric94), Corollary 3.3], which roughly says that, if
we have some restrictions on the subgroups of G that can occur as point stabilizers of X,
then we get some conditions on the modules that can appear in C<(X, G;Z).

Recall that for a subgroup H < G, a Z[G]-module M is said to be relatively H -projective
if every epimorphism of Z[G]-modules A — M that splits in Z[H]-Mod, splits in Z|G]-Mod
as well.

Corollary 2.1.8. Let G be a discrete group and X be a G-CW-complex. Assume that the
stabilizer of every point of X is conjugate to some fized subgroup H < G. Then, every ho-
mogeneous component of the complex C<VN (X, G;Z) is a direct sum of relatively H-projective
modules.

Proof. For a G-set S, we denote by G the stabilizer of s € S. Notice that, since G acts
cellularly on X, if e € &, is an n-cell of X and if x € e, then G, = GG,. Thus, the module
CeN(X,G;7) is a direct sum of modules of the form Z[G/G.], where e € &,. Thus, it
suffices to prove that each Z[G/G.] is relatively H-projective. By hypothesis, there exists
g € G such that gG.¢g~' < H and we have

ZIG/Ge] ~ ZIG/(9Geg™ )],
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2.1 Definitions of equivariant structures and related (co)chain complexes

so we may assume that K := G, < H.

Suppose that 7 : A — Z[G/K] is a Z|G]-linear map and let s : Z[G/K| — A be a Z[H]-
section of 7. Since K < H, the element z := s(1K) is in AX and we may define 5 : Z[G /K] —
A by 5(g9K) := gx. This is well-defined since z € AX and 5 € Homy g (Z|G/K], A) by
construction. It is now clear that s is a Z|G]-section of . O

We shall see the link between the complex C? (X, G;Z) and the complex RI'(X,Z) €
DY(Z[G]) introduced in the previous section. Note that we have chosen to work with coeffi-
cients in Z, but the same arguments apply with any ring.

Given a CW-complex X, it is well-known that the resulting chain complex C¢ (X, 7Z)
is homotopy equivalent to the singular chain complex C.(X,Z). This relies on the fact
that they are quasi-isomorphic (see for instance [Hat02, Theorem 2.35]) and that quasi-
isomorphic bounded below complexes of free modules are homotopy equivalent. Indeed, one
may construct a homotopy inverse using bases of the free modules.

In the equivariant setting, if the action of G on X is not free, then the induced Z[G]-
modules C,,(X,Z) are not free neither. However, the result is still true. First, let us recall
the equivariant versions of Whitehead’s theorem and the cellular approximation theorem.

Theorem 2.1.9 (/Die87, II, §2, Theorem 2.1 and Proposition 2.7]). Let G be a locally
compact (Hausdorff) group.

1. If f: X =Y is a G-map between G-CW-complezxes, then f is G-homotopy equivalent
to a G-cellular map f': X — 'Y (cellular meaning that f'(X,) C Y, for all n).

2. Let f: X — Y be a G-map between G-CW-complexes. For a closed subgroup H < G, f
induces a map between H -fized points f7 : X — YH  If f1 is a (classical) homotopy
equivalence for every closed subgroup H < G, then f is a G-homotopy equivalence.

Theorem 2.1.10. Let G be a discrete group and X be a G-CW-complex. Then, the cel-
lular homology chain complex CN X, G;7Z) and the singular chain complex C.(X,7Z) are
complexes of Z[G|-modules which are isomorphic in the homotopy category KCyp(Z[G)).

Proof. We first give some reminders on the classical (non-equivariant) case. Recall that the
category sSet (resp. Top) of simplicial sets (resp. of topological spaces) is endowed with
the structure of a model category with fibrations being Kan fibrations, cofibrations being
monomorphisms and weak equivalences being simplicial maps inducing a topological weak
equivalence between realizations (resp. with fibrations being Serre fibrations, cofibrations
being retracts of relative CW-complexes and weak equivalences being maps inducing isomor-
phisms on all homotopy groups). In this context, we have a Quillen adjunction (see |GJ99,
Proposition 2.2]) |- | - Sing, with | - | : sSet — Top being the geometric realization of a
simplicial set and Sing(X) being the total singular set of a topological space X, that is, the
simplicial set with Hom (A", X') as n-simplices. In fact, this is a Quillen equivalence ([GJ99,
Theorem 11.4]). This implies that, for a space X, the counit of the Quillen adjunction

|Sing(X)| =5 X

is a weak equivalence. Denote I'X := |Sing(X)|. Since Sing(X) is a simplicial set, ' X is a
CW-complex, with n-cells given by non-degenerate singular n-simplices of X (see [May99,
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2.1 Definitions of equivariant structures and related (co)chain complexes

Chap. 16, §2]), hence there is a natural isomorphism of chain complexes of abelian groups
ce(TX,7) = C.(X, 7).

In fact, I'X is a fibrant replacement of X in Top. On the other hand, if X is already a
CW-complex, then by Whitehead’s theorem (|[Hat02, Theorem 4.5]), the map ¢ : I'X — X
is a (strong) homotopy equivalence. Furthermore, by the cellular approximation theorem
([Hat02, Theorem 4.8]), there exists a cellular map ¢ : T'X — X which is a homotopy
equivalence. Hence this map &’ induces a homotopy equivalence between complexes

Ccell(E/) . C:ell(FX, Z) N C:ell(X’ Z)
and thus, we obtain a homotopy equivalence of chain complexes

C.(X,7) — C<N(X, 7).

We can do the same for a G-CW-complex X. Let H < G be a subgroup of G. Then we
have Sing(X)# = Sing(X*). Indeed, since G acts on a singular simplex o : A" — X by
(go)(x) := go(x), it is clear that o : A™ — X is H-invariant if and only if it factors through
o : A" — XH . Hence, we also have (T'X) = |Sing(X)| = |Sing(X)¥| = |Sing(X#)| =
I'(XH). By naturality of ex, we have a commutative square

|Sing(X )| [Sing(X)]

e l leX

X - X

that is,
(IX)—=TX

X o x
Now, since (I'X)? = I'(XH) X5 XH s a weak homotopy equivalence between CW-
complexes, it is a homotopy equivalence. Since this is true for every subgroup H < G,
the equivariant Whitehead theorem m (2) ensures that ex : X — X is a G-homotopy
equivalence. If we denote by n : X — I'X its G-homotopy inverse, then by (1) of the
Theorem m we may find cellular maps ¢ : X — X and ' : X — I'X that are homo-
topy equivalent to € and 7, respectively. Then, ¢ : I'X — X is a G-cellular G-homotopy
equivalence, with G-homotopy inverse n’. Hence, we obtain a Z[G]-homotopy equivalence
of complexes

cel(e) : CeNIX, G5 Z) — CfN(X, G; Z).

Now, since C,(X,Z) is naturally isomorphic to C(T'X, G;Z), this isomorphism is thus
an isomorphism of complexes of Z[G]-modules. Thus, we have obtained a Z[G]-homotopy
equivalence

C.(X,Z) — CNI'X,G;2) — CNX,G; 7),

as claimed. O

Combining this result and the Corollary yields the following result:
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Corollary 2.1.11. Let G be a discrete group and X be a G-CW-complex. Then, the asso-
ciated cellular chain complex CV(X, G;Z) is isomorphic to the singular complex Cy(X,Z)
in the homotopy category Ky(Z|G]). By duality, the same holds for the cellular cochain
complex. Moreover, one has

RT(X,Z) = C*(X,Z) = C!(X,G;Z) in D(Z|G)).

cell

In particular, any G-CW-structure on X gives a cellular cochain complex which is well-
defined up to isomorphism in K(Z[G)) (i.e. is independent of the chosen structure, up to
equivariant homotopy) and computes the derived functor RT(X,Z) in D*(Z[G]).

Proof. The only thing left to be proven is the fact that the sheafification morphism
C*(X,Z) 5 T(X,C")

is an equivariant quasi-isomorphism. The fact that it is G-equivariant is quite clear by
definition of the action of G on singular chains and on I'(X,C*). To prove that it is a quasi-
isomorphism, we use an argument due to Ramanan (see [Ram05, Chapter 4, Proposition
4.12]). First, note that we have an isomorphism of abelian groups

I(X,C") ~ C™"(X)/C™(X)o,
where
C™"(X)o :={p € C"(X) ; IV = (Vi)ier open cover such that ¢|c, ;) =0, Vi € I}.

Furthermore, for an open cover U = (U;)icr of X, if CJj(X) denote the group of U-small
n-cochains of X (that is, the dual of the group of U-small n-chains), we have an obvious
(surjective) morphism my : C*(X) — Cpy(X), which is a homotopy equivalence (see [Vic94,
Appendix I, Theorem 1.14]). Hence we have a short exact sequence of complexes

0 — ker myy — C*(X) —4> O (X) —=0

The fact that my is a homotopy equivalence shows that kerm;, is exact. Hence, taking
the colimit over all open covers of X, ordered by refinement, yields and exact sequence of

complexes
0—— l'i>nker7ru —C"(X)——C*"(X)/C*"(X)g——=0

and since H*(limkerm,) = lim H*(kerm,) = 0, we obtain that the projection C*(X) —
C*(X)/C*(X)p is a quasi-isomorphism. O

2.2 Compatibility with subgroups and quotients

As in [Ric94, Theorem 4.1}, we have a compatibility result for C (X, G;Z) with respect

to quotient and fixed points. First, recall the notion of the (co)invariant module of a Z[G]-
module.

Definition 2.2.1. Let G be a finite group and M a Z[G]-module.

e The module of invariants of M is the abelian group

MC :={me M ; gm=m, Yg € G} ~ Homyq(Z, M).
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2.2 Compatibility with subgroups and quotients

e The module of coinvariants is the abelian group
Mg :=M/(gm —m, me M, g € G) =7 ®zq M.

Remark 2.2.2. Observe that for any Z|G)-module M, the dual group M is naturally a
Z[G]-module and we have an natural isomorphism of abelian groups (MY)% ~ (Mg)V.

Lemma 2.2.3. Let G be a finite group, S be a G-set and denote by p : S — S/G the natural
projection. Then the free Z-module Z[S] generated by S is a permutation Z|G]-module and
the map
2US)g = Zogy 2IS] 2> ZIS/G]
1®s — p(s)

s an isomorphism.

Proof. Observe first that the map p : S — S/G induces a map Z[S] — Z[S/G] which factors
through p, : Z[S]¢ — Z[S/G]. On the other hand, if ¢ € S/G, there is some s € S such that
t = p(s) and we may define ¢.(t) := 1 ® s. This is well-defined because if p(s) = p(s’), then
s'=gsforsomege Gand 1®s' =1®¢gs = (¢g-1)®s = 1®s. Then we have p,q. = idys/qy
and g.p« = idg|g),, proving that p. is an isomorphism. ]

Proposition 2.2.4. Let G be a finite group, H < G be a subgroup and X be a G-CW-
complex. If the orbit space X/H is Hausdorff, then it is naturally endowed with the structure
of a Ng(H)-CW-complex and the projection map m: X — X/H induces isomorphisms

Tt CSNX, G Z) g = CNX/H,Ng(H);Z) in Chso(Z[Ng(H)])

and
. C*

cell

(X/H,Ng(H);Z) = C,

(X, G;Z2)! in Coch?®(Z[Ng(H))).

Proof. Since X is a G-CW-complex, by Proposition m (4), the orbit space X/H is a
CW-complex with n-skeleton X,,/H. Moreover, we see that Ng(H) (and Ng(H)/H) acts
on the n-cells of X/H, so this space is indeed a Ng(H)-CW-complex and 7 : X — X/H
is a Ng(H)-cellular map. Let &, be the set of n-cells of X. Since the action of G on X is
cellular, if e € &, is a cell of X, then 7(e) ~ e and so 7(e) is a cell in X/H. Moreover, every
n-cell of X/H may be obtained in this way and thus the set of n-cells of X/H is in natural
bijection with &,/H and the projection map &, — &,/H is given by 7. By the Lemma
[2.2.3] we obtain an isomorphism

T CNX, G2y = Z|Ex ]y = Z]E,/H] = C<Y(X/H,Ng(H); Z).

Moreover, 7* is a morphism of Z[Ng(H )]-modules because 7 : X — X/H is a morphism
of Ng(H)-spaces and since 7, : O (X,G;Z) — C®N(X/H,Ng(H);Z) is a morphism
of complexes, it is indeed an isomorphism in Chso(Z[Ng(H)]). The second statement is
dual. O

Remark 2.2.5. This result still holds for every G-space X, replacing CS (resp. Cr) by
the singular chain (resp. cochain) complex of X. For this, see [Wei94, Lemma 6.10.2] or
|Bro82, II, §2, Proposition 2.4].

Recall that if G acts on a set X and if N <G, then we may consider the deflation of X:

Defg y(X) := X/N,
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2.2 Compatibility with subgroups and quotients

with the induced action of G/N.

If 7: G — G/N is the projection map and if X = G/H is a transitive G-set, then we
have a canonical isomorphism of G/N-sets

Defgy(G/H) ~ x(G)/x(H).

This gives a functor Defg N G-Set — G/N-Set and linearizing it gives a commutative
square of functors

Defg/N
G-Set —— G /N-Set

|

Z|G]-Mod — Z|G/N]-Mod
Defg y

yielding the usual linear deflation

Def¢ )y : Z[G-Mod —  Z[G/N]-Mod
U — Un:=U/{(nu—u)

and we may extend this functor to (co)chain complex categories.

Lemma 2.2.6. Let G be a discrete group, written as a semi-direct product G = N x H
and X be an G-CW-complex. Denote by p : X — X/N and by m : G — H the natural

projections. If the quotient space X/N is Hausdorff, then it is an H-CW-complex such that,
for all k € N,

E(X/N) = {p(e), e € E(X)}

and the map m induces a natural isomorphism

C:EH(X/N,HQ Z) ~ Def% (C:ell(X, G;Z)) .

Proof. The map
E(X)/N — &(X/N) — &(X/N)/H
N-e p(e)

together with the decomposition G = N x H gives a natural bijection
E(X)/G = E(X/N)/H
and we have H,y =~ 7(G.), yielding the desired isomorphism. O

Remark 2.2.7. Similar arguments show that we may replace deflations in the previous
statement by inflation, restriction or induction. More precisely, letting G be finite again, if
N <G and if X is a G/N-CW-complez, then it is also a G-CW-complex by letting N act
trivially on X and we have

CN(X, G Z) = InfE (c;;e”(X, G/N; Z)) :
where Infg/N : Z|G/N]-Mod — Z[|G]-Mod is the linear inflation functor. Similarly, if
K < G is any subgroup and if X is a G-CW-complex, then it is trivially a K-CW-complex

for the restricted action and we have

C:ell(X, K’ Z) = ReS[G{ (Cfell ()(7 (;’7 Z)) .
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2.2 Compatibility with subgroups and quotients

Now, if X is a K-space, we may define Ind%(X) := G xxg X = (G x X)/K, see [Boul,
§2.3]. If X is a K-CW-complez with cells e, then this is a G-CW-complex with cells {g} X ke
for g € G and we get

Cce(nd$ (X), G; Z) = Ind§ (C,‘fe“(X, K; Z)) .
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Part II

Weyl-equivariant triangulations of tori of
compact Lie groups and related
W-dg-algebras

The material of this part and the next one is taken from |Gar21|. Our first purpose is to
define a W-equivariant simplicial structure on a maximal torus 7" in a semisimple compact
Lie group K, which we may in fact assume to be simple and W = N (T)/T is the Weyl
group. As the situation is totally encoded in the root datum of the pair (K,T), we will
adopt this vocabulary and work in the ambient space of the given root datum. In the
simply-connected case, a simplicial structure is constructed using the W,-triangulation of
the (dual of the) ambient space induced by the fundamental alcove, where W, is the affine
Weyl group. We describe the associated (co)chain complexes and give a formula for the cup

product in Corollary

Next, we study the general case and we prove that the barycentric subdivision of the
alcove gives a triangulation of the ambient space, which is equivariant for the extended affine
Weyl group. We also give a description of the resulting complexes and study an example.
As the computations may be heavy, we provide a GAP4 packageE] that can be used to define
the complexes.

3 The simply-connected case

3.1 Prerequisites: root data, affine Weyl group and alcoves

We start by briefly recalling some basic facts about root data and why this is the suitable
framework for our study. Standard references for what follows are [MT11] and [KKO05|.

Definition 3.1.1 (|[MT11, Definition 9.10]). A root datum is a quadruple (X,®,Y,®")
where

(RD1) the objects X and Y are free abelian groups of finite rank, together with a perfect
pairing (-,-) Y x X — 7Z,

(RD2) the subsets ® C X and ®' C Y are (abstract) reduced root systems in Z® @z R and
Z®V @7 R, respectively,

(RD3) there is a bijection ® — ® (denoted by o — ") such that (o, a) = 2 for every
a € P,

(RD/) the reflections s, of the root system ® and s,v of @V are respectively given by
Vo € X, sq(z) =z — (', z)

and
— \
Vy € Y7 Sav(y) =Y- <y,0&>0¢ :
“https://github.com/arthur-garnier/Salvetti-and-tori-complexes
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3.1 Prerequisites: root data, affine Weyl group and alcoves

The Weyl group W of the root system ® (which is isomorphic to the Weyl group of ® via
the map sq — Sqv ) is called the Weyl group of the root datum. Moreover, we say that the
root datum (X, ®,Y,®) is irreducible if the root system ® is.

For a root datum (X,®,Y,®"), we denote by V := Z® ®z R the ambient space and
V* = Z®" ®7 R. As usual, we denote by & C ® a set of positive roots and by II C &+
the corresponding set of simple roots. Define the fundamental weights w, € V, indexed by
a €11, by (8Y,@a) = 0a,p. Dually, the fundamental coweights are elements w,, € V* such
that (wy, B) = da,5. We also consider respectively

Q=20=FZacV and Q" :=22" =P Za’ CV*
acll a€cll

the root lattice and the coroot lattice of ®. Further, we have the respective weight lattice
and coweight lattice:

P:=Q")'={zeV;Vaecd, (a',z) eZ}:@Z%cV and PV ;:@ngcv*.
a€ll a€cll

Thus, the abelian group X is a W-lattice between ) and P and if we enumerate the simple
roots IT = {a1, ..., a,}, (n =dim(V)) and if C := (o, a;)) is the Cartan matrix of
®, then we have

1<i j<n

det(C) = [P:Q] = [PY : Q"].

Then, the Chevalley classification theorem (see [MT11, §9.2]) says that, given a con-
nected reductive (complex) group G and T a maximal torus of G, if ® denotes the root
system of (G, T), if X(T') := Hom(T, G,,(C)) and Y (T) := Hom(G,,(C),T) are the respec-
tive character and cocharacter lattice of T', then (X(T'),®,Y(T),®") is a root datum that
characterizes G (and T) up to isomorphism.

This is also true for Lie groups. Let K be a simple compact Lie group, T a maximal
torus of K, we denote by £ and t their respective Lie algebras. The complexification of ¢ is
the reductive complex algebra g := € + ¢t and h := t 4 it is a Cartan subalgebra of g. Let
® C bh* be the root system of (g,h), with simple system II. Since t = spang(ia")qacr, We
have ® C it* =: V (see [KKO05, §3.2] or [Zel73, §103]) and we may take

X(T)={d\:t—iR; A € Hom(T,S")} cit" =V

and Y(T) := X(T)" C V*, so that (X(T),®,Y(T),®") is a root datum. Since T is abelian,
the Weyl group W = W (®) ~ Ng(T)/T acts on T by conjugation by a representative in
the normalizer.

By [KKO05, Lemma 1], the normalized exponential map defines a W-isomorphism of Lie
groups
V)Y (T) —T. (1)

Moreover, we have the following isomorphisms

P/X(T)~m(K) and X(T)/Q ~ Z(K).

This shows that we may reformulate the initial problem as follows: given an irreducible
root datum (X,®,Y,®") with Weyl group W and ambient space V := Z® ®z R, find a
W-equivariant triangulation of the torus V*/Y. As mentioned above, this will depend on
the fundamental group P/X of the root datum.
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3.2 The W,-triangulation of V* associated to the fundamental alcove

Notation. Throughout this chapter we fix, once and for all, an irreducible root datum
(X,®,Y,®Y), with ambient space V.= Z® @ R, simple roots 11 C &+, Weyl group W =
($a, a € 1), fundamental (co)weights (wa)acn and (! )aecr, (co)root lattices Q and QY
and (co)weight lattices P and PV .

Recall that ® has a unique highest root, i.e. a positive root ag = Y ey et € d* such
that a < ap for all @ € ® (see [Hum72, §10.4, Lemma A] or [KanO1} §11.2]). We consider
the affine transformation

Sg = taB/SOfO A — Sao()\) + O[E)/ =\— (<A7 a0> - 1)()[5/

Then, the group W, := (sg, s1,...,s,) < Aff(V*) is a Coxeter group, called the affine Weyl
group. It splits as

Wy =0Q" xW.
Moreover, for o € ® and k € Z, we consider the affine hyperplanes H, i, := {A € V*; (A, o) =

k} and we call alcove any connected component of V*\ | ak Hak- The fundamental alcove
is

Ao={ eV *;VaecdT 0< (\a)<1}={AeV*; Vacll, (\,a) >0, (\ag) <1}.

Then, by [Bou02, V, §2.2, Corollaire], its closure is a standard simplex

v
Ay = conv <{0}U{wa} ):A"
Na acll

and by [Hum92, §4.5 and 4.8], Ao is a fundamental domain for W, in V* and moreover, W,
acts simply transitively on the set of open alcoves.

3.2 The W,-triangulation of VV* associated to the fundamental alcove

The problem of finding a W-equivariant triangulation of 7' = V*/Y lifts to finding a (Y xW)-
equivariant triangulation of V*. In the 1-connected case, we have Y = QY and QY x W =
Wa. As the alcove A is a fundamental domain for W, acting on V*, it suffices to have a
triangulation of Ay, which is compatible with the action of W, in the sense that if a face is
fixed globally by some w € W,, then w induces the identity on this face. The fundamental
result is the Theorem (or more precisely, its proof) from [Hum92| §4.8], which ensures that

the natural polytopal structure on the r-simplex Ag is Wy-equivariant.
Now we introduce some notation about faces of polytopes.

Given a polytope P C R" and an integer & > —1, we denote by Fi(P) the set of
k-dimensional faces of P. In particular, we have F_1(P) = {0}, Famp)(P) = {P},
Faimpy—1(P) is the set of facets of P and Fy(P) = vert(P) is its set of vertices. More-
over, we let F(P) := |J, Fx(P) be the face lattice of P. It is indeed a lattice for the
inclusion relation.

Notice that the above vocabulary also applies to a polytopal complexes, that is, a finite
family of polytopes glued together along common faces.

Resuming to root data, for each i € S := {1,...,n} we consider the hyperplane

Hi = Ha;0 = {)\ % ; <)‘> ai) = 0}
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3.2 The W,-triangulation of V* associated to the fundamental alcove

and
HO = Hao,l = {)\ eV* ; <)\, Oéo> = 1}

with ag = >, n;; the highest root. We also take the following notation for the vertices of
Ao, where i € S,

v
v; 1= Zi and vo := 0 so that vert(Ap) = {vo,v1,...,0n}.
n;

The hyperplanes H; for i € Sy := S U {0} give a complete set of bounding hyperplanes
for the n-simplex Ag. Furthermore, by definition, for every face f € Fy(Ap) there exists a
subset I C Sy of cardinality |I| = codimz;(f) =n — k such that

f=fr=An()H

icl

and we readily have
Vert(f[) = {Ui ;1€ So \ I}

Recall also that for i € Sy, denoting by s; the reflection with respect to the hyperplane
H;, we have s; = Say € W for i > 1 and sy = tagsag and the group W, is Coxeter, with
generating system {sg, s1,...,sp}. For I C Sp, we may consider the (standard) parabolic
subgroup (W,) of W, generated by the subset {s;, i € I'}. If 0 ¢ I, then (W,) is in fact a
parabolic subgroup of W.

Lemma 3.2.1. Let 0 < k <n and I C Sy with |I| =n — k. Then the stabilizer of the face
f1 € Fr.(Ap) is the parabolic subgroup of W, associated to I. In other words,

(Wa)fz = (Wa)r-

Proof. As vert(fr) = {v;, i ¢ I} is (W,)y,-stable, the Theorem from [Hum92, §4.8] ensures
that

(Wa)fz = ﬂ (Wa)vi-

1€So\!

Moreover, each group (W,),, is generated by the reflections it contains, so that v; € H;. A
reflection s; fixes 0 if and only if it is linear, so (Wa)y, = (si; i #0) = (Wa)s = W. Let

now j € S. Since
v
J

-
{vi} = {n} = ﬂ H;,
J j#£i€Sy
we have that s;(v;) = v; if and only if i € Sy \ {j} and hence, for every j € Sy, we have
(Wa)vj = (Wa)So\{j}
and thus

(Wa)s, = m (Wa)v;, = ﬂ Wa)sovtiy = Waln,,, soviiy = Wa)r-
i€So\I i€So\I
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3.2 The W,-triangulation of V* associated to the fundamental alcove

Hence, we have a triangulation

vi= I w@-f

fEF(Ao)
WEWa/(Wa)y

which is Wy-equivariant and following the notation from the beginning of this section, we
have & (V*)/W, = F(Ap) for all k. Therefore, we get isomorphisms of Z[W,]-modules

Clien(V*aWMZ): @ ZIWa/(Wa) ] = EB Z[Wa/(Wa)1]-

€FL (Ao ICSo
fEFL(Ao) T Snek

We have to fix an orientation of the cells in V* and determine their boundary. But each
one of them is a simplex, so its orientation is determined by an orientation on its vertices.
We choose to orient them as the index set (Sp, <). For I C Sy with corresponding k-face
fr=conv({v; ; i € Sp\ I}), we write

fr= [vj17"'7vjk+1] with {]1 < j2 < ...<jk+1}:SO\I

to make its orientation explicit. The oriented boundary of f; is then simply given by the
formula

k+1 k+1
Ok(f1) =D (1) [0jrr- s Tus - 0y ] = D (=D fruginy
u=1 u=1

=conv({v; ; juFj€So\I})

We have thus obtained the following result:

Theorem 3.2.2. The face lattice of the n-simplex Aq induces a W,-equivariant triangulation
of V*, whose cellular complex CN(V*, W,; Z) is given (in homogeneous degrees k and k—1)

by
)
@z @ ]
ICSo ICSy
[I|=n—k |[I|=n—k+1

where W ~ W,/(Wa)r is the Wa-set of minimal length left coset representatives, modulo
the parabolic subgroup (W,)r and boundaries are defined as follows: for k € N and I C Sy,

letting {j1 < -+ < jry1} = So \ 1,

k+1

(O0) wry = D_(=1)"Plugsy»

u=1
where, for I C J, p{, denotes the projection

Pl W= Wa)(Wa) —» Wa)(Wa)g = WY

a

Example 3.2.3. We look at the case of the group SU(3) in type As. We denote by & =
{xa,£8,£(a+ B)} a root system of type As, with simple system 11 = {«, }. The Figure
depicts the (dual) root system of type Az and its fundamental alcove. The chain complex
CNV* Wi Z) is readily given by

Z{Wa] —Z= Z{Wa/ (s5)] & ZIWa/ (s0)] & ZIWa/ (sa)] —>= ZIWa/ (s 55)] © ZIWa/ {55, 50)] ® ZIWa/ {sa, 50)] ,
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3.3 The W-dg-algebra structure

where the boundaries are

=011 -1),n=(0 -11

Applying the deflation functor Def%“, we obtain the complex CN(T,W;Z) where T =
S(U(1)3) < SU(3) as

—1 1 0

()

(1 1 -1)

ZIW/ (sp)] ® ZIW/ (sas85a)] ® LW/ (sa)]

(b) The resulting &3-
/ \ equivariant triangulation of
* * S(U)%) ~ (81)2.

(a) The fundamental alcove

Ap (in blue) in type Ag, and

its ©3-translates.

Figure 1: Triangulation of the torus S(U(1)3) of SU(3) from the fundamental alcove.

3.3 The W-dg-algebra structure

We now make the cup product on C<(V* W,; Z) more explicit. For a celle € O (V* W,; 7Z),
we denote by e* € C* ,(V*, Wy Z) = CN(V*, W,; Z)V its dual. Recall that the cup product

cell
of two (dual) simplices is given by the formula

[UO, .. ,uk]* U ['U(),. .. 7Ul]* = (51%’1,0[71,0, ey Uk, VT, ,UZ]*.

We may express this product on C(V* W,:Z) in terms of parabolic double cosets.
We write
Chaviwaz) = [ 2w/l =~ @ z[['wi]].
ICSy 1CSo
[I|=n—k [I|=n—k

where

Tw, L tw e W s L(siw) > Lw), Vi€ I} ~ (Wa)\Wa

is the set of minimal length right coset representatives. Recall the following general result
about double cosets:
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3.3 The W-dg-algebra structure

Lemma 3.3.1 ([BKPST16, §3, Proposition 2 and Corollary 3]). Let (W,S) be a Coxeter
system and I,J C S. Denote as usual

Whi={weW; l(ws) > l(w), Vs € I} =~ W/W,

W= {we W ; l(sw) > l(w), Vs € I} = W \W

and
JcI = W/ ={weWr; l(ws)>l(w), Vs € J} ~ W /Wj.

1. Each double coset in Wi\W/W; has a unique element of minimal length.

2. An element w € W is of minimal length in its double coset if and only if w € TW W/,
In particular, we have a bijection

WI\W/W; ~Twnw’.

3. As a consequence, if w € TW N WY and x € Wi, then zw € WY if and only if
T e WIme. Hence, we have the following property:

T = uwo,

Vo € WiwWy, 3(u,v) € Wi x Wy ; { 0(z) = 6(u) + 6(w) + £(v).

We can now formulate the main result:

Theorem 3.3.2. The Z[W,]-cochain complex C* ,(V*, Wa; Z) associated to the Wy-triangulation

cell
of V* is a ZL|W,]-dg-algebra with homogenous components

V0 <k <n, Cfell(v*7 Wa§Z) = @ Z [[(Wa)I\WaH = EB Z HIWaH

ICSo I1CSo
[I|l=n—k [I|l=n—k

and differentials defined, for any I C Sy and w € Wy, by
dk(lw) _ Z (_1)u6§\{j}w

0<u<k+1
Ju-1<j<ju
where {jo < -+ < jx} == So \ I and, by convention, j_1 = —1, jyo1 =n+1 and for J C I,

W, = {w € (Wa)r ; £(sjw) > l(w), Vj € J} and €] := Z e Z[TW,].

xE{Wa

Moreover, the cup product

CP(V*, W Z) @ O

cell cell

(V*, Wa; Z) — CPH(V* W, Z)
1s induced by the unique map

z[['Wa]] @ Z[['Wa]] — Z[["Wa]] .
satisfying the formula

IOJ(@y*l)Jy) if xy’l € (Wa)I(Wa>J7

I _
Y= 5max(15),min(ﬂ) X { 0 otherwise,

xU‘]

where C denotes the complementary of a subset in Sy and, given w € W,, we denote
by ""w € INW, its minimal length right coset representative and if (Wya)rw(Wy); =
(Wa)1(Wa).s, we let wy be the unique element v € (Wy) such that w = wv, withu € (W,)I"7
and l(w) = (u) + £(v).
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3.3 The W-dg-algebra structure

Proof. Take a k-simplex o = [jo, ..., ji] C Ap with j, € Sp and set j_1 := —1 and jp 1 =
n + 1. By definition of the cochain differential d¥, we have

k+1

V=D O (Do Gumtidodus- -l

u=0 jyu—1<Jj<Ju

Letting I := So \ {Jo,---,Jk}, we have (W)« = (Wa)s and the above formula reads

d"(Wa)r - D = Z Z (=D"“((Wa)ngy - D).

u=0 ju71 <j <ju

Therefore, as Ajp is a fundamental domain for W, in V*, this yields

(W)= > > DU (Wa)ngy-w) |

0<un+1—[I] \ ,,e\idy,
Ju—1<G<ju 1

which leads to the stated formula.

To compute the cup product, using the bijection W, ~ (W,);\Wa, the stated formula
is
(Wa) 12 U (Wa) 7Y = Sy 18 min SO g1 (Wa) 1, (W) (W), (Wa) 10 (2™ 1) 1)
Let z,y € W,. As W, acts simplicially on Ay, we have

(Wa)fx U (Wa)Jy = ((Wa)lxyil U (Wa)J>Z/7
hence we may assume that y = 1 and we just have to compute (Wy)rw U (Wa) .

First, we compute o* U 7* for 0,7 C Ag. As Ay ~ A" is a simplex, we may write
o = [io, ... iq) with a = dimeo and IC := {ig,...,is} C vert(Ay) ~ So. Write similarly
7 = [jo, -, Jb]. We have (W), = (Wa)So\{io,...,ia} = (Wa)r, (Wa)r = (Wa), and

o UT" =64y jolios - - - s 8as iy - -5 Jb)

and the stabilizer in W, of this last dual cell is (Wa) s\ fio,....iauj1,...js} = (Wa)1ns. Moreover,
if 0* UT* # 0 then we must have i, = jo, that is, max(I®) = min(J¥). We make this

assumption for the rest of this proof and we have indeed

o UT = (Wa)r U W)y = (Wa)in.

Claim: For 7 C Ay a simplex and P € Fj(V*) a k-cell of V*, if 7 C P then P €
(Wa)r - Fi.(Ao).

Indeed, we may assume that dim P = n = dim Ap so that there is some z € W, such
that P = z(Ap) and so 7 C Ag N 2(Ap), thus z € (W,), (see [Hum92, §4.8]).

We are left to compute o*w U 7* for w € W,. If o*w U 7* # 0, then w0 and 7
are included is some common simplex P € Fj(V*) and by the claim we may choose w, €
(Wa)r = (Wa) s such that w™to C w,(Ap). But then o C AgNww,(Ap) and so w,o = w™ 0.
This yields

* * _ _*x —1 * _ _*x  —1 * o —1 _ * * -1 _ —1
crwUT  =c*w Ut  =c*w Ut 'w, = (6" Ut w; = (Wa)ing - w;
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3.3 The W-dg-algebra structure

Furthermore, if 0*w U 7% # 0 then we must have ww,; € (Wy)r, so w € (Wa)(Wa)s. In
this case, the parabolic double coset decomposition from Lemma applied to the trivial
double coset (W,)rw(W,) s allows one to write uniquely w as w = ww; with u € (Wa)fm‘]
and wy € (Wa)y such that f(w) = £(u) + ¢(wy). We obtain wyw, € (W,); as well as

wyw, = u tww, € (W,)r. Hence wyw, € (Wa); N (Wa)s = (Wa)ns and

cFwUT = (Wa)ing - wot = (Wa)ing - wy.

The only thing remaining to be proved is that the formula

! { 0 (wy=1)y) i ay™ € (Wa)r(Wa),
0

J, _
TUY = O (18) min(8) ¥ otherwise,
indeed induces a well-defined map Z HI Wa]] ® Z HJ Wa]] — 7 HI nJ Wa]] To see this, we
show that for a given z € "/, there are only finitely many pairs (‘z,”y) for which
z =Tz Uy, Indeed, given =,y € W,, if 2’9/ € W, are such that ‘o U7y = T2/ U7y, then
(xy~Y) sy and (2'y'~1) sy’ are in the same class modulo (W,);ns, hence in the same class
modulo (W,); and therefore 7y = 73/. Since (W,); is finite, there are only finitely many
possibilities for ¢’ and the same goes for 2’ € (Wa)1(Wa)y'. Therefore, if a = Y7 1y, az
and b = ZyeJWa byy with a,,b, € Z (we use the formal series notation for simplicity), we
can define

aUb = azby, | z.
) > Y

2€INIW, \ (z,)e IWaxJWa
rUy=z

It is obvious that this is the only way of defining a bilinear map Z HIWaH X 7, H‘]Wa]] —
Z [[I nJ Wa]] satisfying the stated formula. O

Corollary 3.3.3. The Z[W]-cochain complex C?,,(T, W3 Z) associated to the W -triangulation
of T =V*/QV induced by the W,-triangulation of V* is given by

CCH(T W Z) Def%a( CCH(V* Wa7Z))

In other words, if m: Wy — W is the projection, then

Con@.W;Z)y= @ Z[r ~ P Zx(Wa))\W],
1CSo I1CSo
[I|=n—k [I|=n—k

with differentials given, for any I C Sy and w € Wy, by

d*(r(lw)) = Z (=1)%nm (eﬁ\{j}w> , €] = x
O<usktl 2€]Wa
Ju—-1<J<Ju

where {jo < ---jx} = So \ I. Its product is given by the formula

s I T (m‘]((:vyfl)(jy)) if vyt € (Wa)1(Wa)y
ﬂ-( (L’) U 7T( y) - 5max(lc),min(JC) X { 0 otherwise.

In particular, we have

H*(C* (T, W;Z)) = H*(T,Z) = A*(P).

cell
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4 The general case

4.1 The fundamental group as symmetries of an alcove

The extended affine Weyl group V[/Zl := PV x W acts on alcoves (transitively since W, < T/T/7a
does) but not simply-transitively. We introduce the stabilizer

Q= {@ € W, ; ©(Ao) = Ao}
and we see that we have a decomposition I/I//\a ~ W, x  and in particular,
0~ VIZ/Wa ~ PY/QY ~ P/Q.

Thus, € is a finite abelian group. The following table details the fundamental groups of the
irreducible root systems:

’ Type \ Q~P/Q ‘
A, (n>1) Z/(n+1)Z
B, (n>2) 7./27
C (n > 3) 7J2Z

Do (n>2) | Z/22® Z)2Z
Dops1 (> 2) ZJAL
Fe ZJ3L
Er ZJ2Z
Fi 1
Fy 1
Go 1

Table 2: Fundamental groups of irreducible root systems

The description of Q given in [Bou02, VI, §2.3] is useful. Given the highest root ay =
2?21 n;a; of @, recall that a weight w; is called minuscule if n; = 1 and that minuscule
weights form a set of representatives of the non-trivial classes in P/@ (see [Bou02, Chapter
VI, Exercise 24]). Dually, we have the same notion and result for minuscule coweights. Let

M:={ieS;n; =1}

Proposition-Definition 4.1.1. (|Bou02, VI, §2.3, Proposition 6])

Let ag = ) ;g nicv; be the highest root of ® and wo € W be the longest element. Fori € S,
denote by W; < W the Weyl group of the subsystem of ® generated by {c; ; j # i} C IL.
Fori € M, let wi € W; be the longest element of W; and w; := wiwy.

Then the element twivwi S I/I//\a is in ) and the map

M — Q\ {1}

T o wi = tvw;
k2

s a bijection.

We now have to see what happens if the W-lattice Y is such that Q¥ C Y C PV. To
simplify notation of this section, we identify a lattice A C V* with its translation group
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4.2 A V[Z—triangulation of V* from the barycentric subdivision of an alcove

t(A) € Aff(V*) and for such a lattice A, we define the intermediate affine Weyl group
Wa := A x W. There is a correspondence between W-lattices Q¥ C A C PV and the
subgroups of 2. In order to state this correspondence properly, we temporarily drop the
letter Y and we work in the root system ® only. Though straightforward, the following
result is key:

Proposition 4.1.2. Recall that I/IZ ~ W, x Q and denote by

—

T W, —» Q
the natural projection. We have a bijective correspondence

{A: QVCACPYisaW-latticey <5 {H <Q}
A | QA = W(WA>
7 H(H)NPY =: A(H) — H

Moreover, for a W-lattice Q¥ C A C PV, we have
[Q:Qp] =[PY : A, equivalently, |Qx] = [A:Q"].
Finally, we have a decomposition

WAEWaXQA.

4.2 A I/I/Zl-triangulation of V* from the barycentric subdivision of an alcove

In order to obtain a Wy-triangulation of the torus V*/Y, we just have to exhibit an Qy-
triangulation of the alcove Ag. As the group Qy acts by affine automorphisms of Ay, the
construction follows from the next easy result about simplicial subdivisions.

Recall that, given a polytope P, its barycentric subdivision is the simplicial complex
Sd(P) whose k-simplices are increasing chains of non-empty faces of P of length k+1. A k-
simplex (fo, f1,- .., fx) of SA(P) may be geometrically realized as conv(bar(fy),...,bar(fx)),
where bar(f;) stands for the barycenter of the face f.

Lemma 4.2.1. If P is a polytope, then SA(P) is an Aut(P)-triangulation of P.

Proof. Tt is well-known that Sd(P) triangulates P and it is clear that I := Aut(P) permutes
the simplices of SA(P). We have to prove that, for a simplex o = (fo,..., fr) of Sd(P) and
v €T, if yo = o, then vz = z for each x € |o]|.

Take 0 <4 < k. The point bar(f;) is taken by y to some bar(f;) and since the barycenter
of a polytope lies in its relative interior, we have (f;) N fj # () (where ° is the relative
interior) and as 7y acts as an automorphism of P, this forces v(f;) = f; and dim(f;)
dim(y(f;)) = dim(f;). But the sequence (dim fo,...,dim fj) is increasing, so f; =
and bar(f;) = bar(f;) = y(bar(f;)). The conclusion now follows from the equality |o]
conv(bar(fo), ..., bar(fx)).

OnsSs

From this we deduce that W,-Sd(Ap) is a Wy-triangulation of V* for all QV C Y C PV at
once. We can describe the associated Z[Wy ]-complex C,(V*, Wy; Z) using the face lattice
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4.2 A @—triangulation of V* from the barycentric subdivision of an alcove

of Sd(Ap), but the description is rather tedious and not as nice as for the simply-connected
case, as the combinatorics of parabolic subgroups doesn’t make sense anymore.

There is a bijection vert(Ap) ~ Sp = {0,...,n} and Ay ~ A", so that the face lattice
of Ay is F(Ap) ~ (£(Sp),C). This gives a description of the face lattice of Sd(Ap): for
0 < d < n, we have

Fy(Sd(Ao) = {Ze = (Z0. 21, ... Za) 5 Vi, O # Zi C S0, Zi & Zisa}
and Z, C Z, if Z, is a subsequence of Z.

Lemma 4.2.2. The group y acts on Ao and this induces an action on So. The resulting
action on F(Sd(Ap)) corresponds to the action of Qy on |SA(Ay)| = Ag. Moreover, for
Ze € F4(Sd(Ap)), the stabilizer of Zs in Wy decomposes as

d
(Wy)ze = (Wa)ze @ () ze = Wa)spnz, @ )z, and (Qy)z, = () Q.
1=0

Type Extended Dynkin diagram Fundamental group Q < Aut(Dynking)
A X wy = (0,1)
1 0
0
_ N wi =(0,1,2,--- ,n)
Ap (n>2)
S - i ;
7 3 O R wi= (), 0<i<n
By=0Cy T3 wi = (0,2)
1
B (=9 %r e @ =0
0
~ |1]
Cu (n>3) T G A o ] wn=0.m) ] Gn—i)

1 m wi = (0,1)(2n — 1,2n)
Dan (n>2) }T <2 wap—1 = (0,2n — 1)(1,2n) H?’;;(i, 2n — 1)
0 2n—1 wan = (0,2n)(1,2n — 1) [T (4,20 — i) = wiwan—1
w1 = (0,1)(2n,2n + 1)

1 2n+1
Dopy1 (n>2) >3i <1 won = (0,2n,1,2n+ 1) [T1o(i,2n + 1 — 1)
0 2n wont1 = (0,2n+1,1,2n) [T7 5 (i, 2n + 1 — i)
0

wi = (0,1,6)(2,3,5)

o 2
we = (1,0,6)(3,2,5) = wi*

2
Er wr = (0,7)(1,6)(3,5)
2
Es o

_ . -
Fy 0 1 2~ 3 4 <
Gs s 2]
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4.2 A MZ—triangulation of V* from the barycentric subdivision of an alcove

Table 3: Extended Dynkin diagrams and fundamental groups elements, represented as per-
mutations of the nodes.

Proof. The first statement is obvious. Write Z, = (Zp C -+ € Z4) and let @ = ww; €
(Wy)z, with w € W, and w; € Qy. Then, for every x € |Z,|, we have w(z) = w(w;(z)) =«
and w;(z) € Ag so z = wj(z) and w; € (y)z,. On another hand we get w(z) = = so
w e (Wa)z..

Now, an element w € W, fixes Z, if and only if it fixes the maximal face of Z,, i.e. Zg.
This is indeed the parabolic subgroup (W,) So\z,- The last equality holds in general and is
straightforward. O

To avoid too many choices, we fix a total ordering < on F(Sd(Ap)). For instance, the
lexicographical order <, induced by the order on Z2(Sy) = 2% inherited from the natural
order on Sjy.

As the barycentric subdivision of Ay is simplicial, the boundaries of the complex and
the cup product are easily determined and lead to the following result:

Theorem 4.2.3. For 0 < d < n, decompose the Qy -set Fy(Sd(Ap)) into orbits
Fd(Sd(Io))/Qy ~ {Zd71 << Zd,kd}y where Zdﬂ' = min(Qy . Zd,i)'
Denote further, for 0 < p <d and1 <1i < kg,

28 = (Za)o. -, Zag)ps - (Zai)a)-

Then the complex C<N(V* Wy Z) is given by

kq
CeM(V* Wy Z) = @ Z Wy /(Wy) z,,] »
i=1

with

d
(WY)Zd,i = (Wa)(zd’i)g e Q(QY)(ZCM)]“
J:

The boundaries are given by

d
0d(Zq;) = Z Vwpi(Za—1u,), where u; € So 3 Zg—1.4, = ngn(Qy-Zc(li.)) andwp i(Z4—14;) = Z(S{Z')'
p=0

Moreover, the dual complex C*, (V*, I/I//\a; Z) is a Z|Wy]-dg-algebra with product

cell
Zd iU Z* = 6(Zd,i)d»(ze,j)0w<Zd+e’k)*’

where

Zaer = min(Qy-((Zag)o, - -, (Zaa, (Zej)os - -+ (Zej)e)) and w(Zarer) = (Zai)os- -+ (Zeyj)e)-

Finally, the complex for the torus V*/Y is given by
CeN V)Y, W3 Z) = Defyp (CL(VF, Wy Z)).
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4.2 A @—triangulation of V* from the barycentric subdivision of an alcove

Example 4.2.4. Continuing the Example[3.2.5, we treat the extended type Ao, which is
fairly computable by hand. We have Sy = {0,1,2} = J and

Q= Qpv = {1,t5v5a58,tmv 5850} ~ L/3Z.
—— s

~——

W wg

In this case, Wpv = T/I//\a 1s the classical extended affine Weyl group. Geometrically, the ele-
ment w,, acts as the rotation with angle 27 /3 around the barycenter of Ay = conv(0, @, w\é) =:

[0,1,2] ~ A2, The situation can be visualized in Figure .

ay =a¥ + Y

B\/

Figure 2: Barycentric subdivision |Sd(A)| of the fundamental alcove Aj.

There are three W,-orbits of points in ISA(Ap)| and we represent them by the points

<

w

e = ({0}) =0, e3:= ({0,1}) = =%, e§:=({0,1,2}) =

o w(\)/—l—wg
2’ '

3

Remember that we order P(Sy) lexicographically and these are lex-minimal in their orbits.
There are also four orbits of 1-cells represented by

8% = ({0}, {0,1}), 6% = ({0}, {0,2}), eé = ({0}, {0,1,2}), 6411 = ({0,1},{0,1,2}).
Finally, there are two orbits of 2-cells represented by
e% = ({0}7 {07 1}7 {07 1, 2})’ e% = ({0}7 {07 2}7 {O? L, 2})

Now, we have
Ve € {e?,eg,e%,eg}, Qe =1 and Qy =0
and we obtain the non-trivial stabilizers in VIZ:

— o~ o~ o~ o~

(Wa)eg =4, (Wa)e? =W, (Wa)eg = (Wa)e% = (sg) ; (Wa)eé = (Sa) -
The boundaries are readily computed, with for instance

Do (e3) = —ej +e3 — ({0,2},{0,1,2}) = —e} + e} — wpey.

Therefore, the complex CN(V*, VIZ; Z) is given by

LW J2 2> Z[Wa/ (35)] @ ZWa/ (s0)] © ZIWJ2 —2> Z[Wo /W] & ZIWa/ (s5)] & Z[Wa/9]
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4.2 A MZ—triangulation of V* from the barycentric subdivision of an alcove

with
-1 1 0
(1 0 -1 1 -1 ws o0
82_(0 -1 1 —w5>’ h=|_1 0 1
0 -1 1

Moreover, the root datum (P, ®, PV, ®") may be realized by the Lie group PSU(3) = SU(3)/us
with torus T = Ty/ps ~ V*/PY, where Ty = S(U(1)3) is the standard torus consisting of
diagonal matrices of SU(3). The complex

C:ell(T7 W, Z) = Def&l//\‘d(C‘:ell(v'*7 ﬁ/\a; Z))
then becomes

ZIW2 2o ZW/ (55)] @ ZIW/ (50)] & ZIW ) 2o 2.6 ZIW/ (55)] © ZW/ (s055)] ,

with
-1 1 0
— (1 0 -1 1 — | -1 sgsa O
82_(0 -1 1 —sﬁsa>’ A=|_1 0 1
0 -1 1

The complezes CSN(Ty, W Z) and C"(T, W;Z) may be obtained using the commands
ComplexForFiniteCoxeterGroup("A",2) and CellularComplexT("A",2,[0,1,2]) provided
by the package Salvetti-and—tori-complexeslﬂ.

Remark 4.2.5. The complex CSN(V*, V/@;Z) in the previous example can be reduced. In-
deed, we can take e* := €3 Uel e3 as 2-cell. This deletes the 1-cell e} and the complex reduces

to
1 -11 0
t -1 -lwg 0
1—wg 0 —-11

ZIWa) % Z[Wa/ (55)] ® ZWa/ {s0)] & Z{W]
We recognize the closure €2 = conv(e?, €9, wgeg, eg) as the fundamental polytope Fpv for T/I//\a
acting on V*.

LW/ W) ® Z[Wa/ (sp)] ® Z[W./] .

More generally, we have proved that a fundamental polytope for the action of the extended
affine Weyl group Wy is given by

Fpv:={ e Ay; Na+a) <1, Vaell; n, =1}
={AeV*; (Nag) <1Vacell, (\,a) >0 andn, =1 = (A, a+ ag) <1}
where we have written the highest root ag as cg = Zaen noa. Moreover, if we let Iy := {a €
I1; ny = 1}, then the vertices of Fpv are the isobarycenters of points in {0}U{w) }aer, with

a non-zero coefficient with respect to the origin, together with the vertices of Ay corresponding
to the other simple roots. In other words, if we denote

R 1 Vo
Bm.—{|A’+1Zwa,ACH0}

acA

\ \Y%
wa1+...+wa

:{O}U{ rr1 k;1§k‘§|Ho\andaiGHO,VISiSk‘},

%https://github.com/arthur-garnier/Salvetti-and-tori-complexes
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4.2 A W//\a—triangulation of V* from the barycentric subdivision of an alcove

then we have
w

v
vert(Fpv) = By, U {a} .
Na J e\

After proving this, we have realized that the description of Fpv as an intersection of hy-
perplanes was first discovered by Komrakov and Premet [KP84]. It would be nice to obtain
a cell decomposition from this polytope. However, this approach fails in general. Take the
example of type Cs, whose positive coroots are depicted in Figure @ denote by Il = {a, 8,7}
a simple system and by w)! = " + BY ++Y, w/g =av +28Y +2vV, w¥ = %av +BY + %’yv
the corresponding coweights. The highest root is ag = 2a + 28 + v and from the Table [3,
the fundamental group is
Q= {1,tey (sy80)"*"} = Z /2.
N————

Wy

Moreover, the fundamental alcove is Ay = conV(O,w(\l//Q,w}j//ZwX) and from this we see

that the non trivial element w~, € Q acts on the vertices of Ay by exchanging w,, /2 and w%//Z,

Zs well as 0 and wy. Therefore, the affine facet of Fpv = conv(0, w, /2, @y /2, @y /2) given
Y

1
Fpvn{AeV*; 1=Nag+v) =2 Na+B+7)}= §conv(wx,wg,w¥)

is taken to itself by wy but is not fired pointwise since two of its three vertices are ex-
changed. Therefore, the triangulation of V* induced by translating the simplex Fpv is not
Wa-equivariant.

From Table @ we see that the same issue occurs for Cp>3, Dp>4, Eg and E7. We have
tried to identify the faces that are non-pointwise fized by some element of their stabilizers.
However, after many computations, there are examples where no facet present a problem, but
some higher codimensional faces do. To conclude, even though the barycentric subdivision
yields many simplices, at least it works for any lattice and is rather simple to implement.

oV +28Y + 20V = wy

(67

a

Figure 3: The Komrakov-Premet polytope Fpv (in green) inside the fundamental alcove Ag
(in blue) in type Cs.
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Part 111

Hyperbolic tori for non-crystallographic
Coxeter groups

The goal of this part is to construct a smooth manifold affording a dg-algebra with a
similar combinatorics as the one in Theorem [3.3.2] and playing the role of a torus for non-
crystallographic Coxeter groups. Observe that if W is the Weyl group of a pair (K, T) as
usual, then T is W-diffeomorphic to the orbit space of the Coxeter complex of the affine Weyl
group W,, under the action of the complement of W in W,. Hence, for a non-crystallographic
group W, we have to define an extension of W which plays the role of the affine Weyl group.
We shall see that in this context, the suitable extensions to consider are compact hyperbolic
Coxeter groups and we construct these extensions from a suitable reflection in W.

Then, we prove that the action of the complement of W in its extension on its Coxeter
complex is properly discontinuous (this is where the fact that the extension is compact
hyperbolic is crucial) and we define the manifold T(W) to be the resulting orbit space.
This is a hyperbolic W-triangulated compact manifold. Next, we study some properties of
this manifold. In particular, we prove that the manifolds T'(I3(m)) are arithmetic Riemann
surfaces. We finish by computing the homology representation of T'(W).

5 Construction of the hyperbolic extensions and the hyper-
bolic torus

The non-crystallographic finite irreducible Coxeter groups are listed in the following table:

‘ Type ‘ Coxeter diagram ‘
m
Ir(m) (5 < m # 6) 3
5
H oo o
’ 1 2 3
Hy oio—o—o
1 2 3 4

Table 4: Coxeter diagrams of finite non-crystallographic Coxeter systems.

Although we shall focus on the non-crystallographic case, what follows applies to all
finite irreducible Coxeter groups. In particular, in the I2(m) case, we only assume that
m > 3.

A key ingredient in the construction of the W-equivariant triangulation of the torus of a
Weyl group (in fact of the simply-connected compact Lie group of type W) is the reflection
so associated to the highest root g in the root system ® of W. Thus, we first have to find
a suitable reflection in the non-crystallographic cases. Moreover, this should come with an
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5.1 Compact hyperbolic extensions of Is(m), Hs and Hy

infinite extension of the finite group, which should again be a Coxeter group. By “suitable”,
we mean that each proper parabolic subgroup of the resulting infinite Coxeter group should
be finite. The good class of Coxeter groups we shall consider for this matter is no longer
the affine groups, but the compact hyperbolic groups.

5.1 Compact hyperbolic extensions of I5(m), H; and H,

Let us first recall some basic terminology concerning Coxeter groups. For more detailed
discussions, the reader is referred to [Bou02] and [Hum92].

Let (W, S) be an irreducible Coxeter system of rank n. We write
W = (s1,...,8n | (sis5)"" =1),

with M = (m;;)i<ij<n the Coxeter matrix of (W, S). Recall ([Bou02, V, §4] or [Hum92,
Chap. 5]) that on the formal vector space V' := spang(a;, 1 < i < n) we may define a

symmetric bilinear form by
T
B(ay, o) := —cos ( )
ml?]

as well as the linear mappings
V1<i<n, g, :=(v—v—2B(aj,v)).
Then the assignment s; — o; extends uniquely to a faithful irreducible representation
o: W — GL(V),
known as the geometric representation of W.

Moreover, W is finite (resp. affine) if and only if the form B is positive definite (resp.
positive semidefinite) (see [Bou02, V, §4.8 and 4.9]).

Proposition-Definition 5.1.1 ([Hum92, §6.8]). The followings are equivalent:

(i) The form B has signature (n —1,1) and B(A\, X) <0 for X in the open Weyl chamber,

(i) The form B is non-degenerate but not positive and the graph obtained by removing any
vertex from the graph of W is of non-negative type (i.e. its group is finite or affine).

If these conditions occur, then W is said to be hyperbolic. If the second condition is
enhanced by requiring that any such sub-graph is of positive definite type (i.e. its group is
finite), then W is said to be compact hyperbolic.

Remark 5.1.2. As mentioned in [Hum92], the terminology comes from the fact that the
homogeneous space O(V, B)/W, equipped with the induced measure coming from the Haar
measure on O(V, B), is of finite volume if and only if W is finite or hyperbolic and, in the
hyperbolic case, a component of {\ € V. ; B(A\,X) = —1} gives a model for the hyperbolic
(n — 1)-space H". Moreover, the space O(V, B)/W is compact if and only if W is compact
hyperbolic. Moreover, W is compact hyperbolic if and only if B is non-degenerate non-
positive and every proper parabolic subgroup of W is finite.
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5.1 Compact hyperbolic extensions of Is(m), Hs and Hy

We are ready to define the compact hyperbolic extensions of non-crystallographic groups.
From now on, we let (W, S) be a finite irreducible non-crystallographic Coxeter system of
rank n with Coxeter matrix M. As mentioned at the beginning of this part, we have to
find a reflection ryy € W yielding a compact hyperbolic extension of W. This is done in the
following result, where the notation are as in the Table

Proposition-Definition 5.1.3. Let W be non-crystallographic and choose ryw € W to be
the following reflection in W :

m—1

(s152) Rl s1 if W =1Iy(m), m >3,
rw = s{s2s)’” if W = Hs,

(55253

55 (s152)?sas4)° if W = Hy.

Define

o~

W= <§0,§1, G| Y > 1, i)™ = (Bos) ) = 8 = 1>,

where o(z) is the order of the element x and S = {S,...,3,}. Then the pair (/W, S) is a
compact hyperbolic Cozeter system, whose Coxeter graph is as in the following table:

Extension Coxeter graph
0
Iy(m) (m = 1[2)) m/ \m
1 m 2
— m _m
Io(m) (m = 0[4]) g 1 s
— m
Iy(m) (m = 2[4]) o’ o o
0 1 2
5
_ 0 3
Hj
1 5 2
H, OLQ—Q—OLQB
1 2 3 4 0

Table 5: Compact hyperbolic extensions of Iy(m), Hs and Hy.

Moreover, in type H, the reflection ryy s the only one for which the resulting group 1%
1s compact hyperbolic.

Proof. The expression we give for ry indicates that ry indeed is a reflection of W. As ry/
has order 2, the matrix M := (m; j)o<i j<n defined by

\V/i,j Z 1, mm- = mm, m(),i = m@o = o(rwsi), m070 =1

is indeed a Coxeter matrix and W is the associated Coxeter group. Moreover, we may
compute the integers o(rys;) directly and find the above Coxeter graphs and these are
indeed graphs of compact hyperbolic groups, as all those graphs are well-known, see [Che69,
Appendice].
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5.1 Compact hyperbolic extensions of Is(m), Hs and Hy

The second statement comes from a tedious, but elementary verification on the 15 (resp.
60) reflections of Hjz (resp. Hy): only the reflection 7y from the statement gives a graph
which appears in the table of |Che69)]. O

Remark 5.1.4. A (non-crystallographic) root system ® may be associated to W. More
precisely, ® is the orbit under W of the vectors «; spanning V.. Then ® forms a (non-
Euclidean) root system in V', which is non-crystallographic in the sense that the condition
(aV,B) € Z does no longer hold. We still may choose a highest root in ®. If W # Hs, then
the reflection associated to this highest root is indeed ryy .

The extension of Hs with ry the highest reflection has been considered in [PT02]. It has

the following Cozeter graph
.LIL.

However, the sub-graph .i.i. is of negative type, hence this extension is neither affine
or hyperbolic and the sequel does not apply.

Using the very definitions of W and W as finitely presented groups, we obtain the
following result:

Corollary 5.1.5. For any W, the assignment

50 — Tw
S S

extends (uniquely) to a surjective reflection-preserving group homomorphism

W " W.

Moreover, if rw = si, -+ si, is a reduced expression of Ty, then the element ryy =
Siy -+ 8i, € W is well defined and we have

ker 7w = <(§07"/V\V)W> ,

that is, ker(w) is the normal closure of Sorw in w.

Proof. In every reduced expression as in the statement, we have 7; > 1 so that the element
TW = i, -+ 8i,, is in the parabolic subgroup Wy 1 =~ W and thus 7y doesn’t depend on
the chosen reduced expression for ryy.

Because 7 sends a simple reflection of W to a reflection of W, it is clear that is sends
any reflection to a reflection.

We have 7(Sorw) = 7“12/‘/ = 1 so that the subgroup N := <(§07°/V\V)W> is certainly contained

in ker(7). Furthermore, we easily find a presentation of W /N by adding the relation 5y =
Siy -+ 85, for ryy = s, -+ - 55, as above to the already known relations for W. The composite

<§07§17---a§n ’ Vi, j > 1, (Eigj)mi’j =1, S0 =75 §Zk> = /W/N - /W/kerﬂ-: W
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5.2 A key property of the subgroup @

maps 5; to s; and is an isomorphism. In particular, this yields an isomorphism of W-sets
W/N ~ W /ker T,
forcing ker(7) and N to be conjugate in W, hence equal. O

Definition 5.1.6. We denote the kernel of the projection from the previous Corollary by
Q :=kerm = <(§07«7V)W> .
Corollary 5.1.7. With the notation of the above theorem, we have

/W:QNW

Proof. The map s; — §; (i > 1) extends to a splitting W — W of . O

Remark 5.1.8. Let ® denote the (non-crystallographic) root system of W and & € ®* be
the (positive) root associated to the reflection Ty, i.e. such that ryw = sgv. If W # Hs,
then & = «y is the highest root of ®. Denote by tzv the translation by & and by o* : W —
GL(V*) the dual of the geometric representation of W. We can define a homomorphism

W -2 AF(V¥)

by sending S; to o*(s;) for i > 1 and a(5y) := tgvo™(rw). If W is a Weyl group, then a is
injective and identifies W with W, < Aff(V*). Moreover, in this case we have

Q=~a(@Q) =a({Gosa)")) = ((aGojay)™™)

- <(tag)Wa> = (tov, a € ®) ~70" LV ~ 77,
This is the coroot lattice of ® and in particular, the group Q is abelian.

However, a relatively recent result ((Qi07, Corollary 1.6]) states that an irreducible,
infinite Coxeter group is affine if and only if it contains an abelian subgroup of finite index
and, as [W : Q] = |W| < oo, the group Q cannot be abelian in the hyperbolic case.

Moreover, in the non-crystallographic case, the image of a is no longer discrete because
ZdY C V* is dense in V* and also, the _morphism a has no reason to be injective, because
we cannot relate the length function on W with separating reflection hyperplanes in 'V any
longer.

The morality is that we should take the geometry ofW into account, which is not affine
but hyperbolic in the non-crystallographic case.

5.2 A key property of the subgroup @

The following result will be crucial in the sequel.

Lemma 5.2.1. The normal subgroup Q trivially intersects every proper parabolic subgroup
of W, i.e. e
VICS, QNnWr=1.
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5.2 A key property of the subgroup @

Proof. This is clear in the crystallographic case because @ ~ Z®" ~ Z™.

Recall the morphism 7 : W — W. The statement may be rephrased as follows:

Vs € §, ker <W§\{s}

R W) —1
For s = 5y, this is obvious since W§\ (5o} W is an isomorphism.

Letse€ S \{50}. Since Wis compact hyperbolic, the parabolic subgroup /V(7§\ (s} is finite.
Hence, to prove that the morphism

/”7§\{s} o (Wﬁ\{s}>

is injective, it suffices to prove that

‘ ( S\(s })) ‘ S\{s}| (*s)

The right-hand side is easily computed using the Coxeter diagram of W (see Table . To
compute the left-hand side, we proceed by a case-by-case analysis. For Hy, we will need the
following trick:

Denote by
R:= U wSw™t = U S
weWw wew
the set of reflections of W and

Yw e W, N(w):={reR; l(rw) < l(w)}.
If H < W is a reflection subgroup of W (i.e. if H = (H N R)), then the set
DH):={reR; N(r)NnH ={r}}

is a set of Coxeter generators of H (see [Dye90, Theorem 3.3]). In our situation, we find the
Coxeter generators D(?T(Wg\ {8})) and determine the resulting Coxeter diagram, giving the

order of 77( 3\(s })

o W = Iy(m) with m = 2k+1. We have defined rw = (5159)Fs; and we readily compute
s9 = 51" and s1 = SQTW so that 7T(WS0 5) = 7T(W50752) = W. On the other hand, we
get from the diagram ] 5051 = \WSO’31| = 2m = |W/|. This proves for s = 51, s2.

2k=1g. and since S9 =

o W = I)(m) with m = 4k. In this case we have ry = (s152)
(s1rw )%~ 1sy, we also have (ryy,s1) = W and is thus true for s = 55 as I/Vs0 5
W. Because sory zigsl)% = (5152)%F = ryrs9, we have (sy,ry) = Ay x A and

Ws, 5 =~ A1 x Aq so (%) also holds for s = 5.

o W = Iy(m) with m = 4k + 2. Here, ry = (s152)**s1 and we compute rys;ry =
(s152)*s1 = s95152 = 572 In the same way, we e get (51(s32))ks1 = (s182)%ks1 = rw.
This implies (s1,rw) = (s1,57%) ~ Io(2k+1) ~ Wgo o In fact, we have D({(s1,rw)) =

{s1,s7*}. Now, as above we have syry = ry sy and WSO@ ~ Ay x Ay =~ (s9,rw).
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5.3 The hyperbolic torus T(W) of W and its first properties

e W = Hj. Special relations among reflections occur in this case. Namely

(s251)2 (s152)2 2 2
Tw = S3 y 83 =Ty , 82 = 83(""W3381) rwss, S1 = (TW8382) TwS3Tw -

Hence, for s € §, we have 7 (W§\{s}) W o~ WS\{ }

given by the diagram of I/‘I\g, Therefore, all the relations 1) hold in this case.

this last isomorphism being

e W = H,. The additional reflection is

(8352518283(8182)28354)2

We notice the following relation
— 2 2 3
S1 = 8283(847“1/1/) (83847“Ws2<33347’w) 82) 8384TW S48382.

This proves that s1 € (rw, s2, $3,84) s0 ’/T(WA S dagn) = W Wso,32,53,54 We treat

50,52,53,54
the remaining cases by determining the Dyer generators of the reflection subgroups.

Calculations can be done on the sixty reflections of Hy (though easier using |[GAP4]).
We obtain

o~ _ - 8283(8182)2 - - —~
™ (W§0,§1,§3,§4> - <TW7 51, 83, S4> - <81 »S1, 83, 54> — Al X H3 — W§0,§1,§3,§4

and

—

117 o _ s452818253(s152)2%s3 ~ 2
T (W§0,§1,§2,§4> = (rw, s1, 52,54) = <83 ,31,32,34> ~ I5(5)" ~ W5, 555
and finally,
™ <W§07§1,§2,§3) = <TW7 51,52, S3> = H3 X Al = W§0,§1,§2,§3'

This establishes the relations for W = Hy, finishing the proof.

Corollary 5.2.2. The group Q is torsion-free.

Proof. Let q € @ be of finite order. By a theorem of Tits (see [Qi07, Theorem 3.10]), there

are w € W and J C S such that tge U)WJ’U) and WJ is finite. This last condition implies
J # S and since @ is normal in W from Lemmawe get q¥ € QDWJ =1,soq=1. 0O

5.3 The hyperbolic torus T(W) of W and its first properties

Before defining the manifold T'(W), we have to Study the action of the subgroup QdJ W on
the Tits cone of W. Recall some notation: define V := spang(as, s € S) and the bilinear

form B given by
E(as,at) = —cos (AW ) ,
Mmst

s the Coxeter matrix of (W S ). As W is hyperbolic, the form B has signature

with (T/fls t)s tGS

(n —1,1). We also have the geometric representation o : W e O(‘A/, ﬁ) and consider its

contragredient representation e
oW — GL(V*") (®)
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5.3 The hyperbolic torus T(W) of W and its first properties

and define (o), g to be the dual basis of V* associated to (as), We have 7*(w) =

t5(w1), that is

€5
Vs,t €S, 5%(s)(a)) = a) — 26, B(—, as).
The duality pairing of V is denoted (-,-) as usual. For s € S , let moreover
Hy:={AeV*; (\a,) =0} and A,:={XeV*: (A as) >0}
and consider the respective fundamental chamber and Tits cone

C={AeV"; Na)>0,VseSt=()4, and X := ] w(D).

se8 weWw

This is indeed a convex cone and C is a fundamental domain for the action of /V[7 on X.

Finally, for I C S we let
Cr = (ﬂ H) N (ﬂ As> cC,
sel s¢l

in particular Cy = C, Cg = {0} and we have C' = ;s Cr-
In this context, we have the Cozeter complex
%= 5(W,5) = (X \ {0})/R}.
This is a /W—pseudomanifold and we have a decomposition

= | Riw(@)
wE/VE
IcS

which is in fact a W-triangulation since R* w(Cr) may be identified with the standard
(n — |I])-simplex: R* w(C7) ~ A"l Moreover, since W is infinite, & is contractible and
by [Bro89, III, §A2, Corollary 3], as every proper parabolic subgroup of W is finite, the
pseudomanifold 3 is in fact a smooth n-manifold.

Remark 5.3.1. The construction of the Coxeter complex makes sense for any Coxeter
group. If the group is finite, then its Coxeter complex is homeomorphic to a sphere.

We can give a natural simplicial structure to the Coxeter complex (see [BR04, Corollary
2.6]). Consider the set of parabolic cosets of W

P(W,g) = {wWI cweW, IC S}.
We partially order this set as follows:
wWr < w'W;, PLIN wWr D w'Wj.

Notice that wWI <w W 7 implies wﬁ/\j = w’ﬁ/\j and J C I. We define the simplicial complex
A(W,S) as the nerve of this poset:

AW, 8) :== N(P(W, §), <).
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5.3 The hyperbolic torus T(W) of W and its first properties

If we denote by P(i) the poset of faces of & with respect to the triangulation described
above. Then we have an isomorphism of posets

(P(W.5),%) — (P(£),9)
U)WI — ]Rj_w(C])

and this yields a W-equivariant homeomorphism

AW, §)] =

Now, recall that an action of a group G on a space Z is said to be properly discontinuous
(or a covering space action, see [Hat02} §1.3]) if every point z € Z has an open neighbourhood
z € U C Z such that if g € G is such that gU NU # (0, then g = 1. In other words, such
that

Oa(U):={ge€G; gU)NU # 0} = {1}.

Lemma 5.3.2. Recall from (./ the representation o*. The action of the discrete subgroup
(@) < GL(V*) on the Cozeter complex S is free and properly discontinuous.

Proof. Of course, we identify the group W with 8*(W). Let T € & (with z € X \ {0}).
First, we prove that ¢(z) # T for ¢ € Q \ {1}. To say that ¢(T) = T amounts to say that
q(z) = ax for some a € R¥ and we may assume that z € C \ {0} since Q < W. There is
some I C S such that = € C;. Because C7 is a cone, we have axz € C; N q(Cr) # 0 and by
[Bou02, V, §4, Proposition 5], we obtain ¢(C7) = C so q € I//[\/I N @ =1 by Lemma

To prove that the action is properly discontinuous at Z, we have to find an open neigh-
bourhood U of T in ¥ such that, for 1 # ¢ € @, we have U Nq(U) =0, i.e. Og(U) = {1}.
By definition of the topology on the Coxeter complex, it suffices to prove the statement for

X\ {0},

First, we show that the action of W is wandering at x, that is, we can find an open
neighbourhood A of z such that Op;(A) is finite. We may assume that z € C'\ {0}, say

z € Cr with I C S. Define A to be the interior in X \ {0} of the subset Upei, v(C). We

prove that there are only finitely many w € W such that AN w(A) # 0. Suppose that
w € Op;(A) and choose a € A with w(a) € A. Notice that we have

Ac |J u@u | vH,ndl).
UEW[ UEWI
sel

Thus, we distinguish four cases:

o As W acts on X \U,eg Hs, we cannot have a € |, , v(Hs NIC) and w(a) € U, u(C).
e Similarly, we cannot have a € {J, u(C) and w(a) € U, ;v(Hs N aC).

e Suppose that a € |J, v(C) and w(a) € U v(C), say a € u(C) and w(a) € v(C). This
implies u™1(a) € C and v"tw(a) = v wu(u"(a)) € C, thus uvtw(C) N C # O and
so w = vu~t € Wy by Tits’ lemma.
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5.3 The hyperbolic torus T(W) of W and its first properties

e Suppose now that we have a € |, ,v(Hs N dC) and w(a) € Uys v(Hs N 0C), say
a € u(HsNAC) and w(a) € v(H;NAC). This implies u~!(a) € C and v twu(u~(a)) =
v~ lw(a) € C and by |[Bou02, V, §4, Proposition 6] we get v~!w(a) = u~!(a) and thus
wlw € (W)a = uW,u~! for some J C § (in fact, J is defined by the condition
W, = (W)uq(a)). Therefore, we have w € vW u~".

In any case, we have

OW(A)d:f{wew;w(A)ﬂA#Q}C U uW .

’LL,UE/W]
JcS

However, as W is compact, any proper parabolic subgroup is finite and so this last subset
is finite and Op;(A) is then finite as well.

The rest of the proof is very standard. For each w € Op(A)\ W; we have w(z) # = and
we may choose an open subset A, such that x € A, C A and w(A4,) N A, = () and define

B = ﬂ A, C A
weOH (A\W;

Because Og(A) is finite, B is open and let w' € Op(B) C Op(A). We must have w' € Wi
because otherwise, () # B Nw'(B) C Ay Nw'(Ayr) = 0 and thus Op(B) C Wr.

Consider the open subset
U:= ﬂ w(B) C B.

’lUE/W\[
We have O (U) C O(B) C Wy and U is W-stable (ie. Uisa W-slice at x). In particular,
if ge @\ {1}, then ¢ ¢ W; by Lemma and thus ¢ ¢ Og(U). O

We arrive then to the main result of this section. Remark that the Tits form B induces
a Riemannian metric on the Coxeter complex X..

Theorem 5.3.3. Let (W,S) be a finite irreducible Coxeter group of rank n and (/I/I?,g)
be either the affine Weyl group associated to W if W is crystallographic, or the extension
constructed above otherwise, with @ := ker(W — W). If 0* denotes the contragredient
geometric representation (as in ), then the orbit space

T(W) :=£/5"(Q)
s a closed, connected, orientable, compact smooth W -manifold of dimension n.

If W is a Weyl group, then we have a diffeomorphism S~ R" and the manifold T (W)
is W-diffeomorphic to a mazimal torus of the simply-connected compact Lie group with root

system that of W. Otherwise, the Riemannian manifold ¥ is isometric to the hyperbolic
n-space H" and T(W) ~H"/Q is a hyperbolic W -manifold.

Furthermore, the canonical projection yields a covering space
Q — S T(W)

and the quotient simplicial complex A(/W, §)/Q is a regqular W -triangulation of T(W).
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5.4 Presentation on the fundamental group of T(W)

Proof. Since S is a closed smooth manifold and the action o*(Q) C Sis properly discontinous
by Lemmal5.3.2] the quotient manifold theorem ensures that T (W) is indeed a closed smooth
manifold and by [Hat02, Proposition 1.40], the projection S - T(W) is a covering map.
Moreover, T(W) is connected since the Coxeter complex is and, as (C' \ {0})/R* ~ C NS"
is a W-fundamental domain on the Coxeter complex, its projection onto T(W) is a W-
fundamental domain, hence T(W) is compact (W is finite). Since @ is normally generated
by Sorw and because £(ryy) is odd, we have e(5or) = 1 and so @ < ker(e). This proves
that the action of () on 5 preserves the orientation, ensuring the orientability of T(W). The
comparison with a torus of a Lie group follows directly from the Remark

In the non-crystallographic case, let v* € V* be a normalized eigenvector for the negative
eigenvalue of B. Then the subset H := {\ € V* . B(\,A) = —1, B(v*,)) < 0}, together
with the metric induced by the restriction of B is a Riemannian manifold isometric to the
hyperbolic space H". We have T(W) = 5 /Q ~ H/Q ~ H"/Q and since @ preserves the
form B , the manifold T(WW') naturally inherits a hyperbolic Riemannian metric. O

Remark 5.3.4. After we did this work, we realized that the manifolds T(Hs) and T(Hy)
have already been discovered in [Zim93] and [Dav85]. Zimmermann and Davis construct
them by taking the orbit under the action of Q (which is defined slightly differently) of
hyperbolic polyhedra. However, our approach has the advantages of being more systematic
and to work with any finite Coxeter group. The Zimmermann manifold T(Hs) has the
particularity of being maximally symmetric among hyperbolic 3-manifolds with Heegaard
genus 11, in the sense of [Zim92]. On the other hand, the Davis manifold T(Hy) has a spin
structure (equivalently, its second Stiefel-Whitney class wo vanishes) and seems to be the
only closed 4-manifold for which the intersection form has been explicitly determined, see
JRT01)] and [Mar1h)].

Recall that, as W is infinite, the Coxeter complex is contractible.

Corollary 5.3.5. The covering space
Q— & — T(W)

is a universal principal Q-bundle. In particular, T(W) is a classifying space for Q and an
Eilenberg-MacLane space
T(W) ~ Bg ~ K(Q,1).

5.4 Presentation on the fundamental group of T(W)

In this section, we derive a presentation of the group 7 (T(W)) ~ Q < W from Poincaré’s
fundamental polyhedron theorem (see [Rat06, Theorem 11.2.2]). Recall from [Rat06] that
if P is a convex fundamental polyhedron for a discrete group I' of isometries of H" such
that the associated tessellation {yP, v € '} is ezact (i.e. each facet of P may be written
as P N~vP for some v € I'), then by [Rat06, Theorem 6.7.5], for each facet S € Fj,_1(P) of
P, there is a unique g € I' such that S = P N ygP and moreover, 751(5) =: 5" is also a
facet of P, with the side relation vg = fygl. On the other hand, if T is a facet of S, then
we may define a sequence {5;}°, of facets of P inductively as follows:

1. Let 51:= 5.
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5.4 Presentation on the fundamental group of T(W)

2. Let Sy be the facet of P adjacent to S} such that vg, (S] N S2) =1T.

3. Fori > 1, let S;41 be the facet of P adjacent to S, such that vs,(S/NSi+1) = Si_;NS;.

Then, by [Rat06, Theorem 6.8.7], the sequence {S;}:°; is periodic, with period k say, and we
have the cycle relation s, - - - s, = 1. In this case, we call {S;}¥_, a cycle of sides of P. The
theorem of Poincaré states that the elements {gs}s, together with the side relations and the
cycle relations form a presentation of I'. More precisely, if we let ¥ := {gg, S € F,,_1(P)}
be an abstract set indexed by F,,_;(P) and

Rgide := {gsgs/, S,S" € F,_1(P) such that S = v5(S")}
as well as
Reyele == {95, - - 95, ; {S;}%_| is a cycle of sides determined by S € F,,_1(P) and T € F,_5(S)}.
Then, we have an isomorphism

<\Ij | Rside U Rcycle> — r
gs = s

In our case, the tessellation A(W, S ) of S ~ H" is indeed exact and yields a fundamental
polyhedron for ) acting on . Choose v* € V* a normalized eigenvector of the Tits form
B for its unique negative eigenvalue and consider the subset

H:={AeV*; BO\A) =—1, Bv*,\) <0} C V*.

As already noted in the proof of Theorem m the form B induces a Riemannian metric
on H and we have an isometry H ~ H", where H" is the standard hyperbolic n-space. By
Remark the fundamental chamber C is included in the subset {A ; B(A,A) < 0},
hence we can project the punctured Tits cone X \ {0} on the sheet H of the hyperbola
{XA; B(\,A) = —1} and we get & ~ X N 7. Consider the n-simplex

Ag:= (C\{O})/R: ~CNHCS.

Recall that we have denoted Hy := {\ ; (\,as) = 0} for s € 5. As the subset Lg :=
[elala) 43, Hs 1s a line, its intersection with H is a vertex of the tessellation A(W,S) and
we may consider its star

A=st(LenH)E | o= | w@o).

o€, (A(W,S)) weW
LoNHCo

We will describe the generators and relations for 1 (T(1/)) in terms of side-pairing and
cycle relations, as in [Rat06, §6.8]. It is easy to see that the facets of A are the W-translates
of the facet

oo := Hz, N A€ F, 1(A),

in other words, 0A = J,, w(oo). By [Rat06, Theorem 6.8.3], the group @ = w1 (T(W)) is
generated by the set
UV:={geQ; ANgA e F,_1(A)}.
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5.4 Presentation on the fundamental group of T(W)

Lemma 5.4.1. The set ¥ of generators of Q is given by the W -conjugates of the normal
generator of Q. In other words, if ryw € W is the chosen reflection and if qy := Sorw € W
then we have

U= {Y, weW}={wgpw !, ©weW/Cw(q)}.

Proof. Let 1 # q € @ be such that A N gA is a facet of A, say w(op) for some w € W. We
have
w(og) = ANgA = U u(Ag) Nqu(Ag) = U u(Ag Nutqu(Ag)).

u,veW u,veEW

Since any term of the last union is (empty or) a closed simplex, this means that one of them
has to be the whole of w(oyp), so we can find u,v € W such that

u w(og) = Ag Nu qu(Ap).

Lw(og) € Ag and since any W-orbit meets Ag in only one point,

In particular, we have u~
this implies that u=lw(og) = 0¢ and so u~lw € W,, = (5p) but as u=tw € W, this is

possible only when u = w. Hence we get
oo =ApN u_lqv(Ao).

This implies in turn that u=!qv € (55) and since ¢ # 1, we must have u 'qv = 3, i.e.
q = uSgv~—'. Finally, because ¢ € @, applying the projection 7 : W — W to this equality
yields 1 = uryv™t, so v = wry and g = uSov "+ = ugou . ]

We can formulate the side-pairing and cycle relations using the combinatorics of W. To
do this, we need a technical lemma on the centralizer of gg.

Lemma 5.4.2. The centralizer of qo = Sorw in W is given by
Cwiqo) = Cw(S0) = (s €S ; s50 = Sps) .

In particular, this is (standard) parabolic.

Proof. First, we borrow an argument due to Sebastian SchoennenbeckE] to prove the second
equality above. Let w = s;, ---s;,. be a reduced expression of an element w € Cy(5p). To
show that w is in the parabolic subgroup of the statement, since the elements of Cyy(5p)
of length 1 are the simple reflections of W commuting with 5y, by induction it is enough
to show that Sps;. = s;,50. We have {(wsp) = f(w) + 1 and {(wSyw ™) = £(50) = 1, so
l(wsps;,) = L(wsow tws; ) < 1+ L(ws;,) = £(w) and thus £(wsys;,) = £(w). Thus, by
the exchange condition, there is a reduced expression wsy = s;, - - - sj,5;, for wsy and since
Siy -+ 8;,.80 is already a reduced expression, by Matsumoto’s lemma, there is a finite series of
braid-moves from the second to the first. The expression s;, - - - s;, 50 satisfies the property

The expression contains only one occurrence of 5y and there is no simple reflection (%)
appearing on the right of 5y that does not commute with it.

Consider a braid relation sts--- = tst--- connecting the two expressions of wsy, with m
factors on each side and suppose that we apply it to a reduced expression of wsy verifying
. If s,t # 5o, then the resulting expression still satisfies . Now, if s = §( say, then ¢ has
to commute with Sy. Indeed, if not, then the left-hand side of the braid relation contains

17
https://mathoverflow.net/questions/200433/centralizers-of-reflections-in-special-subgroups-of-coxeter-groups

81


https://mathoverflow.net/questions/200433/centralizers-of-reflections-in-special-subgroups-of-coxeter-groups

5.4 Presentation on the fundamental group of T(W)

at least two occurrences of sy (one on each side of t) and, in the right-hand side there is
at least one occurrence of ¢ on the right of 5y, but none of these occur in the considered
reduced expression. Therefore, the reduced expression resulting from the application of the
braid move still verifies . In particular, the expression s;, - - - sj,s;, satisfies and thus,
every simple reflection appearing on the right of 55 must commute with it. In particular,
this is the case of s;,, as required.

We now prove that Cy(qo) = Cw(50). Let w = s, --- s, be a reduced expression of
an element w € Cy(qp). Since wqy = qow, we get Spwsy = rwwry € W. Let Sowsy =
sj, -+ Sj, be a reduced expression in W. Since {(wsy) = f(w) + 1 = {(50w), we have
((50wsp) € {{(w),l(w) + 2}. But taking length in the equality Sps;, ---si, = 55, -+ 55,50
gives k = r, that is ¢(Spwsp) = ¢(w). In particular, {(Spwsp) < ¢(wSp) and by the exchange
condition, there is a reduced expression Sywsy = si, ---8;, -+~ 8i, S0 (the reflection s;, is
omitted) and since this last expression is in W, we must have s;, = $Sp, thus Spwsy =
Siy -+ 8i,, = w and w € Cw(5p). The reverse inclusion can be directly checked case by case
using the parabolic description of Cyy (Sp). O

Remark 5.4.3. From the diagrams of the hyperbolic extensions we get therefore
Cry29+1)(90) = 1, Cryag12)(90) = (s2); Cry(ag)(q0) = (52),

Ch;(q0) = (s2), Cr,(q0) = (s1,52,53) ~ H3.

Theorem 5.4.4. Let W be non-crystallographic and U := {w € W ; L(ws) > l(w), Vs €
S 5 ss0 = sost = W/Cw(qo) be the set of minimal length coset representatives modulo
the parabolic subgroup Cw (qo) of W. The transitive action of W on W/Cw(qo) induces
an action of W on U. Then the fundamental group w1 (T(W)) ~ @Q admits the following
presentation

WI(T(W)) = <qua uelU ’ Rside U Rcycle> y

where
Rside = {QUQUa U,V € U ; uilvrw € CW<§0)}

and

Rcycle = {QU}(UI)q’LU(’U,Q) to qw(uT)? w e vVv UY, ULy - oy Up, Up41 € U such that Ug = Up+1 = 1

—1 -1
, s urw  Twuy . ~
and, fori >0, <so,soz+1 ’ > and <80,SO ! Z> are conjugate under CW(SO)}.

Proof. Drop the presentation notation and, for u € U, denote ¢, := “qo = uqou™!, o, =
u(op) = AN qu(A) and o, := g (0,) = ugy *(00). To say that for some u,v € U we have
Guqy = 1 amounts to say that “gg = ”qo_1 =V"Wqo, i.e. utory € Cw(qo).

For the cycle relations, recall that each facet of oy is of the form o, for some u € U.
Choose 0 € F, 1(A) CW .00 and 7 € Fj,_2(0) C F,2(A) and let {0y, }jen+ denote the
associated cycle of sides, with period ¢, say. We have the relation g, ---q,, = 1. Up to
conjugation by an element of W, we may assume that o = op and so g, = qo. Let i > 1 be
such that we have some relation

Qu, (0.’,11Z N aui+1) = 0-4141‘,1 N Ou; # @
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We write

Qu; (O-:Lz N Jui+l) = Oy, N O-’:Li_l & oy, Ny (Uui+l) = Oy, N q;il_l(o-ui—l)

= ui(00) N qu,tiv1(00) = ui(oo) N gy ui—1(00)
S0 ’LLZ'((TO N u;lquiuiﬂ(ao)) = ui(Uo N ui_lui_lqo_l(ao))

<= ogN qoui_luiﬂ(ag) =ogN u;lui_lrw(ao),

and the two sides of the last equality are simplices of the tessellation A(ﬁ/\, S ), whose face
lattice is the lattice of standard parabolic subgroups of . Hence these two coincides if and
only if their stabilizers in W are equal. Though this condition depends on the choice of the
elements of U, it is straightforward to check that different choices give conjugate stabilizers
in CW (qO). ]

Corollary 5.4.5. The group m1(T(Hs)) (resp. T(Hy)) admits a presentation with 11 (resp.
24) generators , all of whose relations are products of commutators. In particular, we have

H(T(Hs3),Z) = m (T(H3))* ~ Z'' and H(T(Hy),Z) = n1(T(Hy))* ~ 7%,

Proof. We apply the above result. For Hs, beside the side-pairing relations (which we can
immediately simplify by removing half of the [H3 : Cp,(qo0)] = [Hs : (s2)] = 60 generators),
we find only one primitive cycle relation (primitive meaning starting by qo) of length 3 and
one of length 5. Taking the Hs-conjugates of these gives 120 relations of length 3 and 120
relations of length 5. But the inverse of each of these relations appears so we can simplify
them. We can also remove any cyclic permutation of these relations, which finally yields a
presentation for 71 (T (H3)) with 30 generators, 20 relations of length 3 and 12 relations of
length 5.

We do the same for H4, where there is only one primitive cycle relation of length 5,
which gives a presentation for m(T(H,)) with 3[Hy : Cp,(go)] = 60 generators and 144
relations of length 5.

Using the relations, we can check that some of the generators are superfluous and that
the simplified presentation has the stated number of generators (all among the original
generators) and that the relations become trivial, once abelianized. All the formulas are
given in Appendix O

Remark 5.4.6. The intermediate presentations of m1(T(Hz)) and m1(T(Hy)) (with 30 gen-
erators and 32 relations for Hs and 60 generators and 144 relations for Hy) are precisely
(up to relabelling) the presentations given in [Zim93] and [RTO1).

5.5 The manifolds T(/5(m)) as Riemann surfaces

A little bit more can be said about the case of the surfaces T(Iz(m)). Recall that by a
theorem of Gauss (see [Jos02, Theorem 3.11.1]), any Riemannian metric on an oriented
2-manifold M induces a complex structure on M (making M a Riemann surface), called the
conformal structure induced by the metric.

Corollary 5.5.1. For any g € N* the surfaces T(I2(2g + 1)), T(I2(4g)) or T(I2(4g + 2))
are closed compact Riemann surfaces of genus g. In particular, we have homeomorphisms

T(I2(29 + 1)) ~ T(I2(4g)) ~ T(L2(4g + 2)).
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5.5 The manifolds T(I3(m)) as Riemann surfaces

Proof. Since the surfaces are orientable, the Riemannian metric induced by the one on the
Coxeter complex induces a conformal structure on them. To obtain the genus, we only have
to compute the Euler characteristic.

Let m be either 2g + 1, 4g or 49 + 2 and

We will detail the combinatorics of the W-triangulation A(W, §) /@ in the next section,
however we only have to compute the Euler characteristic xy and very little information is
needed. The rational chain complex associated to the simplicial complex A(I//V\, S ) has the
following shape:

QW] —=Q[W/ (s)] ® QW / ()] ® Q[W/ (S0)] — QIW/ (s,t)] ® Q[W/ (s,50)] & Q[W/ {t, 50)]

Now, by Lemma the complex for the surface T(I2(m)) is the image of the previous
one by the deflation functor Def}}.. Thus, it is of the form

QW] —Q[W/ (s)] ® QW/ ()] ® QW/ (r)] —= Q@ Q[W/ (s,7)] ® Q[W/ (t,7)] ,
where 7 = ry := (st)l"=1)/2ls € W. Therefore the Euler characteristic is given by
X(Tg) =14 [W (s, )]+ [W: ()] = W (s)] = W (0)] = [W = (r)] + [W]

=14+ [W:(s,m)]+[W:{r)]=3W:(s)]+2m=1—m+[W: (s,r)]+ [W : (t,r)].

Now, we distinguish the three possible cases for m to determine the last two indices.

If m = 2g+1 is odd, then we have r = (st)9s,s0 s" =t and t" = s so (s,r) = (t,r) = W.

If m = 4g is divisible by 4, then r = (st)?9~'s. From the Coxeter diagram of W= @,
we see that the map interchanging sy and ¢ and leaving s invariant extends to a non-trivial
outer automorphism of @ and descends to an outer automorphism of I»(4g). Taking the
image of the relation r = (st)29~!s under this automorphism yields ¢ = (s7)?9~!s and thus
(s,r) = W. Now, since the element rt = (st)?9 has order 2, we have (t,7) = {1,t,7,tr} ~
CQ X 02.

Now, if m = 4g + 2, then r = (st)%s and (s,r) = (s, (st)*) = (s, (st)?) = (s, tst) ~
I5(2g+1) and because (rt)? = (st)?9st(st)?9st = (st)29+2 = 1, we also have (¢,7) ~ Co x Cs.

Gathering everything we get

2 ifm=14g+2,

1 if mis odd,
[La(m) : (s,7)] = { 1 otherwise

and [Iy(m) : (t,r)] = { m/2  otherwise

thus, the Euler characteristic is given by

3—m if m=2¢9+1,
X(T(I2(m)))=¢ 3—m/2 if m=4g+2,
2—m/2 if m=dyg,

in other words,
X(T(I2(m))) =2 —2g
and the genus of T(I2(m)) is indeed g for m € {29 + 1,49 + 2, 4g}. O
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As the fundamental group of a Riemann surface of genus g > 1 is well-known (see [Hat02,
§1.2]), we obtain a presentation for the group @ in the dihedral case.

Corollary 5.5.2. Let g € N* and m be either 2g + 1, 4g or 4g + 2. Let also QQ be the
subgroup of Io(m) constructed in the previous section (see Definition|5.1.6). Then we have

Q ~m(T(2(m))) =~ (T1,..., g, Y1,---,Yg | [X1, 1] [Tg,9g) = 1)

and in particular, Q* ~ 729,

In the cases where g = 1 that is, if Io(m) is one of the Weyl groups I5(3) = Ag, I2(4) = Bo
or I3(6) = G, then T(I3(m)) is naturally an elliptic curve. More precisely, recalling the
notation of the previous section, we have a preferred point

v :=CnHN () H ey,
$#£380
and the pair (T(I2(m)), [vo]) is a Riemann surface of genus 1 with a marked point, hence
an elliptic curve. Notice that, under the diffeomorphism T(I3(m)) ~ R2?/Z? induced by

quotienting the 3-space 1% by the radical of the Tits form B,, of Is(m) = Iz(m),, the point
[vo] corresponds to the origin.

We can easily identify the elliptic curves T(I2(m)) (for m = 3,4,6) in the moduli space
M1 ~ H2/PSLy(Z) of complex elliptic curves, where H? = {z € C ; S(z) > 0} is the
Poincaré half plane (see [Haild, §2]). Recall that to 7 € H? we can associated a j(r) € C
and we have isomorphisms

~

Cc <& HQ/PSLQ(Z) — M
Jj(r) «—— T — C/(Z+7Z)

Recall also from [Ser70, Chapitre VII, §1.2] that D := {z € H? ; |R(2)| < 1/2, |2| > 1} is a
fundamental domain for PSLs(Z) acting on H?. We just have to determine a corresponding
element 7 € D for each case. We have the following proposition:

Proposition 5.5.3. Let m € {3,4,6} and let {a",BY} be the simple coroots of the root
system of type Iz(m) and V* := R {a",3Y). We denote by ¢ : V* — C the unique isometry
sending o to 1 and BV to an element of the upper-half plane H?. Then we have

exp (2”) if m=23,
¢(8Y) =4 V2exp (°F) if m=4,
V3exp (%) if m=6.
In particular, the corresponding lattice is Z.@® 77 where T € D equals e for Ay and Ga (so
that j(17) = 0) and equals i for By (so that j(T) = 1728). Hence, the curves T(Az), T(Bz2)

and T(G3) are defined over Q and correspond to the orbifold points of D, that is, the points
in D having a non-trivial stabilizer in PSLo(R).

Proof. We normalize the roots in such a way that the short simple roots have norm 2. For
I,(3) = Ay, we have || = |a| = 2 and (", 8) = (8Y,a) = —1. Therefore, since ¢ is an
isometry we should have

—5 ,<a B) = (a¥,8Y) = (d(a"),6(8")) = (1,6(8")) E RG(BY)) = R(4(8)).
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On the other hand, we have 1 = (8Y,8Y) = |¢(BY)|*> and this implies ¢(8") € {—1/2 +
iv/3/2} and if we impose that ¢(3Y) € H2, then it should have a positive imaginary part
and the only possibility is ¢(8") = —1/2+iv/3/2 = exp (27). In the case of I5(4) = Ba, we
have |a| = v2|6] = 2 and (¥, @) = 2(a", B) = =2, 50 (", BY) = (a", f) = —1 = R(¢(8"))
and since |¢(8Y)|2 = |8Y|2 = 2, we obtain ¢(8Y) = v/2¢ T . Finally, for I,(6) = Ga, we have
la| = V3|p] = 2 and (¥, @) = 3(a",B) = =3, s0 (a",5Y) = 5 (8",a) = =5 = R(6(8"))
and |¢(8Y)|? = |BY)? = 3 and thus ¢(8Y) = V/3e & . O

Remark 5.5.4. In Weierstrass forms, an equation for T(As) and T(Gs) is y* = 23 —1 and
for T(Bs), we can take y?> = x3 —x. This is an unusual point of view on 2-dimensional tori.
Indeed, they are first defined as Lie groups, hence as differentiable manifolds diffeomorphic
to (SY)? and it turns out that they carry a natural rational elliptic curve structure. Moreover,
they can be distinguished among complex elliptic curves by the fact that they correspond to
the orbifold points of the Dirichlet domain.

We now focus on the hyperbolic case where g > 1. We first notice the following coinci-
dence between the Riemann surface T(Iz(m)).

Proposition 5.5.5. If g > 1, then we have an isometry (in particular, an isomorphism of
Riemann surfaces)
T(Ix(4g +2)) ~ T(I2(29 + 1))

and these two are not isometric to the surface T(I2(4g)).

Proof. Using [Rat06, Theorem 8.1.5], it suffices to show that the groups Q24+1 and Qug+2
are conjugate in the positive Lorentz group PO(1,2) ~ Isom(H?) ~ PSLs(R) and are not
conjugate to Q4.

Let m := 2g + 1. We first prove that @, and Qa,, are conjugate in PO(1,2). Denote

o —

L(2m) = (s,t | s* = t* = (st)*™ = 1) and I3(2m) = (s,¢,5) its hyperbolic extension. Let
s’ = s, t' :=tst = s' and &, := 5p. Then (s',¢,5)) = Iy(m) and (s',t) = I>(m). Recall

moreover that we have the reflection 79, = (s5t)%9s = ((st)?)9s = (s't')9s' = rp,. Let a, B and

v denote the simple roots of I5(2m) and Va,, := spang(«, 5,7). We have the representation

L(2m) &2 O(Vap, Bam),

where

( 1 — cos(m/2m) — cos(m/m) )
By, = | —cos(m/2m) 1 0 .
— cos(m/m) 0 1

In the same way, denote V;,, := spang(a/, 8',v") and oy, : Io(m) — O(V,y,, By,), where
( 1 — cos(m/m) —cos(ﬂ/m))
By, = | —cos(m/m) 1 —cos(m/m) | .
—cos(w/m) cos(w/m) 1

Consider the linear map P : Vs, — Vi, with matrix

1 1 0
P = (0 2 cos(m/2m) 0) .
0 0 1
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5.5 The manifolds T(I3(m)) as Riemann surfaces

Then we have B,, = 'PBs,, P, so P induces an isomorphism O(Vay,, Bay) — O(Vin, Bim)

fitting in a commutative diagram

(M)~ O(Vyp, Bp) —=— PO(1,2)

C—)O(%myB2m)4>PO( ) )
and thus the group am(Ij(_T;)) is conjugate in PO(1,2) to a subgroup of agm(I@)).
Therefore, identifying Io(m) with its image in I3(2m), it suffices to prove that Qo = Q.

Recall that g9, df S50T2m = S0Tm = Gm, SO q%(m) C qgfr?m) and thus Q,, < Q2. Since we

have

m(L2(2m) : Io(m)] = [L(2m) : To(m)][T2(m) : Qu] = [2(2m) : Q]

= [12(2777/) : Q2m] [QQm : Qm] = 4m[Q2m : Qm]a

o —

we are left to show that [IZ/QE) : @] = 2. Let w € I3(2m). By induction on ¢(w) and
because t and 5) commute, we immediately see that w € m if and only if the number of
occurrences of ¢ in any reduced expression of w is even. Hence we have [IQ/(QE) : Ij(ﬁ)] <2
and since st and Syt have even order, the map I@) — 7,/27 sending s and 3 to 0 and ¢

to 1 is a homomorphism whose kernel contains Iz(m), hence the result.

We now prove that Qa1 and Qi are not conjugate in PO(1,2). It is enough to
prove that the elements o9411(g2g+1) € PO(1,2) and 044(qag) have different traces. Write
I2(2/g:1) = (s,t,50) and @ = (s, ¥',5)). We have qo,11 = S0(st)9s and quy = Sp(st)?9s’
and we can write explicitly the matrices of the simple reflections in the geometric rep-
resentation. We diagonalize st = PdP~! and compute tr(ge,+1) = tr(d9P~1s3). After
calculations, we find

T T
tr(geg+1) =8 (1+cos <29+1>> cot? <29+1> -1

Doing the same for g4y, we find

tr(qay) = 4 cot? (49) — 1.

And indeed, we get tr(gog+1) # tr(qag) for g > 1. O

Recall that a Belyi function on a Riemann surface X is a holomorphic map 8 : X — C
which is ramified only over three points of C. Since Iz(m) is a compact triangle group
and @, < Iz(m) is torsion-free and of finite index. Thus, by [JW16, Theorem 3.10], the
projection

B:T(Ix(m)) = H?/Qm —> H?/Iz(m) ~ C
is a Belyi function on T(I2(m)) of degree [@ : Qm) = 2m. Using [JW16, Theorem 1.3],
this implies the following result:

Proposition 5.5.6. For any m > 3, the Riemann surface T(I2(m)) may be defined over a
number field (or equivalently, may be defined over Q). Moreover, if m =5 or m > 7, then

the 1-skeleton of the tessellation A(@)/Qm defines a dessin d’enfant on T (Iy(m)).
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5.5 The manifolds T(I3(m)) as Riemann surfaces

Remark 5.5.7. It is a reasonable to expect that T(I2(m)) is definable over Q(cos(2w/m)).
This is coherent with the isomorphism T (I3(2g + 1)) ~ T(I2(4g + 2)) and with the vertices
of the tessellation of H?, whose coordinates may be chosen in this field. However, we haven’t
found a proof of this yet.

This would give a geometric interpretation of the splitting field of a dihedral group.

—

Example 5.5.8. The triangulation A(I2(5)) is the classical tessellation {3,10} of the Poincaré
disk. More precisely, the Tits form B is given by

1 —¢ —c

B=|-c 1 =—c| with ¢=-cos(r/5)
—c —c 1

and, if v* € V* is a normalized eigenvector for the unique negative eigenvalue of E, then
we have an identification with the hyperbolic plane

He={reV*; B\ =-1, B\ <0} ~ K>

and the stereographic projection on the hyperplane E(v*,—) = 0 with pole Ay gives the

Poincaré disk model for H2. Under this representation we represent the tessellation A(@) =
{3,10} of H as in Figure where the black triangles are the images of the fundamental
triangle C/R% ~ C N'H under elements of odd length.

(a) The {3,10}-tessellation of (b) The {3, 14}-tessellation of
Y(I5(5)) ~ H2. Y(I2(7)) ~ H2.

Figure 4: Two regular tessellations of the Poincaré disk.

In this tessellation, we can identify the triangles that are in the Q-orbit of C N'H. These are
displayed in green in Figure[5. Collapsing these triangles in one gives the surface T(I3(5)).
We remark that we can extract a fundamental domain for Q) on T(I2(5)) as the projection
of the domain displayed in Figure [6d. Rearranging the figure we obtain the triangulation
displayed in the Figure @ where the points with the same name (resp. the edges with the
same color) are identified. We notice that the resulting space is indeed a closed surface of
genus 2. The case of Ia(m) for m odd is pretty similar and we obtain the {3,2m}-tessellation
of the Poincaré disk. For instance, the Figure |/ shows the case of I5(7).
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Figure 5: The green triangles form the Q-orbit of the fundamental triangle C'NH inside the
Poincaré disk.

S

a ‘\.c
c/ b
b a
c c
a a

b
(a) Fundamental domain for (b) Fundamental domain for

@ in the Poincaré disk. I>(5) in T(I2(5)) = Ts.

Figure 6: Fundamental domain for () and its image in T(2(5)).

6 Equivariant chain complex of T(W) and computation of
homology

6.1 The W-dg-algebra of T(WV)

The combinatorics of the complex CS(T(W),W;Z) is fairly similar to the one of the
complex C:"‘H(T ,W;Z) we constructed in the first part and the proofs given above can be
applied verbatim to this new situation. We obtain the following results:

Theorem 6.1.1. The quotient simplicial complex A(W,g)/Q is a reqular W -equivariant
triangulation of the manifold T(W). Recalling the projection 7 : W —s W, the resulting
homology Z[W|-chain complex CSN(T(W), W;Z) is given (in homogeneous degrees k and
k—1) by
i Dz D R -
IcS IcS
\T|=n—k I|=n—k+1

with boundaries defined as follows: for k € N and I C §, letting {j1w -+ < jr41} := §\ I
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6.1 The W-dg-algebra of T(W)

we have
k+1

w, I
(90 iy = D_(~1)"Plugys

u=1

where, for J C I, p]‘] denotes the projection
T(W) = a(W/Wy) — a(W/Wp) = a(W).

Corollary 6.1.2. The Z[W]-dg-algebra C?.,,(T(W), W Z) associated to the W -triangulation
AW, 8)/Q of T(W) has homogeneous components

Ccell( 4 @ Z @ Z W[ \W]

1cS
|I| n k [I|=n—k

differentials given, for any I C S and w € W, by

d*(r(lw)) = Z (=1)%w (eﬁ\{j}w), el = Z x,

0<ughi1 -
Ju-1<J<Ju

where {jo < -+ < ji} =S\ I. Its product

CP

cell

(T(W),W;Z) — CLL(T(W), W;Z)

cell

(T(W),W;Z) @z C?

cell
is induced by the deflation from W to W of the unique map

Z['W) @z ZI' W) — Z[["™ W]
satisfying the formula

P .
- S ((zy™")gy) ifzy= € WiW,
YT,y € W, T UTY = Onna(19) amin 18) { 0 otherwise.

Remark 6.1.3. We make several observations on the previous results.

o As explained in [BR0OJ, §2.3], a quotient simplicial complex of the form A(/V[?,g)/H
(with H < W) has a an interpretation in terms of double cosets. In our case, we have
an isomorphism of posets

~

(PaW.9)/Q).C) = ({L.QuW}cg e =)
(W3 rw!) +— (I, QuW)

where the order =< on the second factor is defined by

o 127
(1.Quity) = .Quiw) L { A2

and we may rephrase the above results using this poset.

o As the subgroup Q is torsion-free, it contains no reflection and we have @ < ker(e),
so by the general result [Rei92, Proposition 2.4.2], the quotient T(W) is an orientable
pseudomanifold. The Theorem[5.5.3 can be seen as a refinement of this result in our
particular setting.
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6.2 The homology W-representation of T(W)

e The triangulation A(f‘l\g)/Q (resp. A(EIZ)/Q) has f-vector (4,124,240,120) (resp.
(266, 7920, 29280, 36000, 14400) ). In particular, the Euler characteristics are given by

X(T(Hs)) =0 and x(T(H,)) = 26.

We notice that the f-vector of our triangulation of T(Hy) is far bigger than the one
found in [RTO01, §3], which is (1,60,144,60,1) but of course, this last one doesn’t
correspond to an equivariant triangulation. Notice finally that the general Gauss-
Bonnet formula gives Vol(T(Hy)) = %x(T(H@) = 1047%/3 ~ 342.15.

6.2 The homology W-representation of T(W)

We can now determine the action of W on H,(T(W),Z). In fact, as for the classical
tori, we will show that there is no torsion in H,(T(W),Z) but we shall decompose the
representations H.(T(W), Q(W)) over a splitting field Q(W) of W, which is bigger than Q
in the non-crystallographic cases.

Recall from |GP0O, Theorem 5.3.8] that a splitting field for W is given by
QW) = Q(cos(2m/msy), s,t € 8) = Q(xo(w), we W) CR,

where X, = tr(o) is the character of the geometric representation o : W — GL(V) of W. If
W is a Weyl group, then Q(W) = Q and we have

Q(I2(m)) = Q(cos(2m/m)) and Q(Hs) = Q(Ha) = Q(V5).

We suppose from now on that W is one of the groups Hs, Hy or Io(m), with m > 3 and
we keep the notation of the previous section. The first groups to be determined are the top
and bottom homology of T(WW). Recall that we have n = rk(W) = dim T(W).

Proposition 6.2.1. Let 1 and e be the trivial and signature modules over Z[W ], respectively.
We have isomorphisms of Z[W]-modules

{ Ho(T(W),Z) ~ ]l,
H,(T(W),Z) ~e.

Proof. Since S is path-connected, its quotient T(W) is path-connected too and is orientable
by Theorem [5.3.3] Thus, we have an isomorphism of abelian groups

Ho(T(W),Z) ~ Z ~ H,(T(W),Z).

It is clear that Ho(T(W), Z) is the trivial module and, as Z[W]-modules we have H, (T(W),Z) =
ker(0,,) with
On = ZW] — Do Z[W/ (si)]
wo = (=) w (si)
where s; = m(5;) is a simple reflection of W for ¢ > 1 and sy := rw = 7(8p). Define
e:= 3, elw)yw € Z[W] with e(w) = (—=1)“®) and notice that we = e(w)e for w € W and
On(e) =0. Let x = ) x,w € Z[W] such that d,(z) = 0. Then, for all 0 < i < n, we have
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6.2 The homology W-representation of T(W)

Y w Tww (s;) = 0. Fixing 1 < i < n, we can choose a set {wr,...,wy} of representatives of
the left coset W/ (s;) (the minimal length representatives for instance). We have

k k
0= Z Tpw (8;) = wajwj (s;) + wajsiszi (si) = Z(a:wj + T, ) W5 (Si)
P j=1

weWw 7

hence y; + ZTw;s; = 0 for all 1 < j < k. This implies z,, + xys, = 0 for all w € W and
doing this for every i > 1 gives zy, + x5 = 0 for all w € W and s € S, in other words,
Ty = e(w)zq for w € W and x = z1e € Ze. O

Proposition 6.2.2. The homology H.(T(W),Z) is torsion-free and the Poincaré duality
on T(W) induces isomorphisms of Z[W]-modules

Ho o(T(W),Z)" ~ Hy(T(W),Z)" 7 e.

Proof. Tt suffices to prove that H, (T (W), Z) is torsion-free, the Poincaré pairing H*(T(W), Z)®
H,_,(T(W),Z) — Hp,(T(W),Z) = ¢ and the universal coefficient theorem implying the sec-
ond one.

For simplicity, if A is an abelian group, we denote by Tors(A) its torsion subgroup.

We also denote H; := H;(T(W),Z) and H' := H*(T(W),Z). Again using Poincaré
duality and the universal coefficients theorem, we get

Tors(H™™%) = Tors(H;) = Tors(H' ).

Since n < 4, it remains to show that Tors(H;) = 0. This is always true for an orientable
surface and still holds for Hs and Hy, by Corollary O

The above Lemma, combined with the Hopf trace formula (see below) provides enough
information to determine the homology representation of T(W).

Lemma 6.2.3 (Hopf trace formula, [Spa81, Chap. 4, §7, Theorem 6] or [Linl9, Lemma
2.4)). Let k be a field, Cy be a bounded chain complex of finite dimensional k-vector spaces
and f € Endg(C,) be an endomorphism of Co. If H.(f) € Endi(H.(C)) denotes the induced

endomorphism in homology, then we have the formula

S (=Dir(fi) =D (=1t (Hi(f)).

% 7

This can be readily applied to our situation to obtain the following formula. As a
reminder, if G is a (discrete) group, H < G is a subgroup and if M is an H-module, we
denote by M Tg the induced module of M it is a G-module. Similarly, the restricted module
of a G-module N is denoted N l%. Observe that we have a canonical isomorphism of Q[G]-
modules Q[G/H] ~ 11%. Recall also that if N <G and if M is a G-module, then its deflation
Defg/N(M) is a G/N-module.

In our context, we have isomorphisms of Q[/W?}—modules

G'EwWe= P g
I
ICS ; |I|l=n—k
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6.2 The homology W-representation of T(W)

Thus
CEN(T(W),W5Q) = Def (G @) = P 1l
1CS 5 |I|=n—Fk

(Wr)?

and we obtain the following result:

Lemma 6.2.4. We have the following equality of virtual rational characters of W
S ()MDefif (117, ) = So(-0M11g = (1) 3o (1) H(T(7), Q).

IcS ICS i=0

For notation simplicity, we shall use the conventions of |[GP00| to denote the irreducible
characters of W. We start with Io(m).

Theorem 6.2.5. Let m > 3. Following [GPO00, §55’4] for 1 ' g [(m —1)/2], we
consider the following representation of Io(m) = (st | s* =t* = =1)

pi: Ia(m) — GLo(R) defined by pj(s) = <(1’ (1)> and pj(st) = <‘;’§83:)) ;z:g%%)) ’

where Oy, = 2w /m and we let p; be a realization of p; on the splitting field Q(6,,) of
Ig(m)

Then, the first homology representation of T(I2(m)) is given by

EB p; if m is odd,
1<j<(m—1)/2
Hy(T(I2(m)), Q(0nm)) = @ p; if m is even.
1<j<m/2-1
j odd

Recall also that Ho(T(I2(m)),Q) =1 and Hy(T(I2(m)),Q) = €.

Proof. We already have obtained the last statement above in Proposition [6.2.1l For the
first homology, we let x; := tr(p;) be the character of p; and, denoting by Regg,,) =
Q(0m)[I2(m)] the regular module, lemma yields the following equality of virtual char-
acters of Iy(m)

H;(T(I2(m)),Q(0m)) = 1 + € — Regg,,) — Z (_1)|1\]1T7Ir2(% -
0£IC{30,5,t} 2T

We deal with each case separately. Recall the computations of the images in I(m) of the
parabolic subgroups of I3(m) from the proof of the Corollary

e m = 2k + 1 is odd. We have r := ry = (st)*s. Hence s" =t and t" = s so I(m) =
(s,7) = (t,r). Furthermore, in this case we have (cf [GP00, 85.3.4]) Regg,,) =
1+e+) ;2x; and the above formula reduces to

Hi(T(Io(m)), Q(0n)) = 3 115" =313 "2,
J
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Now, by [GP00, §6.3.5] we have m@(m) =1+ ;y; and thus

Hy(T(Iz2(m ZXJ

2k—1

m = 4k. In this case we have r = (st) s and let a := st. The conjugacy classes of

I>(m) are given as follows

Representative | 1 [ a | a® | -+ | a®F | a2FH! s ;

Cardinality 1122 -] 2 1 2k+1 | 2k+1

First, we determine the characters ]lT ) for z = s,t. In the proof of [5.5.1 we have

seen that t = (sr)?*~ s, so (s,r) = _[2( ) Next, as detailed in [GP0O0| §5. §5.3.4], the
character x; is given by

, 2mij ,
xj(a") = 2cos (:?) and x;(sa") = 0.

We have (t,r) = {1,t,7,a?*} ~ Cy x Cy and by Frobenius reciprocity

m 5 (1 . . 2k
v (1G5 ),, = (Lulis)), >:><J< )+ () +x,(r) x5 (e)

Coxg(1) 4 2xG(t) + Xj(a%) 1+ COS(?T]) 1 if j is even
B 4 2 0 otherwise.

The 1-dimensional irreducible representations of Io(m) other that 1 and ¢ are given by
es(s) = ei(t) = 1and es(t) = &¢(s) = —1. Therefore, Reggg,,) = L+etest+er+)_; 2x;-
We directly compute using Frobenius reciprocity

(mfigj;%)’ 5S>I2(m) - (mggj?), 5) nomy =

(]1le (m), )12(m) — (mgg"),]l)h(m) =1

]ngZ%n) =1+ + Z Xj-

j even

and

and hence

On the other hand, by [GP00, §6.3.5], we have ]lT]2 (m) _ ]l—l—ss—{—z x; and ]lT

]l—l—eﬁ—z X;. Putting everything together and rememberlng that ¢t and r are conjugate
yields

Hi(T(I2(m)),Q(0m)) =1+ — Rego(o,,) — Z (_1)”']”7]5(% )
P£IC{50,5,t} 2

I I I
=1 +¢— Regg,,) + méf"” +2- 11T<f>( —11; 2(’” —2-1=Y x5
j odd
m = 4k + 2. We proceed in the same way, noticing that r = (st)?*s = a?*s. The
characters ]1T<[§>(m) and ]lT@(m) are determined as above. We compute

(1122 ¢ )Ig(m) = (1129 oy L (11Tt,(:;l)’]1)12(m)
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. I e I
but since deg(]lTéfZ?) = [I(m) : (s,7)] = [I2(m) : (s,a**)] = 2 this implies ]lTé’(gl) =
1 + 5. Now, we have (t,7) = {1,t,7,a***1} ~ Cy x Cy and using again the Frobenius
reciprocity we obtain

Lim) 3 e i)+ xg() +x5(r) + xi(@® )
<]1T ’XJ>()7<’]l >t>7j ’ 4] ;

Xj(l) Xj(a2k+1) 1 + cos(mj)
4 2 ’
Since ]ll ;é 1 # ]ll ) we also get

(]lef,S“T)’(gS)Ig(m) - (]ngis"T)’Et)Iz(m) B (11Tff§’;1)7€>12(m) -
(ILTIQ(m )12(m) -t

]ITIQm)—]l“‘ Z X+

J even

and

Finally,

As above, we conclude that

Hy(T(I5(m)), Q(0m)) = e—Reggqq, ) +2 012+ -1 200 —11 200 = 3™ 5,
7 odd

as claimed.

Theorem 6.2.6. With the notation of (GP00, Appendiz C, Table C.1], we have
1 if i=0,
@3 e5 if i=1,
3s®3s D5 if i=2,
€ if i=3.

V0 < i <3, Hy(T(Hs),Q(V5)) =

Proof. Consider the virtual character xg := ZIC§(_1)|1|+1]1T5(31? ) For x € Irr(Hs), we
- 31

may compute

(¢ 0m, = 20 (1 )

3

1c8

= )+ _ 1)+t _

O () = 3 D)
Ics IcS
wen(Hzy)

We obtain o
xg=¢—1-3,—-3,+3,+3.+5. -5

and therefore, using lemma [6.2.4

Hy(T(Hs)) — Hi(T(H3)) = =35 — 35 + 3, + 3, + 5, — 5,.
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But from Lemma we have dim(H;(T(H3))) = dim(H2(T(Hs))) = 11 = dim(35 + 35 +
5,), so

Hy(T(Hs),Q(V5)) = 3,+3/+5, and Hy(T(Hs),Q(V5)) = 3,+3,+5, = H1(T(Hs), Q(V5))®e.
O

Finally we treat the case of Hy.
Theorem 6.2.7. With the notation of (GP00, Appendiz C, Table C.2], we have
( 1 if i=0,
44 ® 4y @ 16/, if i=1,
Y0 <i <4, Hi(T(Hy),Q(V5)) ={ 65@®65®30; D305 if i=2,
4o o6, if i=3,
L € if 1=4.

: - (1] H4A
Proof. As for the previous proof, we let xx : Zlgs( 1) ]ITW(HM) and

Vx € Irr(Hya), (X, XH) g, = > )V x(w).
ICS, wen(Hay)
This leads to
xu=1+¢c—4 —4 — 4, — 4, + 6, + 6, — 16, — 16, + 305 + 30,.
Since dim(H;(T(H4))) = dim(H3z(T(Hy4))) = 24 we obtain
Hy(T(Ha), Q(V5)) = 305 + 305 + 65 + 6,

and
Hi(T(Hy)) + H3(T(Hy)) = 4 + 4, + 4 + 4, 4+ 16, + 16...

But since the representations H;(T(Hy)) and Hs(T(H4)) must be realizable over Q and
because of the Poincaré duality pairing between the two, we are left with the following four
possibilities:

H\(T(Hy)) | 4+ % + 16, | 4+ 47 +16, | 4, + % + 16, | 4; + 4] + 16,
H3(T(Hy)) | 4 + 4, + 16, | 44+ 4 + 16, | 4, +4; + 16, | 4, + 4, + 16,

However, the Q[H4]-module H;(T(Hy),Q) is a sub-quotient of the module

CiN(T(Ha), Hyy Q) = > 117 |

|1[=3

and we compute

(CfEII(T(H4))7 16T>H = 0 — (HI(T(H4))7 16r)H4 = 0
4
Hence, only 167 can be a direct factor of H1(T(Ha), Q(v/5)). In the same fashion we compute
(Cfell(T(H4))a4;)H =0 = (HI(T(H4))74:§)H4 =0
4

and thus only the third column of the table above is possible. ]
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Remark 6.2.8. In [RT01), §3] and [Marl5, §2.2], the homology of T(Hy) is also described,
but only as a Z-module.

Finally, we exhibit another algebraic meaning of the Euler characteristic of T(W). The

Poincaré series of Iy(m), Hs and Hy can be found in [CLS10, §3.1, Table 7.4 and Table 7.5].
Using these expressions, we immediately obtain the following corollary:

Corollary 6.2.9. Let W be a finite irreducible Cozeter group. If W (q) (resp. /W(q)) denotes
the Poincaré series of W (resp. of its extension W ), then the Euler characteristic of T(W)
s given by

(V) = L@

Wi(q) |,

Moreover, the geometric representation o of W is always a direct summand of Hy(T(W), Q(W))
for every W and the two are equal if and only if W is crystallographic. In particular

@ o® is a direct summand of Hi(T(W),Q).
a€Gal(Q(W)/Q)

Remark 6.2.10. With [CLS10] it can be seen that the quotient W(q)/W(q) is a polyno-
mial in q, but we cannot hope for a generalization of the Bott factorization theorem [Hil82,
Theorem 6.3] as in the affine case, i.e. a formula of the form

W) _ 1 -
TACN S B

1

with {d;} the degrees of W. Indeed, the polynomial H4(q)/]/ﬁ(q) is irreducible of degree 60.
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Part IV

An Gs-equivariant cellular structure on
the flag manifold of SL3(R) from the GKM
graph of G;

In this part we start our study of flag manifolds. We first recall some classical facts about
flag manifolds and in particular, we describe their (T-equivariant) cohomology, with the
three descriptions of Borel, Schubert and Goresky-Kottwitz-MacPherson.

Afterwards, we explicitly describe the flag variety F := SL3(C)/B of type As as a
closed subvariety of P7(C) and we identify the action of the Weyl group W = &3 under this
embedding. Inspired by the case of SLs and the GKM graph of &3, we define 1-cells on
the real points F(R). Inductively, this leads to an G3-equivariant (semialgebraic) cellular
decomposition of F(R). We obtain the associated chain complex in Theorem and then
we describe the resulting homology representation. In particular, we prove that the mod 2
cohomology of F(R) is the mod 2 coinvariant algebra of &3, as an Fy[G3]-graded algebra.
This is achieved by studying suitable transverse subvarieties of F(R).

7 Reminders on flag manifolds and their T-equivariant coho-
mology

7.1 Background and notation

We first recall some notation. We let as usual G be a simply-connected semisimple complex
algebraic group and we choose a Borel subgroup B of G. We also consider K a maximal
compact subgroup of G, with maximal torus 7' contained in B. The Lie algebra b of TC is
a Cartan subalgebra of the Lie algebra g of G. We denote by ® the root system of (G, T°)
and by @ the positive roots associated to the pair (G, B). Finally, we let I be the set of
simple roots of ® and W := N (T)/T ~ Ng(T®)/T® ~ W (®) be the Weyl group. We have
the root spaces decomposition
g=ho @ o

acd
Recall that, given o € &, we have an sly-triple (4, Ya, ha) in g and the vectors (za, Yo, ha)aco+
form the natural basis of g. For « € II, the slo-triplet (24, Yo, ha) induces an embedding of
Lie algebras sly(C) < g, which lifts via the exponential (since SL2(C) is simply connected)
to an embedding of algebraic groups j, : SLa(C) — G. Define

Sa i= Ja <§) _01> € G.

Then, s, represents the simple reflection s, modulo TC. Moreover, if w = Say " Say, €W
is a reduced decomposition for w, then the element w := s, - - - Sa,, € G is independent of
the chosen decomposition and represents w modulo TC. Then, W acts on K /T by

(kT) - w := (kw)T.

98



7.1 Background and notation

On the other hand, the Iwasawa decomposition [Bum13, Theorem 26.4] reads G = BK.
Hence, we obtain a diffeomorphism

G/B~BK/B~K/(BNK)~K/T

and transporting the action of W on K /T using this diffecomorphism gives a (non—algebraiﬂ
action of W on G/B. From now on, we let F := K/T ~ G/B be the flag manifold of K.

The torus T =~ (S')" acts on F, and we obtain then the corresponding rational T-
equivariant cohomology algebra H7.(F,Q). The Bruhat decomposition ([Bum13, Theorem
27.2])

G=|J BuwB

weW

induces a decomposition
G/B= | ) BwB/B.

weW
Furthermore, each component BwB/B is an affine space, more precisely, one has BwB/B ~
C!®) (|Bum13, Theorem 27.3]). Hence, BwB/B is a real cell of dimension 2/(w), called
Schubert cell associated to w and the above decomposition makes F a cellular complex.
If wg € W is the longest element, let B_ := B"° = wgBwy and consider the closure
(with respect to the Zariski topology) of B_wB/B ~ CH{wo)=t) which we denote by
Qy = B_wB/B ; we call it the (dual) Schubert variety associated to w. This is a closed
(singular!) subvariety of the smooth projective variety F ~ G/B, of real codimension
20(w). Its fundamental cohomology class, denoted by X,, := [Q,] € H*®)(F, Q) is called
a Schubert class (we look at B_wB/B instead of BwB/B in order to obtain a class in
H?()(G/B) rather than in H2(w0)=2{w)(G/B)). We have also an equivariant cohomology
class Xy, := [Qu|r € H%e(w) (F,Q), called an equivariant Schubert class. The basis theorem
([Kajl5) §1]) tells us that

H*(F,Q) = P Q(Xu)

weW
and that
Hi(F,Q) = D Hi(pt, Q) (Xu).
weWw
In other words, the Schubert classes (resp. the equivariant Schubert classes) form a Q-basis
(resp. a H7.(pt)-basis) of the cohomology (resp. the T-equivariant cohomology) of F.

A fundamental question (sometimes referred as the Littlewood-Richardson problem) is
to find the structure constants c;;,, € Hy(pt) verifying

Yu,ve W, X, - X, = c? X

u, v W

weWw

To find such constants means to describe the multiplicative structure of the equivariant
cohomology algebra of the flag manifold. We may of course ask the same question in the
non-equivariant case.

8Tn the case of SL2(C)/B ~ CP', the action of s € & \ {1} is given by z-s = —1/Z.

99



7.2 Identifying the action of W on H}.(pt, Q) and on the (T-equivariant) cohomology of F

7.2 Identifying the action of W on H;(pt,Q) and on the (7-equivariant)
cohomology of F

We have already studied the action of W on T by conjugation. This induces an action of
W on Br, so W acts on the cohomology algebras H*(Br,Q) and H*(F,Q) as well as on
HZY(F,Q). Our aim is to describe these actions as actions on polynomial rings.

A choice of an isomorphism 7' = (SY)" induces an isomorphism 7¢ = (C*)" and a

Lie algebra isomorphism h = C". We therefore obtain coordinates in h; hence a choice of
an isomorphism 7 ~ (S!)" determines the choice of graded algebra isomorphism S (hy) =~
Ql[t1,. .., tn), the t;’s having degree 2. Hence, with this choice, the action of W = W (®)
on h* induces an action of W on Qlty,...,t,]. On the other hand, a choice of T = (S!)"
induces a choice of By — (CP*)" and denoting by 6; the Poincaré dual of the fundamental
homology class of the i*" copy of CP* in (CP>)", we obtain an isomorphism of graded
algebras Q[f1,...,0,] — H*(Br,Q), the 6;’s having degree 2 and here again, the action of
W on H*(Br,Q) yields an action of W on Q[6y, . ..,0,]. Finally, a choice of an isomorphism
T = (S'Y)™ determines the choice of an isomorphism S (bg) =~ H*(Br,Q). One proves
that this isomorphism is W-equivariant. More precisely, the isomorphism H*(F,Q) ~
S(hg) /S (b@)g/}/ is W—equivarianﬁ and this gives the result.

From these considerations we may conclude that, once a choice of an isomorphism 7" ~
(S')™ is made, we get a system of coordinates (¢1,...,%,) on b and that the isomorphism

H*(Br,Q) — S(hp) — Qlt1, .-, tn]

is W-equivariant.

On the other hand, we can identify the representation of W on the (ungraded) ring
H*(F,Q).

Proposition 7.2.1. The ungraded Q[W]-module H*(F,Q) (resp. the ungraded H7(pt, Q)-
module H}.(F,Q)) is the reqular module.

Proof. We treat the non-equivariant case using an argument due to Hsiang and can be found
in [Hsi75, II1, §1, Lemma 1.1]. The |W| cells appearing in the Burhat decomposition of F are
all even dimensional, so F has cohomology even in even degrees and its Euler characteristic
is x(F) = |[W|. As F is a CW-complex and W is finite, [Mat73, Proposition 0.5] ensures
the existence of a W-equivariant cellular structure on F and let C* := C% ,(F,W;Q) be

the associated cellular homology chain complex. In the Grothendieck group Ko(Q[W]) we
have Zizo(_l)z[cl] = Zizo(—l)Z[Hl(]:a Q) = Zizo[HQl(}_a Q)] = |H*(F,Q)], but since
W acts freely on F, the modules C* are free Q[W]-modules and there exists k € Z such
that [H*(F,Q)] = k[Q[W]] but the equality x(F) = |W| forces k =1 and thus H*(F,Q) is
indeed the regular Q[W]-module.

On the other hand, recall that F is T-equivariantly formal (i.e. the Serre spectral
sequence associated to the Bore fiber bundle F «— F xp Ep — B collapses, see |[GKM97,
§1.2]). By the Leray-Hirsch theorem [Hat02, Theorem 4D.1], this implies that there is an
isomorphism of H}.(pt)-modules

Hp(F,Q) ~ Hr(pt) ®q H*(F,Q)

198ee [BGGT3| Proposition 1.3], proven in [Bor53b]| directly, and in [Ree95] by using De Rham cohomology
of W-invariant differentiable forms on the manifold F.
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7.3 The three descriptions of H}(G/B,Q) after S. Kaji

and moreover this isomorphism is W-equivariant, if we let W act trivially on H7.(pt). We
obtain H}.(F,Q) ~ H}(pt) ® QW] ~ Hry(pt)[W], as required. O

Remark 7.2.2. A more constructive proof can be found in [Tym07, Lemma 4.4 and The-
orem 4.5], using (equivariant) Schubert classes. In fact, the W-translates of the sum
> wew Xw of all the equivariant Schubert classes is a Hi(pt)-basis of Hp.(F,Q). The same
for the classical cohomology: the W -translates of >, X form a Q basis of H*(F,Q).

7.3 The three descriptions of H;.(G/B,Q) after S. Kaji

In order to solve the structure constants problem and hence describe the multiplicative
structure of the equivariant cohomology algebra, we have three descriptions of this algebra.
Of course we already have one description (the one of Schubert, also known as the Chevalley
description), which is to write a cohomology class as a H7(pt)-linear combination of Schu-
bert classes. On the other hand, one can notice that (once an isomorphism 7' ~ (S')" is
chosen)

def

R:= Hj(pt,Q) £ H*(Br,Q) = H*((CP®)",Q) = Q[¥1,...,6,] = Q[4],

with deg(6;) = 2. In practice, we have a better understanding of the action of W on the
root system ® and we shall rather consider the W-equivariant isomorphism (see the previous
section)

R:= Hj(pt,Q) £ H*(Br,Q) =~ S(b3) =~ Qlt1, ..., t.] = Q[f],

with deg(t;) = 2. Then, we get a polynomial algebra. We denote by R the W-invariant
polynomyals. The Borel description ([Kajl5, Theorem 2.3]) consists in writing

H7(F,Q) ¥~ R@pw R ~ Q[t’x]/(f(t) — f(z), feQ)")

Hence, we may see a cohomology class as the class of a polynomial Q[t,z] modulo the
ideal Iy := (f(t) — f(x), f € RY). This allows us to easily calculate the product in the
cohomology algebra. Moreover, the right action of W on F commutes with the one of T,
hence W' acts on H;(F,Q) and the isomorphism between this algebra and R ® zw R shows
that W acts on R @ pw R on the second factor and we deduce that the action of W on
Q[t, z] / Iy induced by the action on F is given by

vw e W, V(o) € AT /1w )t e) = it 0 (@),

We also have a combinatorial description of this algebra, called the Goresky-Kottwitz-
MacPherson description, which makes fine use of the combinatorial properties of the Weyl
group. Let us recall that if w,v € W and a € ®*, we write u <, v for u = s,v and
f(u) < £(v). This is a binary relation and the reflexive transitive closure of the relation
U, <o is the Bruhat order. The GKM algebra is then ([Kajl5, Theorem 2.5])

H7(F,Q) ~ H*(G,Q) := {h = (ho)o € P Q] ; Va € B, u<qv = hy—hy € <a(t))}

veW

the notation H*(G, Q) making reference to the GKM graph of W. Recall that the GKM
graph G := (V| E) has elements of W as vertices, and we set and edge between u and v if
there is some 3 € T such that v <g u or u <g v. As a result, an equivariant cohomology
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7.4  The case of SL,+1(C)

class is represented by a family of polynomials in Q[t], indexed by the Weyl group. Here,
the product is defined component-wise and there is no quotient modulo an ideal to care
about, which makes the calculations easier. Furthermore, the action of the Weyl group on
H*(G, Q) is nicely given by (see [Kajl5, Proposition 3.3])

Vo,w e W, Yh € H*(G,Q), (w-h)y = hyw.

Finally, we can determine (see [Kaj15, Proposition 3.3]) the action of W on Schubert classes:
if s, € W is a simple reflection associated to the simple root « € II, then we have

718 3
So- Xy = X — w(a)(t) Xs, — Zﬁecb+ s L(wsasp)=L(w) 2%‘&118@8;3 if lwsa) =Ll(w) -1
Xy if l(wsqy) =0(w) +1

Moreover, we have nice formulae describing Schubert classes in the Borel and GKM
descriptions (we speak about Schubert polynomials, see [Kajl5, §3]). Finally, we have con-
version algorithms allowing us to go from a description to another one and this can be
used to solve the structure constants problem by writing the product of Schubert classes as
polynomials (GKM or Borel), then compute the usual product of these polynomials, and
eventually write the result back as Q[t]-linear combination of Schubert classes. We have
therefore entirely described the T-equivariant cohomology algebra of F and we have three
nice ways to consider it.

7.4 The case of SL,1(C)

In this section, we fix n > 1 and we focus on the simple compact Lie group K := SU(n+1)
of type A,, that is

K=5U(n+1):={A€ GL,11(C) ; AA* = I, and det(A) = 1}.

Recall that the subgroup T := S(U(1)"*!) of diagonal matrices in SU(n + 1) is a maximal
torus. By [Buml3, §24], the Lie group K = SU(n + 1) admits G := SL,11(C) as a
complexification and the complex torus 7C ~ (C*)" is formed with diagonal matrices in
SLy+1(C). Furthermore, we may choose the Borel subgroup of G to be the group of upper-
triangular matrices. The Lie algebra of G is g = sl,,41(C) of traceless matrices of gl,, {(C)

g =5l+1(C) = {z € gl,41(C) ; tr(z) =0}
and the Cartan subalgebra b = Lie(TC) is given by

r1 ... 0 n+1
e T S s
0 cee Tp4l =1

Since the Lie bracket on g is the commutator, if we denote by E; ; the matrix of gl
whose (k, j) entry is 1 if (4,7) = (k,1) and O else (i.e. E;j = (0(x,),(i,j))1<ki<n)- The roots
of b are the a; ; € h* defined by «; j(x) = x; — x; for i # j ; we have go = CE;; and the
root space decomposition is given by

g= ho @CE%J
it
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7.4  The case of SL,+1(C)

Since B is the group of triangular matrices of SL,41(C), the positive roots are those «; ;
with 4 < j and the Borel subalgebra of g is b = h @ &, <;CE;; and therefore, the simple
roots are the o; := ;41 : © — x; — x;41. Finally, the Weyl group is W = &,, and acts
on h* by permuting the variables and the simple reflections are s; := sq,,,, = (4,7 + 1) for
1<1<n.

Remark 7.4.1. Since the normalizer in GL,11(C) of the group Tgy, of invertible diagonal
matrices consists of monomial matrices, the normalizer Ngy, . (c)(T) consists of normalized
monomial matrices (that is, matrices of the form u~'z where x € GLy41(C) is monomial
with determinant 1 and p is a n-root of det(x) in C) and we recover that the Weyl group is

W = Ngr,,,)(T)/T = Ngr,,.,c)(TeL)/Tor ~ Gn.

Since we have the description h = {(z1,...,7p41) € C"" 5 @9 + - + 201 = 0}, we
may write
_ Qltr,- s toya]
(it tg)

Of course, the corresponding action of W on R consists of permuting the variables. Hence,
if e; 1= 1< <chi<ni1 Thy = Tk, denotes the ith elementary symmetric polynomial in the
variables x;, then one has the well-known isomorphism

R := H*(Br,Q) (~Qlov, ..., an])

RW ~ Q[t17 o 7t7’b+1]6n

(tl + - 'tn+1)

~ Qlea, ..., ent1]

and hence

Q[tl, e ,tn+1,x1, e ,xn+1]
(e1(t),er1(x),ei(t) —ei(x), 2<i<n+1)

H7(SU(n+1)/T,Q) ~ R@pw R~

Recall from the Introduction the geometric descriptions of SU (n+1)/T and SL,,+1(C)/B.
As a reminder, define

Fl:={Fy=(Fy,...,Fp1); F,<C"' F; < Fyyy, dim(F;) =i+ 1}

the set of flags in C"*1. It is a Zariski closed subset of the variety ITi<r<ng1 Gr(k,n + 1),
where Gr(k,n+1) is the Grassmannian variety of subspaces of C"*! of dimension k. Hence,
F{ is a (smooth) projective variety. We let SL,1(C) act naturally on F¢ and this action
is transitive. On the other hand, the subgroup B is precisely the stabilizer of the flag (F?)
associated to the canonical basis (u;); of C" ™! (i.e. FY = (uq,...,u;)) and hence we obtain
an isomorphism of complex varieties

Fl~SL,1(C)/B=F.
In particular, F¢ is a smooth irreducible variety of dimension n(n + 1)/2. Next, define
D:={(L1,...,Lps1); Li <C" dim(L;) =1, C""' = L1 & & Ly}

and

that is, D (resp. D) is the space of ordered decompositions of C"*! as a direct sum
of lines (resp. pairwise orthogonal lines). These are equipped with the induced usual
Hausdorff topology of (CPY)"*1. We let SU(n + 1) (resp. SL,41(C)) act naturally on
D, (resp. D) on each component of an (n + 1)-tuple of (orthogonal) lines. If we let
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Dy := ((u1),...,{upt1)), then Dy € D) and its stabilizer for the action of SU(n + 1) on
D, (resp. for the action of SL,1(C) on D) is the subgroup 7' (resp. the subgroup 7).
We thus obtain homeomorphisms

D, ~SU(n+1)/T and D~ SL,.,(C)/TC.

Recall also that the Iwasawa diffeomorphism SU(n+1)/T ~ SL,+1(C)/B can be defined
in this case using the Gram-Schmidt algorithm. Moreover, we have a homotopy equivalence

D~ FL.

Indeed, we have a fiber bundle U < SL,1(C)/T® 5 SL,:1(C)/B, where U ~ B/T® is
the subgroup of B consisting of matrices with ones on the diagonal. Since U ~ Cn(n+1)/2
is contractible, the map 7 is a weak homotopy equivalence and in fact a strong homo-
topy equivalence by Whitehead’s theorem, since SL,,11(C)/T® and SL,1(C)/B have the
homotopy type of CW-complexes.

As a consequence, we get
H*(SU(n +1)/T, Z) ~ H*(SLy41(C)/B, Z) ~ H*(SLy41(C) /T, Z).

Remark 7.4.2. In the case n = 2, we have K = SU(2) and

(X 0 il oat _J(* ¢
[ e o 2 nce

as well as
h~{(z,y) €C®; 4+y=0, W&y ={l,5=s4},

where a(x1,x2) = x1 — x2 is the only simple root of ® and s = (12). Furthermore, we have

Qlt1, ta]
(t1 + t2)

Qlt1,t2, x1, 9]

H*(Br,Q) ~ )
(Br, Q) (t1 + to, x1 + 2, t1ta — T122)

~ Qlal, Hr(SU(2)/T,Q) ~

Here, we can take X.(t,z) = 1 and Xs(t,x) = t1 — x1 in the Borel description. Setting
P.=X4+Xs =1+t —z1 and P, := s- P, = 1+ t; — xo, we recover the fact that

H»(SU(2)/T,Q) = H*(Br,Q) (Pe, Ps) is the regular representation of Go on %[ﬁfﬂ

8 Construction of the cell structure on the flag manifold of
SL3(R) via a closed embedding in a projective space

In this part, we exhibit an G3-equivariant cell structure on the real points of the flag manifold
SL3(C)/B. This structure is in fact regular and semi-algebraic. By regular, we mean that
the closure of each i-cell is homeomorphic to a closed i-ball and, by a semi-algebraic subset
of a real irreducible algebraic variety X we mean a subset S of X such that there exists
an affine open cover (U;); of X such that for each j, the trace SN U; C AMMX(R) is a
semialgebraic subset of R4™ X By the Tarski-Seidenberg principle (|Cos02], Theorem 2.3
and Corollary 2.4), this is independent of the chosen atlas on X.

104



8.1 Embedding the flag variety into the projective closure of a highest weight module

8.1 Embedding the flag variety into the projective closure of a highest
weight module

Using highest weight representations, one can see the flag variety G/B as a projective variety.
In fact, it will be a closed subvariety of Pze_l((C), where £ := |D|.

First recall a fundamental result of algebraic geometry that we shall use a couple of
times and which is a direct corollary of Zariski’s main theorem ([TY05, Theorem 17.4.3]):

Theorem 8.1.1 ([TY05, Corollary 17.4.8]). If ¢ : X — Y 'is a bijective morphism between
wrreducible complex algebraic varieties and if Y is normal, then ¢ is an isomorphism.

Recall further that the set X(TC) := {\ € b* ; Va € II, AaV) € Z} of integral
weights is in natural bijection with Hom(7'¢,G,,) = Hom((G,,)",G,,) ~ Z" and that the
dominant integral weights X (TC), := {\ € b* ; Va € II, A(a") € N} corresponds to
N* € Z" ~ Hom(T®,G,,). Finally, define X(TC),, := {\ € b* ; YVa € &+, (o) € N*}

the set of reqular dominant weights.

For A € X(T®); we have an irreducible highest weight representation V' (\) of G' with
highest weight A.

Remark 8.1.2. The representation V() may be constructed using the Borel-Weil theorem,
i.e. by taking the space of global sections of an algebraic line bundle on G/B, see [Jan87,
Part II, §5] for more details.

Fix A a dominant weight and vy € V(A) a primitive vector of highest weight A. Since
B = NxT® (with N := [B, B] the connected subgroup of G with Lie algebra n = Docot da
which is also the unipotent radical R, (B) of B) acts on vy as TC does, that is by scalar
multiplication, one has a well-defined map

iy G/B — P(V(N)
9B — lg-v)

We have the following result:

Theorem 8.1.3 ([Kumi1, §{]). Let A € X(T®) | be a dominant weight and let vy € V())
be a primitive vector of highest weight \. We make G act on the projective completion
P(V(N)) and we consider the stabilizer P := Stabg([vy]) of the line that vy spans. Then
P is a parabolic subgroup of G (i.e. contains the Borel subgroup B) and we have a closed
embedding of algebraic varieties

t  G/P — P(V(N)
gP  —  [g-v)

Moreover, if A € X(TC) 44 is regular dominant, then P = B and we obtain a closed
embedding
L) . F — P(V()\))

Proof. First notice that P is indeed parabolic, since B = [B, B] x TC acts on vy as TC does,
that is, by scalar multiplication and thus B < P. Because the composite map G — G/P R
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8.1 Embedding the flag variety into the projective closure of a highest weight module

PV (A) is a morphism of algebraic varieties, by the universal property of the geometric
quotient G/P, the map ¢y is a morphism too, which is injective by construction. To prove
that Z := 1,(G/P) is a closed subvariety of PV ()), first note that Z is a G-stable subspace
of PV () and it follows that Z \ Z is G-stable. If Z\ Z # (), by Borel’s fixed point theorem,
7\ Z must contain a P-fixed point, which contradicts the uniqueness of a primitive vector of
highest weight A\. Hence Z\ Z = {), so Z is a closed subset of PV ()). Finally, ¢\ : G/P — Z
is an isomorphism. Indeed, since every variety contains smooth points and G preserves
smoothness, the fact that X is a G-orbit implies immediately that Z is smooth, hence
normal and we conclude using Theorem [8.1.1

For the second statement, take A € X(TC), .. For o € II a simple root, we have
AaY) # 0 and 50 s4(A) = A — Aa¥)a # X s0 s, does not stabilize A and thus we have
Sq ¢ P. But if we write the parabolic subgroup P as P = (B, (Sa)acr) for some m C II,
then we must have 7 = () and so P = B. O

Next, consider half the sum of positive roots p := %Zaeq,+ a € h*. If § € 11, then the
simple reflection ss permutes ®* \ {§}, hence ss(p) = p — & implying p(6¥) = 1 and then
p € X(T®), . From this and the Weyl dimension formula, we deduce the following very
useful tool:

Corollary 8.1.4. If p := %Zaeqﬁ a, then p is a reqular weight and hence the morphism
@ =1, is a closed embedding

¢ :G/B — P(V(p)) ~P*(C),
where k = 21®71 — 1.
Remark 8.1.5. In the case of SLa2(C), we retrieve the algebraic isomorphism

SLy(C)/B — PYC)

(¢9)B  +— la:!]
Indeed, we have that TC = {(% 21) 3 @ € C*} is one-dimensional and X (T*) 14 = N* and
we have p = /2, where ® = {+a}. It is well-known ((FH91, Lecture 11]) that irreducible
S La-modules are parametrized by N and, if A € X (T®), we can take V(A) := C[X, Y], the

(n + 1)-dimensional space of degree n homogeneous polynomials ; SLy acting by

(Z ;) P(X,Y) = P(aX +bY,cX +dY).

[0

In the case A = p = 5, we have the weight spaces decomposition V(p) = C[X,Y]; =

CXaCY =VidV_1 and vy := X is a primitive highest weight vector of weight . Hence,
the morphism ¢ is given by

o : SLy/B — P(V(a)) =~ PYC)

(Z fZ)B — [aX +bY] — Ja:b]

as expected. Moreover, recall the siz cells €%'? and their images under s defined in the
Introduction forming an Sa-equivariant cellular structure on S? (see Figure . Under the

stereographic projection S? ~ CP!, these cells are described by
e = {[1: 0]}, eV-s={[0:1]},
el ={la:b] €CP'; abeR*}, e'-s={[a:b€CP'; abeR%},
2={[a:b] € CP'; S(ab) >0}, €2 -s={[a:b] € CP'; ¥(ab) < 0}.
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8.2 The closed subvariety F := SL3/B of P7(C)

This will be helpful for guessing the cells for SLs/B(R). We also observe that the obtained
CW-structure on S? is semialgebraic and regular. Finally, the associated homology chain

complex

K= < Z[Gs)] 2 7[6,] > 7[6,)] ) .

verifies

End'Db(Z[GQD (IC) ~ Z[GQ] .

8.2 The closed subvariety F := SL3;/B of P’(C)

Before looking for a &3-cellular structure on real points of SLs/B, we describe the complex
variety SLs/B explicitly as a closed subvariety of P7(C) defined by homogeneous equations
using Theorem [8.1.3

Here again, we naturally choose B to be given by upper-triangular matrices and in this
case, we have IT = {«, 5} and

W=G63= <sa,35 | s2 = S?.} =1, 505850 = 35$a35>

Moreover, one has p = a + f and this is the highest root, that is, the highest weight in the

adjoint representation of SL3(C). From this we conclude that V(p) = V(a4 ) is precisely
001

the adjoint representation of SL3. The vector v, := x4y = 888) is primitive of highest

weight a+ 3. Here again, we use the notation (zs,ys, hs)sco+ for the standard basis of sl3.
Furthermore, one has

a d g a(bf —ce) aled—af) a(ae —bd)
Vg=|b e h| €SL3(C), g-v,=grarpg ' = | bbf —ce) blcd—af) blae — bd)
c f J c(bf —ce) cled—af) c(ae—bd)
Hence, the embedding given by Corollary reads
¢  SL3/B — P(sl3) —  P7(C)
<a d g) |:a(bf—ce) a(cd—af) a(ae—bd):| s 2
beh B +— b(bf—ce) blcd—af) blae—bd) — [u t y}
cfJ c(bf—ce) c(ed—af) c(ae—bd) wuvr
We use the matrix notation
s T z
[Tiy:z:iu:v:iw:s:t]= |u t y
w v T
(with 7 = —s — t) for homogeneous coordinates in P7. Note that using the Iwasawa decom-
position, we can write ¢ in a simpler way, but which is no longer complex algebraic
¢ : SU3/T —— P'(C)
adg ag ah a}
<beh>T — bg bh bj
cfi cg ch c}

Now, we have to describe im ¢ as a projective variety. In the SL3(C)-module V(a + (), the
orbit of the highest weight vector v,4g is just the minimal nilpotent orbit, which consists of
square zero matrices of rank 1. But, a 3 x 3-matrix is of rank at most 1 and square zero if
and only if it is traceless and all of its 2 X 2-minors vanish. The minors give nine equations
and the trace condition gives s + ¢ + r = 0. This is formalized in the following proposition:
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8.2 The closed subvariety F := SL3/B of P"(C)

Proposition 8.2.1. Let I be the ideal of R := Clz,y, z,u,v,w, s,t] generated by the follow-
ing homogeneous polynomials

Tu — St
2w + 8% + st, ", ys’
2 - ’
v+ t° + st,
Y and uv — wt, ()
yw + us + ut,
TW — VS,
vz + x5 + xt,
Ty — zt.

Then, the projective variety Projc(R/I) is a smooth irreducible subvariety of P7(C). Fur-
thermore, the natural inclusion ¢(SLz/B) < P7(C) factors through an isomorphism of
algebraic varieties

o :¢(SL3/B) — Projc(R/I).

Proof. The ideal I is obviously homogeneous so the variety X := Projc(R/I) is well-defined
and is a subvariety of P7(C). We need to show that I is prime in R, for which we use a
general technique inspired by Alex Beckeﬂ First note that the class of s modulo I is not
a zero divisor in R/I. Hence, localizing with respect to s doesn’t change the integrality
of R/I, and we can use this fact to eliminate variables and find at last the quotient of a
polynomial ring (which is a UFD) by an ideal generated by a single element, which turns
out to be irreducible, so the ideal is prime and hence I is prime too. Let’s detail this : first,
compute the localized ideal I, and enumerate the polynomials (&) from (1) to (9). Now,
define three new variables :

y =y —uz/s,
v i=v —zw/s,
t':=t—xu/s

Then, polynomials (6), (8) and (5) simply become respectively 3’, v' and ', which are the
variables to be eliminated. Next, the polynomial (7) reads uv’ — wt’. In the same way,
polynomials (1), (2), (3), (4) and (9) become respectively

(2w + 2u + 52,

(0 + ) (4 2) + (¢ + 20 4 st

S S
2
wy' + Y= 4 us 4 ut’ + T,
2
2+ P2 s + ot + X,

xy — 2t

Now, by removing the redundant polynomials and since localization is exact, one has

(R/I), ~ R /1s ~ C[Sil][% =t w}/(zw + zu + 5°)

and by dividing the variables by s yields an isomorphism

_Cls™[z, z,u,w
(R/1), = = ]/(zw—i—xu—i-l)‘
We may apply the same process again to this ring: localizing with respect to x for instance
yields

(R/1), =~ C[stt, 2t 2, w]

20Gee https://math.stackexchange.com/q/95525
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and this last ring is obviously integral. Hence, R/I is integral too and this proves that the
variety X is irreducible. Now, since [ is prime, it is radical and the Jacobian criterion easily
implies that X is smooth.

Then, define a morphism

f SL3(C) — X
(854) — [573]
cfi wour
where
x oz a(bf —ce) aled —af) alae —bd)
t y| = |bbf —ce) bled—af) blae —bd)| € Projc(R).
vor c(bf —ce) cled—af) c(ae—bd)

SEES]

(note that r = —s —t). Direct calculations show that f(g) is in X and depends only on gB,
so, by universal property of geometric quotient, f factors through f : SL3/B — X. Then,
o is defined by the commutative diagram

©(SL3/B)

S~

SLs/B

It remains to show that ¢ is an isomorphism. Given the expression of ¢ in local coordinates,
it is straightforward to see that it is injective. Thus, we have to prove that it is surjective.

ad
For this purpose, we shall look for a matrix (b ¢ Z) € SU3(C) such that
cfi

ag s T z
bg =|u t vy
cg w o vor
Take p := [ 5»] z ﬂ € X and suppose s # 0. Normalize coordinates by imposing

lz2 + y> + -+ [t + s+ t]2 =

Define po := /|s]2 + ||2 + [t|2. Then, the equations allow to define

a = pPo, g = %7
upo N
b:==3%,  and hi= o0
. wpo — Z
ci= "t 7= 2
Then, the inner product formula (in R?) suggests to define
Q=2
e:=% _ 2
S
. us

By using every equation defining I, we obtain that
po  uz/s—wz/s 5/po
upp/s  ws/s—z T/po | € SU3(C)
wpo/s  x—us/S  Z/po
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8.2 The closed subvariety F := SL3/B of P"(C)

and is sent to p by 0. The same trick works if z # 0 or z # 0. Now, if u 0 or ¢t # 0 or
y # 0, we can analogously find a preimage in SU3(C), as well as if w # 0 or v # 0. This
proves that o is bijective.

Finally, since o : ¢(SL3/B) — X is a bijective morphism between irreducible varieties
and X is smooth (hence normal), theorem implies that o is an isomorphism, which
finishes the proof. O

Corollary 8.2.2. We have an isomorphism of complex algebraic varieties
Y :=cop:SLy/B — Proj(R/I).

Remark 8.2.3. The generating set of I given by Proposition is in fact a Grébner
basis of I, as it may be checked using Magma [MS19].

From now on, we shall denote
F :=Projc(R/I)

with R and I as in Proposition [8.2.1 We finally have a direct consequence of Proposition

B2.T

Corollary 8.2.4. The isomorphism v of Corollary[8.2.3 induces a homeomorphism between
R-points
Y(R) : SL3/B(R) — F(R).

It remains to identify the action of &3 on F (at least on affine charts) in order to only
work with coordinates. As we will focus on F(R) and for notational simplicity, we identify
the action of &3 only on F(R). The method to obtain equations for the action on F is
exactly the same.

Proposition 8.2.5. For each variable q € {x,y,z,u,v,w,s,t}, let U, := {q # 0} C P7(C)
be the standard affine open subset associated to q. Let also p := [Z Ty } € F(R). We

w v —s—t
have the following formulae

s(y—v) z(y—v) z(y—v)
s(w—z) z(w—2) z(w—2z)| if peUsUU,UU,
|s(x—u) z(x—u) z(r—u)]

uly —v) ty-—v) yly—o)
“Sq = ww—2) t(w—=2) ylw—2)| if peU,UUUU,
|\ u(x —u) tlx—u) ylr—u)]

]
¥
Q
Il
SIS
S + 8
ISR
|

w(y—v) vly—v) r(y—v)
ww—2z2) vw—2) r(w—2)| if pelU,UU,
w(x—u) v(e—u) r(r—u)

~—
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8.2 The closed subvariety F := SL3/B of P7(C)

and

s(v—y) s(z—w) s(u—x)

ulv—y) ulz—w) u(u-—=zx) if peUsUU, UU,

wv—y) wiz—w) wlu-—rz)
s T z (2(v—y) z(z—w) z(u—2x)]

p-sg=|u t y|- -sg= tlv—y) tlz—w) tlu—2x) if peU,UUUU,
w v T v(v—y) v(iz—w) v(u-—=x)

zv—y) z(z—w) z(u—x)
yw—y) yiz—w) ylu-=z)| if pel,Uly
{ r(v—y) r(z—w) r(u—=x)

Proof. Suppose for instance that s # 0. Then we can define py := \/|s|2 + |z]2 + |z|? and
we have seen that the matrix
po  uz/s—wx/s $/po
upo/s  ws/s—z T/py | € SU3(C)
wpo/s x—us/s  Z/po
is sent to p by o o ¢. Since the coordinates of p are real, this matrix simplifies to

S

o o
wpo _ Z
s xT u 20

Then, we make s, act on this matrix with a standard representative in SLs:

S

po y—v o po y—v =\ /0 —1 0 y—v  —po o
upo L, oz | | uwe ., =z _ _., _up =@
s PO s PO s PO
which is easily seen to be sent by ¥ to
sly—v)  z(y—v) z(y-v)
£0 £0 £0 sfy—v) x(y—v) z(y—v)
s(w—z) z(w—z) z(xz—u) _ s(w i Z) l‘(’w B Z) z(w i Z)
PO PO PO
s(e—u)  z(@@—u) z(z—u) s(r—u) z(x—u) z(z—u)
P0 Po Po
and this proves the first formula. The other cases are perfectly similar. O

Remark 8.2.6. Denote by 7 the transposition involution
T F — F
S Tz S uw
|:u t y} — [90 t v}
wour zyr
Then we have the following remarkable relation: if p € F(R), then we have T(p-sa) = T7(p)-s3

and therefore

TsaT =53 on F(R).
We can further compute that T = 5,535, =: wg is the longest element in G3 and, in
particular,

S3 = (5a,58) = (Sa,T) -
This will be very useful to simplify the proof that our decomposition of F(R) is indeed S3-
cellular.
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8.3 The cells of F(R) as connected components of non-vanishing loci of coordinates

8.3 The cells of F(R) as connected components of non-vanishing loci of
coordinates

The goal of this section and the following two is to find cells in F(R) that form a G3-cellular
decomposition of F(R).

A natural idea for the 0-skeleton of F(R) is to take G3-translates of the the trivial class
1B € SL3/B. This gives

0
s SﬁB: [8
0
0
1

and
{saB,53B,woB} ={p € F(R) ; u=v=2=0}.

This gives an idea of what to do for higher cells: impose the vanishing of some of the
coordinates in F(R) and decompose into connected components (in the Euclidean topology).
If we impose to three of the coordinates to be zero for the 0-cells, we can imagine to take
the vanishing sets of two coordinates to get 1-cells. But one has to be careful at this point:
the pairs of coordinates that are supposed to be zero have to be chosen in a suitable way.

The idea for 1-cells is confirmed by the following remark: in the case of A, the 1-cells
were given as connected components of

{(g %E) T € SU(C)/T ; ab e R*} ,
see Remark Here, we can find copies of such cells in F(R), for instance

{(ég—ob) € SU3/T(R) ; ab;éO}.

b a

This last subset is homeomorphic to the first one, so it is indeed a disjoint union of two
1-cells. It can be written as constraints in F(R):

{p:[ézg]é}"(]}%); s=1t=0, xz;é()}.

We’ll have to introduce some notation here.

Notation 8.3.1. Given variables vy, vy, m,1m2 € {z,y, 2,u,v,w, s,t}, denote

e L i={pEFR) ; v1 =vy =0, £mny > 0}.

For instance, one writes

el ={peFR); s=t=0, zz>0}.
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8.3 The cells of F(R) as connected components of non-vanishing loci of coordinates

By direct calculations, we get

s, . 001 . st B a—b0 . st i a—b0 .

o (ST 0o, st - (GED T w20}, - (77 w0}
st 100 st 0a —b . st 0Oa—b )

e ={(Gg ) T o< gl = {(§§Y) T <o} s {357 7o b <o},
U 010 T a0 —b zZw a0 —-b

e = {(Ga) T >0} b = {(9) T > o) = {(§5) 7 >0}

We can interchange every positivity symbol above to get nine other 1-cells and we obtain
at last eighteen 1-cells:

st s,t s,t s,t st s,t U T, Z,W
eu,w,i’ e:p,v,i? ey,z,i? 6:p,z,i? ey,u,i? ev,w,i? et,v,:ﬁ:? es,w,i7 e;t,t,:l:'

Denote by F(R); the union of the above 0 and 1-cells (it will of course be the 1-skeleton of
F(R), but we don’t know it’s a cellular complex yet. Using SUs-matrices, we see immediately
that these cells are indeed freely permuted by S3. It is straightforward to see that, in the

Euclidean topology, -
ot = €Z’L¢ U {sa53B} U {woB}.

u,aw,+ T
Thus, efb’f;ﬂ, 4 and ei’iuﬁ are two 1-cells connecting {s,sgB} and {woB}. Doing the same
calculations for the other 1-cells leads to represent them as in Figure[7] in which we recognize
the (doubled) Goresky, Kottwitz, MacPherson (GKM) graph of &3 here [Kajlb, §2.3].

Figure 7: The 1-skeleton of F(R) in the GKM graph of &3

Summarizing what we observed so far, we obtained the following lemma:
Lemma 8.3.2. The closed subset

FR); = U {v) =1p, =0}

vi,v2€{x,y,z,u,v,w,s,t}
of F(R) is a &3-CW-complex with siz 0-cells given by
FRo:= |J A{s=t=0, e {zyzuv,w\{r} n=0}

ve{z,y,z,u,0,w}
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8.3 The cells of F(R) as connected components of non-vanishing loci of coordinates

and eighteen 1-cells given by

s,t st st st s,t s,t x,u T,u Z,w
eu,w,i? ex,v,i? ey,z,i? ex,z,i? ey,u,i’ ev,w,i’ et,’u,:ﬁ:? es,w,i? ex,t,:t'

Moreover, the cellular structure on F(R)y is reqular and semialgebraic.

d

Continuing further down our line, we look for the 2-cells as Euclidean connected compo-
nents of some subvarieties defined as vanishing sets of one coordinate in F(R). For 2-cells,

S T z
we shall impose to one of the diagonal entries of p = [ZZ z B g_J to be zero. Note that,

for example, the closed subvariety {s = 0} of F is 2-dimensional and has two irreducible
components given by {s = x = z = 0} and {s = u = w = 0}. Concerning the subset
{s = u = w = 0}, in order not to fall into a smaller cell, one has to impose zy # 0. Here
again, we introduce some more notation:

Notation 8.3.3. For variables v,v',m1,m2 € {x,y, z,u,v,w,s,t} and signs €1,e3 € {£1},

denote )

e o ={peFR); s=0, gtn; >0, i =1,2},
IR

ezjlth = {pe}'(R), S+t:O7 Eitni>07 Z:172}>
10

2

e%l 2 = {pe FR); x=0, €sn; >0, i=1,2},

e o ={peFMR); u=0, ¢sn; >0, i=1,2}

M "o

and B
e ={peFR); y=v, tn; >0, i =1,2},

771 7772
e, ={peFR); w=z gsn >0, i=1,2},
Tt i ={pe FR); z=u, €tn; >0, i =1,2}.

For instance, we have

ety =WPEFR); s=0, 2t >0, yt <0} and e" . ={p€ F(R) ; y=v, at >0, 2t > 0}.

Notice that

0 d g
{peF;s=x=2=0}= b e h|TeSU/T
c fJ
and
a 0 g
{peF;y=v}= e h|TeSU3/T
c fJ

and we have similar relations for {s = u =w =0}, {r =t =v =0}, {u =t =y = 0},
{z=y=s5+t=0}, {w=v=s5+t=0}, {w= 2} and {x = u}. For each one of them, one
of the entries in the matrix class in SUs/T has to be zero.

We consider the following disjoint subsets of F(R):

s s T u s+t s+t Y=v w=z =1
Crt ity Gyt yty Cyt gty Cpt gty €k by €k by €ou iy €k gy Cpk gk
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These are the candidates for the 2-cells. We first have to show that they are indeed cells
and then that they are freely permuted by &3.

For example, take the subset S := {s = u = w = 0, zy # 0} C F(R) and let p :=

0

[8% v t] € S. We must have t # 0, because else, equations imply x = 0 or y = 0.
v —5—

Using the standard isomorphism

P7(C) D {t # 0} — A7(C)

[:iy:ziuiviw:s:t] — (F,Y4,2% 0 0 8

we find a homeomorphism (in real topology)
S~ {(z,y,2,0) ER; zy=2, vz4+2=0, yo+1=0, xy #0}.

Using the map (z,y) — (:c Y, Y, — ) this set is further homeomorphic to the set

{(z,y) e R*; zy # 0}

Thus, S ~ {(z,y) ; xy # 0} has four connected components in real topology, given by the

e — and these are homeomorphic to R2, hence are 2-cells.

Remark 8.3.4. Consider the set S := {y = v,xz # 0}. For one of its points p =
s T Z
[“ ¢ }, if s =0, then equation (1) from (EI) implies w = 0 and (5) implies u = 0 and

w Y —s t
by (2), we get y*> +t?> =0 and y =t = 0 because we are working with real points. So, only
x and z are non-zero and we are in one of the 1-cells efc’;i. This explains why we impose

. y=v w=
s # 0 in the cells €t s Oy i oand ex e

As another example, take the set S’ := {s # 0, y = v, zz # 0}. By using the
homeomorphism

P7(C) D {s # 0} — A7(C)
[x:y:z:iu:v:iw:s:t] — (%,%,?,%,%,Z’,l,g)

we obtain a homeomorphism, as above,

| 2

:vy,zuwt)ERG; zw+t+1=0, y —|—t2—i—t—0 t=zxu, Yy =uz, TW=1Y, xz;é()}

12

(
(z,z,u,w) €RY; zw+zu+1=0, 2w =uz, xz#0}
(z,z,u) € R ; w2 + 2%u+ 2 =0, xz # 0}

(z,2) € R?; xz #0}.

12

{
{
{
{

12

Thus, S’ ~ {(x z) ; xz # 0} has four connected components that are 2-cells. They are
given by the €Y i _+- The other examples can be treated in the same way. We get that the
considered subsets are indeed 2-cells.

Now, since it is clear that G3 acts on the 2-cells, we have to check that the induced action
on cells is free. Take for instance a point p of the cell ei+’y+. Note that p-7 € €7, . Then
the coordinates of p verify s = u = w = 0 and =,y > 0 and using Proposition we see
that the coordinates of p - s, are such that s’ = v/ = w’ = 0 and 2't’ = 2?(y —v)(w — z) and
so, if p-sq €€Xy o then z't’ > 0, that is z(v — y) > 0. But, using equations , we have
xy = zt and thls 1mphes —zt = zv > zy > 0, which contradicts the condition xf > 0. Next,
if p-saT € e$+7y+, then p-sq =p - sa72 € €u+,v+7 but since p - s, verifies s’ = v = w' =0,
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8.3 The cells of F(R) as connected components of non-vanishing loci of coordinates

this is excluded. Again by Proposition we get that if p-sg € e§+7y+, then v/ = 3 or
2’ =t =’ = 0 and this is again impossible by construction. Last, if p- 7s, € €t 4> then
D-TSaT =D 83 € eii,vi and this last cell has no intersection with ei+’y+ and we obtain
again a contradiction.

Y
T

In another hand, if p € ¢ szw then p-s, € €.+ and p-sg € ei; .. Next, if

D SaT € eg?}ﬁ, then ey, . 3p-sa=p- sa72 € €7 which is excluded. In the same way,
if p-7s, € egy;j)ﬁ, thenej. . 2p-sg=p-TsaT € e’ a contradiction.

The other examples are tedious to compute, but present no difficulty. By Remark
this allows to conclude that the induced action is indeed free. Thus, we have obtained the
following result:

Lemma 8.3.5. The closed subset
F(R)e:={pe FR); st(s+t)(y —v)(w—z)(x —u) =0}

of F(R) is a &3-CW-complex with the 0-cells and 1-cells given by the Lemma and
thirty-siz 2-cells given by

s S x U s+t s+t Yy=v w=z r=u
Cpt yts Gyt pty Gyt £, Cpt ok €mi7yi7 eu;tﬂ)iv exi7zia €yt uts Gyt ypt-

Moreover, this cellular structure is semialgebraic.

We are left to find the 3-cells in the open subset
FR)\ F(R)2 ={p € F(R); st(s+t)(y —v)(w—2)(x —u) # 0}.

The first observation to be made is that F(R) \ F(R)2 C {t # 0}, so we use the standard
affine chart isomorphism to get

FR\NFR)o={[z:y:z:u:v:w:s:1] € FR); s(s+1)(y—v)(w—2)(x —u) #0}

Tu = s,

2w+ s(s+1)=0, s(s+1) #0,
v+s+1=0 Uz =ys, # v

~ < (z,y, 2, u,v,w,s) €A7(R) ; zw—i—u(s +71) ’70 and u = w, and :Z)#Z’
vz+xz(s+1)=0, zg_zzvs, T#u

~ {(z,y,u,v) e A*R); yw+ur+1=0, uzx(ur+1) #0, y #v, x #u, uv # zy} .

Then, using the Euclidean homeomorphism (x,y,v) — (:E‘, Y, —yv;rl , v), we obtain

FR\F(R)2 ~ {(z,y,v) €R®; 2 #0, y # v, yo(yv+1) # 0,2% # —(yo+1), —v(yv+1) # 2y},
thus
FR)\F(R)g ~ {(z,y,v) € R®; y # v, yv #—1,0, 2y +v(yv+1) #0, 2* +yv+1 # 0}.

This open subset of R? (or more exactly, its boundary) can be visualized using [Map19]
(see Figure . Moreover, using its coordinate description in R7, it is easily seen to have
twenty-four connected components. These will be the desired cells.
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Figure 8: The open subset F(R) \ F(R)2

Notation 8.3.6. Consider an index i € {—1,0,1}, signs €1, €2, €3 € {£1} and the following
three real intervals:

I 1=] — OO,—l[, Iy I=] — 1,0[, 5L ::]O, —i—OO[.
Then, denote
. ey —v) >0,
Corenes =Ny ziuiviw:s: 1] € F(R)\FR)2; s€ ea(w—z) >0,
es(x —u) >0
ert(y —v) >0,

= [m:y:z:u:v:w:s:t]e]:(R);;e[i eat(w — z) > 0,
est(z —u) >0
For instance, we have

63_’+7_:{[:v:y:z:u:vzw:s:l]Ef(R); -1<s<0, y>v, w>z, x<u}.

Take a subset e, ., ., as above. One has a homeomorphism
b )

' ei(y—v) >0,
Clrenes = (@,4,0) ER® 5w #0, yo € I, easgn(x)(2’y + v(yv + 1)) <0,
essgn(z) (22 +yv+1) >0

Hence, these open subsets are 3-cells in F(R). We still have to show that they are freely
permuted by &3. First, since the action on &3 on F(R) is continuous (even smooth), the
induced action on the open subset F(R) \ F(R)2 has to permute its connected components,
which are the above 3-cells. It remains to show that this action is free. First, write down
the action in normalized form

s(y=v)  y—v z(y=v)

s z z(w—z) w—z z(w—2)
u 1 Y C S = s 1 z
w v —s—1 s(z—u) T—1u z(z—u)

z(w—z) w—z z(w—2z)
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8.3 The cells of F(R) as connected components of non-vanishing loci of coordinates

and
sv=y) s s(u—z)
s z ulz—w) u  u(z—w)
W1y [ | T
w v —s—1 wv—y) w wlu—z)
u(z—w) u  u(z—w)

and observe the following fact. If p:=[z:y:z:u:v:w:s:1 € FR)\ F(R)z2, then
pSq ="y 2 0 w8 1] verifies

;o s(m—u) z<y—v> xS —us —yz—+ 2v us +yz+z
x

w—z x \w—2z x(w — z)  z(w—2)
_ 1:u2+xy2+a:_ 2 +u?+1
r(w—2z) w—z
Hence, we get sgn(w’ — 2’) = —sgn(w — z). In the same way, if p- s, = [ 1 ¢/ : 2/ 1 u/ 0 :

w':s": 1], then

Z,_w,_8<u—x> w(v—y) SU— ST —VWHyw  sTHvw+u

u\z—w u \z—w u(z —w) N u(z —w)
_ z?u + w? + u _ 22+ +1
w(z —w) z—w
and sgn(z’—w') = —sgn(z—w). This implies that, ifp:=[z:y:z:u:v:w:s:1] € e9ﬁ+7+,
then p-s, ¢ 69ﬁ+7+ and p-sg ¢ eg7+7+. Also note that p-7 = p-wg € 697,7,. Next, using the
formula sgs, = s,7, to say that p-sgs, € e?h+’+ is equivalent to say that p - s, € e(l’_’_
If we still denote p-sq = [2/ 1 ¢/ : 2/ 0w ¢ 1] and if p-s, € 697_7_, then

y < ' and 2/ < u'. This second equation reads £=2 < 2. Then, since s < 0, we must

have 2 < 0, because else 0 < == < 2 < 0, which is absurd. But in this case, the equation
s’ < 0 reads 24— < (0 but this contradicts the fact that 2= > 0 and 2 > 0. In any case,

X w— —Zz
we have p - sgsq ¢ e9ﬁ+’+. Finally, if p - sasp € ei,+7+, then p - sgT € 69ﬁ+’+ and then
prsgi=[' iy 2w 0w 8 1] e . We compute o/ —u/ = £ — 2= — g — S0
and, if 2/ > o/, then x > £=2 > 0. But, since s’ = 22=% = =% and s’ < 0, this implies

w—=z u z—w w—=z
x < 0 and this is absurd. Hence p - sqs5 ¢ e0+,+7+. We conclude that p - w ¢ 63_7+7+ for all
w € G3 and so eg’+,+ -G3N eELJmL = (). The other examples, though tedious, are treated in
the same way.

We leave the boundary condition to the reader. Therefore, we have obtained the following
result:

Lemma 8.3.7. The open subset
FR)\NF(R)2 ={p e F(R) ; st(s+1t)(y —v)(w—2)(x —u)# 0}

of F(R) admits a partition into twenty-four semi-algebraic 3-cells given by

that are freely permuted by Ss.

The previous Lemmas [8:3.2] [8.3.5] and [8.3.7] lead us to the following main result:
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Theorem 8.3.8. The real points F(R) of the projective variety F (isomorphic to SL3z/B)
admits a semialgebraic &3-cellular structure, which admits siz 0-cells

{5aB}={[0:1:0:0:0:0:0:0]}, {sgB}={[1:0:0:0:0:0:0:0]},
{5a53B} ={[0:0:0:1:0:0:0:0]}, {sgsaB} ={[0:0:0:0:1:0:0:0]},
{{1B}={[0:0:1:0:0:0:0:0]}, {woB} ={[0:0:0:0:0:1:0:0]},

etghteen 1-cells

t x Z,w

s,t s,t s,t s,t s,t S, U T, s
6v,w,:l:’ et,'u,i? es,w,:l:? em,t,i’

eu,w,:l:? ex,v,:l:? ey,z;l:’ ex,z,:b ey,u,:i:’

thirty-siz 2-cells

s s T U s+t s+t Yy=v w=z T=u
Cpt yts Gyt pty Gyttt Cpx ks 6aji7yi7 eui,vi’ exi,zi’ Cyt yts Cyt gt

)

and twenty-four 3-cells
-1,0,1
€4 L+

In particular, the associated cellular homology chain complex is a complex of free right
Z[S3]-modules of the following shape:

Z|G&3)r ——= Z[63)0 —= Z[G3])? —— Z[&3] .

Corollary 8.3.9. The cellular homology complex of F(R) induced by the cellular structure
given in Theorem is a perfect complex of right Z|&s]-modules of the form

Z[&s)' —— Z[&3]° —— Z[63]° —— Z[G3] .

9 The cellular homology complex of 7(R) and its (co)homology

9.1 Cells representing orbits, boundaries and regularity

In order to determine explicitly the complex of Theorem [8.3.8, we have to compute the
boundaries of the cells and for this, we first need to find cells that represent orbits of
cells. After some tedious calculations using abundantly equations @ and the fact that
T = 84585, Or using the command “SamplePoints” form the package “RegularChains” in
[Map19], one can obtain the following relations, which may be verified by hand calculations
afterwards:

Dimension 1:

( s,t st ( st _ T T, _ st
ey’Z7+ 8a - 611727* exvz77 Sa - et77~)7+ 657w7_ ) Sa - €y7u1+
s,t . _ zZw s,t . st T, _ st
ey,27+ Sﬂ - €I7t1+ €w7277 Sﬁ - 61'7Z7+ eS,’LU,— ) SB - 65071}7_
s,t _zZw s,t _ st x,u st
ey127+ SOCSIB - ex7t7_ emzz’_ Sasﬁ - eu’w’—"_ 68,’11},— ’ Sasﬁ - 6y7u7_
s,t . _ st s,t . _ru x,u st
ey7zv+ S’BSQ - 6v7w7_ 6.1'727— SBSa - et7U77 e's?w»* ’ SﬁSa - em7v’+
s,t _ st s,t _ st x,u . oz
6y727+ wo - ev,w,—i— 6x727_ wo - 6u7w7_ \ es?w?_ wo S, w,+
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9.1 Cells representing orbits, boundaries and regularity

Dimension 2:

( _s
(&
CE+,y+

- Sq = €5

z =yt
_ Yy=v
8@ = ex+z_
_ Yy=v
SaSp = €, 4

Dimension 3:

/

C I
CAA
CA
G

1
Ct+ 4+

1

Sa = 617774»
Sﬁ = 63—7_7_
SaSp = €— 4.+

1

(1

1
6_;’_’_7_;'_

1
e+7_7+

e .
zty

Chb
ey
G
4+

1
€+7+7_ ’

€+777+ ’

1
€+777+ )

1
e+7_7+ )

Ty
S = eg:?)ﬁ
Sasg=e€l"" _
5850 = ez,w,
woy = efﬁ’v_
C Sy = eiifv_
88 = eif?ﬂfv,
©Sa83 = effjfw+
* 8BS = 6;1_1;7
wo = eiﬁw
Sa =€l 4
Sp = €, ——

— 50
Sa - e+’+’7
_ -1
S8 = €4 +,+
©SaSp = e”l

[

535q = 697_7+

. wo = el_7+,_

From this, we deduce the following consequence:

Proposition 9.1.1. In F(R), the cells

s,t

Cyz, 49

1 1
4+ E4— €

s,t x,u
T,2,—

S S x x
Ext gyt Eaxty—r Eytutr Eyt = €

1

(( {B}={[0:0:1:0:0:0:0:0]},

S,w,—?

1

+a_)_7 6_;’_7_7_;'_

s+t e
ut,wt? “u— ot

es+t

s+t

s+t

T
S — € _  _
« you
J— w=z
w=z

"SaSp = €l

FS85a =€y -
— U
Wo = €pt 4+
_ s+t
Sa = eu—,v
T=u
Sg = ¢€
B8 vt wt
_ z=u
" SaSg = €= -
s+t
"SpSa =€l
s+t
Wy = €__
0 z =yt
_ -1
Saq — €+7+’7
_ 0
SB = 64 ++
_ .0
“SaSg =€l _ _
_ -1
©888a =€_ _

"Wo = € 4 4

respectively represent the set of i-cells (0 < i < 3) under the right action of &3.

We now have to compute the boundary of these cells.
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9.1 Cells representing orbits, boundaries and regularity

Proposition 9.1.2. For each representing cell e in Proposition the one codimensional
cells appearing in the boundary de =€\ e are the following

\

S,
Be%

tz,—l— = {B} U {BSQ},

aea:zf —{B}U{BSﬁ}

663 W, — {B
8e;+7y+ = ef;t Ue ot Uexv_ Uei’fz#,
8e;+7y_ —ethrUeszrUevarUexz_,
aeg+7u-&- = + U es Jw,— U efj,tw,— U e;fz,-‘r’
ger. Uems  Uett, U
8ez—~ttv+ = e:c b= U ev ,W,+ U ez U, — U eiﬁv,—i—?
as+t+_ewt+uevw—u +Ueuw+

} U {Buwo}
( 1 s T
Oey L 4= € - U Ueps s
1
dey =€y UeZh Uep -,
1 —
dey  _=eps,-Ue=h Uer, i,
1
[ Oel _ 4 €ty U €=y Ut o

The proof of this proposition relies entirely on the following lemma:

Lemma 9.1.3. The closures of the representing cells satisfy the following relations:

Proof. We shall use the Fubini-Study metric on P7(R).

s,t
Cyz+ =

s,t
T,2,—

T, u
S, W,—

.

eiﬂy*
e;ﬂy,
= yz+ U {B} U{BSOC}
S
=e,. U{B}U{Bsg},
61’
- ytu~
= Csw,— U {B} U {BwO}
s+t
Cut v+
ef;[t’ﬁ

. x,u
—e$+y+Uem_Ueyz+erv,Ue

st
x’z7+’

:em+ ,UetU+UeyZ+UeIU+Ue

T,z,—
= e§+’u+ U eZ’LnL U e?;;;,, U efjﬁﬂﬁ U %,
= e;ﬁ’u, U eZ”Z,, U eig 4 U ef';iw _ UeZT,,,
= eiitw+ U e;ﬁlj U ev W, + U 6:}0 U, — U eiﬁvu#’
= €thv+ U ez::flj—l— U 631;,7, U ei,’u,+ U Couw,+

1 _ 1 s T=u T
Cr++ = it U eu—,v_ U ev_,w+ U €y+,u—7
el =el Ue Uer="  Ue¥

+t— +t— z~yt v 2wt P ]
el =e! Ue’? UerZ" _Ue®

+=— +== ut,v™ 5w ytut’
el =el Ue’ Uer=* _Ue“
\ =t +,=+ zt,yt vTwT zt, ™

Recall that, for K € {R,C}, for

(-,-) a scalar (Hermitian) product on K"*! and for a line ¢ € P*(K), one has T,P"(K) =

Homg (¢, /) and this space is equipped with the dot product (f,g) := tr(f o

g*) and this
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9.1 Cells representing orbits, boundaries and regularity

gives P"(K) a Riemannian (K&hler) metric, called the Fubini-Study metric. The distance
associated to this metric is given by (see [AGO07])

Vp,q € P"(K), drs(p,q) = arccos g P
(p,p) (@ 9)
In our case, K=R and
Vp,q € P'(R), dps(p,q) = arccos |||<p”’|q>”|.
pilg

The method for finding which cells appear in the closure of a given cell e will be the following:
first, we determine which 0-cells do not appear in € using the distance dpg. Then, we know
that every k-cell in € must not contain these 0-cells in its closure. This will leave only a few
possible cells and we can check each one of them using local charts. To simplify, we shall do
this explicitly only for one cell per dimension, since the other can be obtained in the same
way.

We start with 1-cells. Take for instance eztz 4. Recall that

eZ’;Jr:{[x:y:z:u:v:w:s:t]G.F(R); s=t=0, yz >0}

={[0:y:2:0:0:0:0:0] € P(R) ; yz > 0}.
Next, forp:=[z:y:z:u:v:w:s:tland ¢g:=[2' : ¢/ : 2/ 4/ : v 1w : & : '] in F(R),
the induced distance between p and ¢ is given by

(p,q)*
1211%ql1?

In order to simplify this, we assume for the rest of this proof that the homogeneous coordi-
nates of every point in F(R) are normalized, that is, for every p=[z:y:z:u:v:w:s:
t] € F(R), we impose that 22 + y? + 2% + u? + v + w? + s* + t? = 1. This gives

dps(p, q) = arccos

drs(p,q) = arccos | (p, q) | = arccos [xz’ + yy' + 22" + uv’ 4+ vv' + ww' + ss’ + tt]
and thus, for £ > 0 small enough,
dps(p,q) <& < (p,q)° > cos(e)’ = (p,q)* >1-¢%
Then, we get the following criterion :
VAC F(R), Vpe F(R), pe A & VYe>0, Jac A; (pa)’>1—c. (8)

Take a O-cell €. It is given by the non-vanishing of just one coordinate v in {x, vy, z, u, v, w}.

Then, applying the above criterion @ to A= eZi 4 yields

7 t
e cel . s> 1—e

= Ve>0,3[z:y:ziuiviw:sit]€e,, | ;

For instance,

335662’;7+ < Ve >0, El[x:y:z:u:v:w:s:t]662’27+; 2>1—e.
Using the description e;’fzﬂr ={[0:y:2:0:0:0:0:0] € P(R) ; yz > 0}, we obtain
immediately that

B-we et

vt = we{l s}
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9.1 Cells representing orbits, boundaries and regularity

and hence

,t
egs/,z,+ = yz+ U {B} U {Bsa}

Now, take the 2-cell e oyt given by
€yt ={ziyiziuiviwes:tf € F(R); s =0, t >0, yt >0}
={lr:y:2:0:v:0:0:¢] € FR) ; t >0, yt > 0}.
Now, using the criterion @, we obtain that

B-wee, . = we {1, 504,583,585}

So, to find the 1-cells in e, eyt e look at 1-cells only having B, Bs,, Bsg or Bsgs, in
their closure. Having Computed the closure of every 1-cell using the action of &3 gives that

the only l-cells that can appear in €, . are €ty €y, €any and € L. Since the five

cells e x%i, €ryt and e, ,+ are fully contained in the local chart {v # 0} we can compute
the Euclidean boundary of the image of e’ - under this chart. Recall that we have a

homeomorphism
v {v # 0} - R’
[iy:iziutviw:s:t] — (LY 20w sl
S0,

€;+,y+ o~ ¢v(e;+,y+) ={(2,9,2,0,0,0,t) e R"; y+t*> =0, z4at =0, zy = zt, ot > 0, yt > 0}
={(2,9,2,0,0,0,t) e R" ; y=—t?, 2= —at, xt >0, yt > 0}.
Define the homeomorphism

¥y : {(z,9,2,0,0,0,t) €ER” ; y =~ 2= -t} — R?
(x7 y’ z? 07 07 0’ t) — (x’ t)

Then,
Uo(u(€ls ,1)) = {(z,t) €R® 5 2t >0, —t* > 0} = {(,t) e R?; & <0, t <0},
Thus, the closure of e, , in {v # 0} is given by

R2

Uol(du(€r 7)) = Buuleie ) = {(2,t) €R?5 2 <0, <0}

= ¢v(¢v(€;+,y+)) U {(O’t) ;1< 0} U {(x70) ;X< 0} U {(O)O)}

Whence,

5‘”7&07 S —1 —1 0 . 0 -1 —1 O . 0 —1 —1 0 0
€$+,y+ _ez+7y+u¢v va ({( 7t)7t< })U¢v va ({(:U? ),.%'< })U¢v owv ( ) )

= 5+ Uo, 1 ({(0,-%,0,0,0,0,¢) 5 t < 0})Ug, ' ({(2,0,0,0,0,0,0) ; = < 0})ug, '(0,0,0,0,0,0,0)

:ez+7y+u{{8g—22} e}"(R);t<0}U{[

01 —t

0
0
0
00 0
:€i+7y+u{|:8t y:| EF(R),tU<O}U{|:§§

v —t

} eFR); z< 0} U{Bsgsa}
} e F(R); zv < 0} U {Bsgsa}

s T, U st
= €pryr Ve, Uey, U {Bsgsa}
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9.1 Cells representing orbits, boundaries and regularity

_ 8 U x,u U;éOU s,t vF0
- 6Z+7y+ et7v7_ e:r’v:_

For the four remaining cells, we use the homeomorphisms

¢y - {z # 0} — R7
[:iy:ziuiviw:s:t] — (L4820 s L)

and

1/)2 : {($>y707U70707t);t2+vy=0, t$+U:O, .Z'y—t:()} — R2
(x7y707070707t) = (iﬂ,y)

in order to have
Pa(¢a(elr o)) = {(z,y) € R? 5 2%y >0, 2y® > 0} = {(z,y) € R?; >0, y >0}

We compute

e = U ou T ({(0,) 5 y > 0) UGS 0wl ({(2,0) 5 @ > 0})UgI oy (0,0)

zei+7y+U{{§§%] eFR); y>0pu{[888] e FR); 2> 0} u (B}

_ 8 st 55t
= €ht o+ UE Ue,, . U{B}

y7z7+
— e U es,t #0 U 6s,t #0
- x+ 7y+ y7z7+ ‘Z,7Z7+ .
Hence, we obtain
5 _ —3 v#£0 3 270 ¢ T,u ER st ER
ez+7y+ = emty+ U exﬂy+ = €t gt U €ty — U €rv,— U €yt Ve, +

Finally, take the 3-cell eﬂr7+7+. First, we claim that {Bsg} ¢ e}r7+,+. Indeed, using
criterion @, one has

{Bsg}eel | . = Ve>0, H[m:y:z:u:vzw:s:ﬂGe}h+7+;a:2>1—5.

Since, for every [z :y:z:u:v:w:s: Ee}h+7+ we have s # 0 and ¢ # 0, we must have
x # 0 and we may rewrite the last condition, without normalizing, as

Ve>0, peel ;i a?>(1—o)p?

SO

2
x
V1l >e >0, EIpGe}mL’Jr; ||p||2<17_6.

Now, if {Bsg} € el | ., then it can be seen in the chart {z # 0}. Then, we have a
homeomorphism

zw+s(s+t)=yv+t(s+t) =yw+u(s+t) =vz+s+t=0, }

ei_7+7+: (y,z7u7fu,w,s,t)€]R7; u = st, w=sv, y=tz,
st>0, tly—v) >0, t(1—u) >0, t(w—2)>0

~ {(z,v,5) € R¥; s(s+vz) <0, s(vtz(s+vz)) <0, s(1+s(s+vz2)) >0, s(sv—2) >0} =: C

and, under this homeomorphism, the norm reads

4y 2 w2t =14 (s v2)2 (22 2 1) 4 5202 + 1) 4 22
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9.1 Cells representing orbits, boundaries and regularity

Whence, we can rewrite the criterion as

{Bsgyeel , . = V1>e>0,3(z,v,5) €C; (s+v2)2 (22 524+ 1) +s2 (V2 +1)+22 < %

Now, take p := (z,v,s) € C. We have s(s + vz) < 0, hence svz < 0. If s > 0, then sv > z
and this implies v > 0 and z < 0. But we have s(v+z(s+vz)) <0, so sv < —sz(s+wvz) and
so 0 < v < —z(s+wvz) <0, a contradiction. Thus, we have s < 0, z > 0 and v > 0. Since
s(1+s(s+wvz)) > 0, one gets s > —s%(s+vz), so 1 < —s(s+vz) and hence, s(s+vz) < —1.
This last inequation implies s%(s + vz)? > 1, whence

Ipll* = (s +v2)*(2* +5° + 1) + 5° (0> + 1) + 2° > s*(s + v2)* > 1.

Thus, we can’t have ||p[|* < 1= for every e > 0. This proves that {Bsg} ¢ e} , ,. In the
same way, using the chart {u # 0}, one obtains

{Bsg} ¢ el yUel

{Bsasp} el Uep

Henceforth, the only possible 2-cells appearing in e}h +,+ are the ones not containing
{Bsg} in their closure. Thus, there are only twelve possibilities :

1 1 5 T T=u
€t ++ C Ct++ U eui,vi U eyi,ui U evi,wi'

Since each of these cells is included in the chart {u # 0}, we may compute the Euclidean
boundary of the image of e}ﬁ +.+ under this chart. Define

Y =FR)\FR)={[z:y:z:u:v:w:s:t] € F(R); st(s+t)(y—v)(w—2z2)(x—u) # 0}
as well as
Ju ¢ Y — R3
z:y:z:1:v:w:s:t] — (y,w,t)
We see that
Ju(Y) = {(ysw, 1) € R®; t(t+yw) # 0, yw # 0, y # tw, wry(yw+1t) #0, tlyw+t) # —1}
and the inverse of j, reads

(y,w,t) — [—tlyw+t):y: —ylyw+t): 1:tw:w: —(yw+1t) : t]

Then, we obtain that
Julel 1) ={(Ww,t); tyw+t) <0, ty—tw) > 0, t(w+y(yw+t)) > 0, t(t(yw+t)+1) < 0}

Now, if (y,w,t) € ju(ei_ﬁ_’_k) and t > 0, since tyw < 0 this implies that yw < 0. Next, the
inequation t(y — tw) > 0 implies y > tw and so y > 0 and w < 0. But, on the other hand,
0 > tw > —ty(yw + t) > 0, a contradiction. Thus, we must have t < 0, y < 0 and w < 0
and so,

ju(ei7+7+):{(y,w,t) eER?; y,w,t <0, yw+t>0, tiyw+1t) +1> 0}

= {(y,w,t) ER®; y,w <0, —yw <t <0, t(yw+1t) > —1}.
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9.2 The cellular homology complex of F(R)

Hence,
ju(e}%ﬂrﬂr) = {(va7t> € RS Yy, w < 07 —Yyw S t S 07 t(yw + t) Z _1}

= ju(e}i-,—i—,—&—)u{(y?w) _yw) Yy, w < O}U{(y7w70) Y, w < O}U{(y7 ’UJ,t) ; y>w7t < 07 t(le-Ft) = _1}

Therefore, using j !, we finally obtain

1 _ 1 S T T=u
Cr++ T St U eu—,v— U ey“’,u— U ev—,w“"

which finishes the proof. O

As an immediate important consequence of these computations, one has the following
result:

Corollary 9.1.4. The cellular structure on F(R) given by Theorem s reqular.

We introduce some notation for representative cells in each orbit.
Notation 9.1.5. Following Proposition [9.1.1, we denote
eV:={B}={[0:0:1:0:0:0:0:0]},

1. st 1 S5t 1. z,u

€11 =€y, 1, € i=€ ., e3i=€y

2. s 2. 8 2. LT 2. % 2. stt 2. s+t
€1 1= €y oy €T €y, €3I €L 0, C1I= € o €3Im0 4, €5 =0 L,
3._ 1 3._ 1 3._ 1 3._ 1

€1 = €44 21T €4 4 €364y €T 6 g

Using Proposition [9.1.2] and the action of &3 on cells detailed above, we obtain the
following consequence:

Corollary 9.1.6. The boundaries of the representing cells are given by

Oe? = ebspsa Uei Uessg Uessg,
Dl — 0L oS, de2 = elsq Uel U eés[;sa Ues, des = e%sﬁsa U e?,sas[; Ue2,
- b
Oes = e’ U esg Oes = e3sa Ues Uekun Uel, de3 = eisa U egs‘lsﬁ U 5§Sﬁsa7
- )
Dl — 0L eV dei = edsasp Uedwo U edwo U elsa, de = e3wo U edsass U €3,
7 Oe? = eisasp Uelwo Uelsg U e%SQSB, dei = e? Uedsass Uelsssa.
e =eisgUelsgsa Uessssa Uedsass,

9.2 The cellular homology complex of F(R)

We are now ready to compute the differentials in the cellular homology complex from The-

orem [B.3.8
d d d
Z[G3)* == Z[63)0 = Z[G3]? ——~ Z[S3] .

Since the cellular structure is regular, the coefficients of the matrix representing d; :
75% — 75 are in {~1,0,1} for all i = 1,2,3. Thus, we just have to compute the signs using
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9.2 The cellular homology complex of F(R)

orientations of cells. We will impose to the action of &3 to respect the given orientations.
This implies that we just have to give an orientation to the representing cells ez-. We will
further assume that the orientations of two adjacent cells are the same, as in a simplicial
complex. Hence, we just have to give an orientation to the cells ejl for j =1,2,3 and to €?
and e3.

We choose arbitrarily to orient each of the 1-cells e} from the reflection to the identity
of &3. This gives the oriented doubled GKM graph as in Figure [9]

Figure 9: The oriented 1-skeleton of F(R)

We then get for instance d(el) = d(eZ”i7+) =1-s4.

We now have to give an orientation to the 2-cells. Take for example e . - Recall from
the proof of Lemma the diffeomorphisms

v {v # 0} - R’
[iy:izitiuiviw:s:t] — (LY 20w s L)

and
Uy {(2,9,2,0,0,0,t) eRT 5 y=—t?, z = —at} — R?
(Qf,y,Z,0,0,0,t) | — (%,t)

Then, we have showed that wv(qﬁv(e;hw)) = {z <0, t < 0}. Post-composing 1, o ¢, with
the orientation preserving diffeomorphism

k: R — R?
(z,t) +— (%arctan(z), 2 arctan(t))
we obtain a diffeomorphism o), 0 ¢y 1 €], g [—1,0]2. We arbitraty choose to take the
reversed orientation on R? and we impose to the diffeomorphism & o 1, o ¢, to preserve the
orientation. Identifying the boundary of [—1,0]? with the one of el -+ gives the following
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9.2 The cellular homology complex of F(R)

picture:

SﬁSa Sﬁ
z,u s s,t
Ctv,— ez+,y+ Cx,z,+
Sa \_/ 1
es,t
Y,z,+

and using the chosen orientation of the 1-cells, this yields

S _ o Tu s,t o s,t st
d(ez+7y+) - es7w7_ + ew)vz_ ew7z7+ eyvz»"’_.

Now, e’ - shares a 1-cell in its boundary with e, s e then orient it in a simplicial
b b
way:

s,t

€rv,—

N

5854 53

T,u S es,t
yt T,2,+

s,t

em,u
t,v,+ z,2,—

Using the same method, we may orient the cells ejz for j = 3,5, 6 and finally, this method
applies to eﬁ - Sq. Since we impose to the action of &3 to preserve orientation, this gives the
orientation of e?. We obtain the following pictures for e?, 7 =3,4,5,6:

s,t s,t
€y,z,+ €y,z,—
Sa 1 Sa 1
st X z,u s,t z S,U
Cy,u,+ Cyt ut s,w,— Cyu,— Cytu- €s,w,+
SasSg wo Sasp wo
s,t s,t
eu,w,f eu,w,f
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9.2 The cellular homology complex of F(R)

s,t s,t

T,v,— u,w,+
Sﬁsa Sg wo
s,t s+t Z,w s,t R
Co,w,+ eu+7v+ Ca,t,— Co,w,— Ca,t,+
wo Sasp 855,1
s,t s,t
Cuyw,+ €0+

We finally have to orient the 3-cells. Take for example e}n 4.+ Recall that in the proof
of Lemma [9.1.3] we have defined

Y =FRN\FR)=A[z:y:z:u:v:w:s:t] € F(R); st(s+t)(y—v)(w—2z)(x—u) # 0}
and
Ju Y — R3
[z:y:z:1l:v:w:s:t] — (y,w,t)
We had
Gu(Y) = {(y,w,t) €R® ; yw #0, t(yw +1) #0,-1, y # tw, x + y(yw +1t) # 0}

and 7, : Y — 7, (Y) is a diffeomorphism, which inverse is given by

(y,w,t) — [~tlyw+t):y: —ylyw+t): 1:tw:w: —(yw+1t) : t]

Furthermore, we have shown that
ju(ei,+7+) ={(y,w,t) €R?®; y,w <0, —yw <t <0, t(yw+1t)+1>0}.

We arbitrary choose to take the reversed orientation on R?, we take the induced orientation
on ju(e}h +, +) and we impose to j, to preserve orientation. We obtain

1 _ T 8 L r=u
d(eJrHrHr) = Cytu T Cum - T Gt

and the following picture for e3 = e-lh-h-‘r:

Then, we orient the cells 63?, j = 2,3,4 using the same method as for 2-cells: two
cobording cells are oriented simplicially. This gives the following pictures for the respectives
cells e}h#_, e}h_7_ and e}h—,+:
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9.2 The cellular homology complex of F(R)

From this discussion, we can compute the boundary operators. For convenience, the
orientations of the cells given above will be called the reversed charts orientation.

Lemma 9.2.1. For i = 0,1,2,3 denote by &; the set of i-cells in F(R). Recall Notation
9.1.5. Then we have isomorphisms of right Z[&s]-modules

((Z(&) = (°) Z[S3] ~ Z[S3],

Z (&) =

\

Z(E3) = <e§e, 1<) <4)72[65] ~ Z[S,)*.

Furthermore, the boundary operators d; : Z(E;) — Z(Ei—1) associated to the reversed charts
orientation are homomorphisms of right Z|Ss]-modules and satisfy the following relations

da(e3) = dalets o) = el +ebty_ — bt — it , = ehlspsa — 55) + ehog — e,
da(e2) = d2(€;+7y_) = e;:;_,_ — ej;;_ + ef(:’,tq)7+ +ey = el +ed(sq — 1) + edsgsa,
Do(6) = dafet 1) = et — bt — B 1S, = eb{sa— 1) — chun + el
0a(e3) = do(en, ) = €5l el — €l el = eh(sass — wo) + elsq + ehun,

2y _ s+t _ St zZ,w 55t st | 1 1
d2(€5) - d2(6u+ﬂ)+) = Cuw,+ — Crt— — Czu— + w4+ — €25a58 +eq (’u}() - 30485) — €358,

2\ — s+t _ 85t S5t Z,Ww S5t — 1 1 1
d2(€6) - d2(eujv+) = €y w,— + Cru,+ + Cxt+ + Cuw4+ — 61(85 - 313304) t €3588a + €38a58-
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9.2 The cellular homology complex of F(R)

3\ — 1 — LT s r=u _ 52 2 2
dz(ei) = ds(e 4 1) = €yt u— ~ Com e~ Co iyt = €1 — €3535a — €55a53,

) )

3y _ 1 _ =u  _ 2 2 2
d3(e3) = ds(eq 4 ) = eg,’v, + efﬁ,’w + ef},zﬁ = €3535q + €754 + €55453,

3\ — 1 — LT s r=u _ 2 2 2
d3(e3) = ds(eq _ ) = €yt ut — Cot om T €y e = €3 — €3W0 F €55a53,

3\ — 1 — LU s T=u _ ,2 1 2
ds(ey) =ds(eq _ y) =e€js — + €ot 4t — Cpm - = €1585a T €1 — €55aSs.

Summarizing, we obtain the following result:
Theorem 9.2.2. The cellular homology complex of F(R) associated to the cellular decom-
position of Theorem is a complex of free right Z[&3s]-modules isomorphic to
493 6 _ 4 3_4
Kes(R) := <Z[63] ——=7[63]° —=Z[63]° ——= Z[G3] )

where the d;’s are given, in the canonical bases, by left multiplication by the following ma-
trices
di = (1—5a 1—sg 1—w0),

-1 1 1 Sa wo — SaS8  SB — S8Sa
dy = | 5850 — 53 Sa—1 —wp wo 54583 54583 ,
83 8858 Sa—1 Sasg—wo —53 585q
0 Sa 0 1
—588q 0 —wo 0
0 535a 1 0
da =
3 1 0 0 585a
—5453 Sasp 0 0
0 0  sasg —Sasp

Corollary 9.2.3. The integral homology of F(R) is given by

Z if i=0,

7)27® 727 if i=1,

Vi >0, Hi(F(R),Z) = 0 if Q=2
Z if i=3,

0 if 0> 4.

Proof. Just remark that, by the cellular homology theorem, we have
H.(Ke,;(R)) = Hi(F(R),Z)

and that the homology H,.(Ke,(R)) may be computed using [GAP4] and the Kronecker
product of matrices. More precisely, for w € &g, let pu, : Z[S3] — Z[G3] denote the left
multiplication by w. Identifying the basis B := {1, s, 58, 5058, $8Sa, Wo } With the canonical
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9.2 The cellular homology complex of F(R)

basis B. of Z%, denote by Matf(w) the matrix of u’ with respect to this basis. It is an
element of Mg(Z). For instance, one has

Mat?(s,) = and  Mat(sg) =

[e]eleleldw]
[e]elelelell
OO~ OOoO
[elelelilele]
—HOOOOO
(el elelele)

Thus, if a homomorphism of right Z[G&3]-modules Z[G3]" — Z[G3]™ is represented, in
the canonical basis B by the matrix d := (di;), ; € Mnm(Z[63]) and if we decompose

dij = Y pee, dijw € Z[S3] in the canonical basis, denote d,, := (d%)ij € Mum(Z).

Then, the corresponding homomorphism of abelian groups Z%" — Z5™ is represented by the
matrix B
d:= Y dy @k Mat’ (w) € Men,em(Z),

weSs3

where ®k is the Kronecker tensor product of matrices.

This may be implemented in [GAP4| to find the matrices d;, i = 1,2,3 and finally
compute Hy(Kg,4(R)). O

A remark can be made concerning this last result. The same proof as for the Theo-
rem (some care is required here : the Zariski theorem is no longer true in the non-
algebraically closed field R) shows that we have a homeomorphism

SL3(R)/B F(R)
adyg a(bf—ce) a(cd—af) alae—bd)
<b e h) — {b(bf—ce) b(cd—af) b(ae—bd):|
cfij c(bf—ce) c(ecd—af) clae—bd)
(here, and only here, the letter B denotes the Borel subgroup of real upper-triangular

matrices of SL3(R)). In fact, it is a homeomorphism since it is a bijective continuous map
with compact domain. We also have the real Bruhat decomposition of F(R):

F(R) ~ SL3(R)/B= | J BiB/B=: | Y,
weG3 weS3

and this is a cellular decomposition of F(R), which is of course not G3-equivariant. We
have that dim(Y,,) = ¢(w) for each w € &3, where ¢ : &3 — Z is the length function. Using
the above homeomorphism, these cells may be described as

A B 1] HE MY { 11
o= ([ 28] €7} V= {[815] 7). = {[113] <700

Lonardo Rabelo and Luiz San Martin computed the boundary operators of this cellular
structure (see |RM18], §2.2):

dl(}/sa) = dl(}/;ﬂ) = 05 d2(YTsas[g) = _2}/55) d2(}/555a) = _2Y5a7 d3(Yw0) =0.

This gives that the associated cellular homology complex is isomorphic (as a complex of
abelian groups) to the complex
-(35)

7. 72 72 2.7

and hence, we recover the homology of F(R) as in the Corollary
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9.3 The cohomology of F(R) as an &3-module

We know that, since &3 acts on the right of F(R) and since cohomology is a contravariant
functor, &3 acts on the left on H*(F(R),Z). The goal of this section is to identify this
action in terms of Z[&3] modules.

First of all, define the integral representation

2: 63 — GLQ(Z)

2(sa):((1’ é) 2(35):(_11 _01>

Then, 2 is an integral form of the 2-dimensional irreducible complex representation of 3.
Its reduction modulo 2 is the irreducible F3[G3]-module 2 of dimension 2. Moreover, we let
2 ® 3 be the representation Z[&3] — Endy(F3).

by

We are now able to determine the Z[&3]-module structure on the integral cohomology of
F(R). For convenience, we consider Z[G3] as a graded algebra concentrated in degree zero.

Theorem 9.3.1. The cohomology H*(F(R),Z) of F(R) is a graded commutative left Z|S3]-
module such that

‘ 1 if1=0,3,
H'(FR),Z) = 20Fy ifi=2,
0 otherwise.

Moreover, the action of Gz on F(R) preserves the orientation.

In particular, reducing modulo 2 gives

‘ 1 ifi=0,3,
H'(FR),Fy) =< 2 ifi=1,2,
0 otherwise.

Proof. Denote
{ oy = Ewe% w,
- = ZwEGg E(w)w,
where e(w) = (—1)“") is the sign character of &3 and recall the cellular homology complex
d d d
Z[Gs)t —= Z[63]6 —> Z[&3]* —— Z[S3] .
We can directly compute that
Ho(F(R),Z) = cokerdy =Z (1) ~Z
and
H3(F(R),Z) =kerds =Z{os'(1 1 -1 —1))~Z.

We determine an orientation of F(R) by choosing as fundamental class

Fw)=o ().

-1
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9.3 The cohomology of F(R) as an &3-module

Then, if w € &3, then o4 -w = o4 and so [F(R)]-w = [F(R)]. Thus, the right action of S3
on F(R) preserves the orientation. Denoting by
D= ([FR)] N ~): H'(F(R),Z) — H3_i(F(R),Z)

the associated Poincaré duality, the naturality theorem [Mun84, Theorem 67.2], resulting
from the naturality of the cap product, yields

w,Dw* = D'
For a right G3-set X, we naturally write X°P for the left G3-set X endowed with the action
w -z := zw~ . Then, the last equation becomes a reformulation of the property
D' € Homye, (H'(F(R),Z), H3—_i(F(R), Z))
and the left modules H*(F(R),Z) and Hz_;(F(R),Z)° are thus isomorphic.

Since the right &z-modules Ho(F(R),Z) = Z (o4+) and H3(F(R),Z) = Z ([F(R)]) are
trivial, it remains to show that H;(F(R),Z)? ~ 2 ® Fy. Denote respectively by = and

0 0 )
y the classes of (1 0 ) € kerd; and ( 0 ) € kerd; in Hi(F(R),Z). Then we have

+wo Satsasg

Hi(F(R),Z) = Z (x,y) ~ (Z/2Z)* and since

Try+ <5B+89ﬂ5a> - <<78+) = a2 (<U+2+U_>t(110000)>

0
. = 0 — —r —
v o8 (5ﬂ+5f35a) Ty

Next, it is easy to compute that x - s, = y, y-so = x and y - sg = y. These equations
mean that, with respect to the canonical generating set {z,y} of the torsion Z-module
Hi(F(R),Z)°, the matrices of the action of s, and sg are given by

we get

01 -1 -1 11
Matz4} (5a) = (1 0> » Matgy ) (s) = < 0 1 ) = <0 1>
and these are indeed the matrices defining 2 ® Fs. O

We also get the following direct consequence:

Corollary 9.3.2. The rational cohomology ring H*(F(R), Q) is a graded commutative left
Q[S3]-algebra and we have an isomorphism of Q[&3]-modules

H*(F(R),Q)~Q® Q,

with one summand in each degree i = 0, 3.

Finally, using the notations from the proof of Theorem we let

9 , , i t it
pim (|0 ) = [efi Vel ) € Hi(F(R),Z), yi= 50 = e}t Uy

| € Hi(F(R), Z),
2= 0y = [Upe’w] = [F(R)o] € Ho(F(R),Z)

and defining
u:=(D*)"H(x), v:= (D*)7H(y), c:=(D*)"}(2),

we easily obtain the following description for the ring structure of the integral cohomology
of F(R) :

Zlu, v, c|

(2u, 2v, u2, v2, uv, uc, ve, ¢2)

H*(F(R),Z) ~ , where |u|=|v|=2 and |c¢|=3.
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9.4 The mod 2 cohomology of F(R) as the coinvariant algebra of S

The description of the integral cohomology as a Z[S3]-algebra is not really satisfying. Also,
we shall give the ring structure on the mod 2 cohomology H*(F(R),F2), which turns out
to be more interesting. Furthermore, viewing F(R) as a real algebraic variety, we shall
express the ring generators as fundamental classes of closed subvarieties of F(R). More
precisely, recalling the ring R = C[z,y, 2, u, v, w, s, t] and the ideal I from Proposition
if one considers the complex conjugation involution ¢ : R — R, P +— P, then one has
R? =Rlz,y, z,u,v,w, s,t] along with a homeomorphism

F(R) — Projg(R7/I7).

Moreover, we will realize every homology class as the fundamental class of a closed subvariety
of F(R).

Definition 9.4.1. Denoting p:=[x :y:z:u:v:w:s:t] the homogeneous coordinates
on P7(R), for coordinates (or linear combinations thereof) \,p,v € {x,y,2,u,v,w,s,t},
consider the following closed algebraic subvarieties of F(R) = Projg (R /17):

QA pv) ={peFR); A=p=v=0} QA—p):={peFR); A=upu},

and define
Qp =z, t,v), Qy:=Qs+ty2), Q:=0Q(s,z,z2),
Q= Qu,t,y), Qy:=Qs+tv,w), Qy:=Q(s,u,w),
Qyey =y —v), Quez :=Qw —2), Qu=p = Qu—2)

Recall that two submanifolds V and W of a given manifold M are said to be transverse,
written V M W, if one has

Ve e VAW, TuM = T,V + T,W.

Remark 9.4.2. Notice that, on a smooth algebraic variety M, the tangent space associated
to the differentiable structure on M coincides with the Zariski tangent space of M. Thus,
one can say that two smooth subvarieties of M are transverse if they are as smooth sub-
manifolds of M and we can check the transversality condition on Zariski tangent spaces.
More generally, if V and W are no longer required to be smooth (but M still is) then the
transversality condition may be defined as

Vo € VN W, codimp,, ,(Ovsz N Ow,) = codimyV 4 codimp, W.

Using this notion, one can relate the cup product on H*(M) and intersection of trans-
verse submanifolds. More precisely, the cup product is Poincaré dual to intersection, pro-
vided that the submanifolds are transverse.

Theorem 9.4.3 ((Hutll, Theorem 1.1]). If A is a ring and V., W are two transverse
smooth A-oriented submanifolds of a smooth compact closed A-oriented m-manifold M of
respective dimensions v and w, then V. NW is a smooth A-oriented submanifold of M of
dimension v + w — m. Furthermore, denoting D' : H'(M,A) — H,,_;(M, A) the Poincaré
duality isomorphisms and D; := (D™~ )~ one has

Dy([V]) UDw(W]) = Dogw-m([V O W]).
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In a concise way, denoting [Z]* the Poincaré dual of the fundamental class of a submanifold

Z, we obtain
VAW = [V]"U[W]" =[VnW]".

In particular, this holds with A = Fo without any assumption on orientation.

First, we establish the following lemma:

Lemma 9.4.4. The nine subvarieties defined in[9.4.1] are 2-dimensional, smooth, irreducible
and pairwise transverse.

Proof. As usual, we will only work out a few examples since the other ones may be treated
in the same way. To prove irreducibility, we can use the same trick as in the proof of
Proposition [8:2.1} For example, the subvariety , has coordinate ring
— Ry, 2,u,w, 5]
R[] == (uz — ys, yw + us, zw + s?)
and localizing it with respect to s and defining the new variables y' := y — uz/s and
' i=u+yw/s, as well as 2’/ := z/s and w' := w/s yields an isomorphism

R, = RNy (R f )

and this last ring is integral, hence the coordinate ring of €2, is integral too. As another
example, consider ,—,. Localize its coordinate ring R[2,—,] with respect to s and changing
variables to ¢y :=y —uz/s, v/ :=v — zw/s and ¢’ :=t — xu/s, we obtain

R[Qy_y]s = R[sil][x,z,u,w]/(

S

2w+ zu+ 1, 2w — uz)

Localizing this again with respect to « and eliminating the variable w yields

NRsil,xil U, 2 ~ (Rlx,u, z,s
ROl 2 M ey = (15 )

and the polynomial ux? 4+ uz? + z is easily seen to be irreducible in the polynomial ring
R[z,u, 2], hence the last ring above is integral and thus R[Q2,—,] is integral too. From the
irreducibility, we can prove the smoothness using the Jacobian criterion by straightforward
calculations.

Regarding the transversality conditions, take for instance €2, and 2, and start by notic-
ing that, for two hyperplanes H, H' of R", we have the obvious consequence of Grassmann
formula

H+H =R" <« H+H. (1)

Recall the standard open affine subsets Uy := {\ # 0} for A € {z,y,2,u,v,w,s,t}. Then,
one has €, N Q,, C U, UU, and there are isomorphisms of varieties

Us £ RP
l:y:z:u:v:w:s:t — (2,0, $)

[1:—z(s4wvz):z:—s(s+vz):v:isv:s:—(s+vz)] «— (2,0,9)

and
U, AN 3
[T:y:z:iu:l:w:s:t —  (x,w,t)

[: —t(t+wx): —z(t+wz) tw:1:w:wzr:t] «— (zr,w,t)

136



9.4 The mod 2 cohomology of F(R) as the coinvariant algebra of S3

Now, let p:=z:y:z:u:v:w:s:t] €QyNQ, and denote (a,b,c) the coordinates on
R3. Suppose first that p € U, and x = 1. We have that ¢, (2, NU,) = {a = 0} C R3 and
©02(QuNU,) = {c =0} C R3 are two distinct hyperplanes of R? and by @ this implies that

Ay (Tp(QNUs))+dppa(Tp(QwNUs)) = Ty, ) ({a = 0)+T,, ) ({c = 0}) = R® = T,(F(R)NUs).

Now, if p € U, and v = 1 then one has ¢, (Q2,NU,) = {ab+c = 0} and ¢, (Q,NU,) = {b = 0}
and again, using Zariski tangent spaces,

dppo(Tp(QyNUL) ) +dpou (Tp(QNUy)) = {bx+c = 0}+T,, () ({b=0}) = R3 = T,(F(R)NU,).

This implies that T,Q, + 7,0, = T,(F(R)) and , th Q. The cases concerning only the
first six varieties Q) for A € {z,y, z,u,v,w} are treated in the same way.

Next, look at the case Qy—, h Q.. We have ¢, (Qy=, NUy) = {1 + c(ab+ ¢) = 0} and
©p(2; NUy) ={a=0}. Thus, if p € Qy—, N Q. NU,,

dppu (Tp(wy— NUL)) = Ty, () (00 (Qy=s N Uy)) = {twa + tab + (2t + wa)c = 0} C R?,

and
dp@U(Tp(Qz NUy)) = T%(p)(gpv(QZ NUy)) ={a=0} C R?

and these hyperplanes cannot be equal because this would imply tw # 0 and x = 2t+wz = 0,
which is impossible. Hence they sum to R? by @), ie.

Tp(Qy=o NUy) + T,,(Q. NU,) = T,(F(R) N Uy)
and we can do the same for every chart Uy intersecting €,—, N {2;.

Finally, we look at the case Qy,—, M Q,—. and take the open affine subset U,. We
have ¢, (Qy—, NUz) = {b+ a(ab + ¢) = 0} and ¢, (Qy=> N U,) = {ab = c}, so for every
p € Qy—y N Qy—, N Uy, one has

dp e (Tp(Qy=y N Us)) = Ty, () (02 (Qy=o N Us)) = {(5 + 202)a + (1 + 2°)b + zc = 0} C R?,
and
dppa (Tp(Qu=: NUy)) = Ty, (p) (0 (Qu=z N U,)) = {—a+ sb+ve =0} C R®.

These two hyperplanes cannot be equal, because else there would exist e € R such that
(s+2vz,14 2% 2) =e(—1,s,v) forsome p=[l:y:z:u:y:z:8:t € Qyey N Ly, NU,.
But, this implies e # 0 and 0 < —e? = e(s+2vz) = es+2evz = 1+ 322 > 0, a contradiction.
Hence, they sum to R3, i.e.

Tp(Qy=y NUz) + Tp(Quw=: NUz) = T,(F(R) N U,).
0

Lemma 9.4.5. The fundamental mod 2 homology classes of the subvarieties defined in[9.4.1]
satisfy
[Q] = Q] = [Qy]a [Q.] = [Q] = [Q], [Qy=v] = [Qu=:] = [Qo=u].

Moreover, one has

and
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Proof. Start by noticing that

Qy={s=0, zyt #0} = U €5e yn = €7 Uelsy Ues U essa,
ene{£}

the closure being understood in F(R) and with respect to the Zariski or Euclidean topology
(they give the same closure, as may be checked on affine charts). Similarly, one has

Qp ={x=0, yus #0} = U € un = e3 U edsq Ues Uels,.
emne{x}

Hence, viewing [Q,] and [Q,] as (classes of) column vectors in Fo[G3]¢ = (Kg,(R) ® Fa)a,

we get
1+sa 0

1+sa 149
— _ S
[Qu]=1{ 9§ |, Q=]
0 0
0 0
Using the same method, we compute
0 $gSatwo 8 8
0 SgSatwo
_ 0 _ _ $gSatwo o 0
[Qy] - 0 ’ [Qz] - 8 ) [Qu] - 538a+wo ) [QU] - 0 ’
1450 0 0 $gSatwo
1+sa 0 0 53Sa+wo
and
S$g+sasg 8 8
Q] = s,e-f—gaSﬁ Q] = s5+Sass (] = 8
v= 8 ’ o sﬁ+§°‘sﬁ ’ - sg+sasg
0 0 Sgtsasg

These expressions prove the second statement. The only thing left to be shown to prove the
first statement is its first equation. But one checks that

[Q0] =[] ="(111100) (14 s4) = (d3 ® Fy) <i€§8> (14 54)
5B

and
1+Sﬁ
[Q,] =[] ="(001111)- (14 54) = (d3 @ F) (143%) (14 sq),
1
as desired. Finally, to prove the third statement, just notice that

1

Q] + [Q2] + [Qy=0] =%110000)-0; = (d3 ® Fy) (%) (14 5453 + 585q)-

We now come to the main result of this section:

*

Theorem 9.4.6. The assignement x — [Q.]*, y — [Qy=y]* induces a zero-graded isomor-

phism of Fo[S3]-algebras

Fg[l',y] ~
H*(F(R),F
@ P2ty tay) (F(R), F2),

o :

where S3 acts on the left-hand side as

Sal =Y, sgxr =z,
and
Sqy =T Sy =T +y.
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9.4 The mod 2 cohomology of F(R) as the coinvariant algebra of S3

Proof. 1t suffices to show that the desired isomorphism is a well-defined map. Indeed, if
it is, then it is a morphism of Fy[&3]-algebras using the fact that Poincaré duality is S3-
equivariant and the relations [Q,] = [2;] + [Qy=,] and [Q;] - 5550 = [Qy=0] - 55 = [y from
Lemma More precisely, one writes

(] 80 = [Qy=o], [Qy=o] - 55 =[] = [Q:] + [Qy=0]
and
[€2:] = [Q] - 5psa =[] - 5850 + [Qy=u] - 5850 = [Qu] - (sasp + 5a) = [Q:] 55 = [(L].

Moreover, it will be easily seen to be one-to-one by looking at the dimensions of the sum-
mands of the two algebras and using Theorem [9.3.1

To prove that the map is well-defined, the only thing to be checked is the following
relations

co = ([2:]")7 + ([Qy=0]") + [Q:]"[Qy=]" = 0, ([2:]")° = ([2y=]")* = 0.
Using Lemma again yields
saco = (([Q:]50)")? + ([Qy=0]5a))? + ([2]s0)" U ([Qy=s]sa)"
= ([Qy=0]")? + (12:])% + [Q=o] [%]" = o
and similarly, one gets sgco = cp. Hence wey = ¢g for every w € &3, that is,
co € H*(F(R),Fy)%3.

But since H?(F(R),Fy) = 2 is the unique 2-dimensional irreducible representation of &3 on
Fs, the module H?(F(R),Fy) has no &3-fixed point and hence ¢y = 0.

Now, by Lemma we have [Q.]* = [Q.)* = [Q]" and Lemma says that
Q. hQ, M Q, MQ, and since Q. N Q, N Q, = 0, we obtain by the Theorem

([2.])° = [ U [ U Q)" = [2. N QuN Q] = [0]" =0
and similarly, since Qy—, N Qy=> N Qy=y, = 0, we have
([Qyzv]*)3 = [Qy=0]" U [Qu=2]" U [Qp=u]” = [Qy=0 N Q=2 N Qu—y|* =0,
as required. O

Corollary 9.4.7. Let &3 act naturally by permutation on the polynomial algebra Fa|x,y, 2],
the simple reflection so (resp. sg) acting on {z,y,z} as the transposition (12) (resp. (23)).
In this context, one may consider the mod 2 coinvariant algebra

Folz,y, 2les = FQ[m’y’z]/(Fz[x,y’ 2]%%)

Then, the assignment x — [Q,]*, y — [Qy=y]*, 2 — [Qy]" induces a zero-graded isomorphism
of F3[G3]-algebras N
¢ Falx,y, 2], — H*(F(R),Fs).

Remark 9.4.8. By [Tym07, Theorem 4.5/, we know that H*(SL3(C)/B,Q) = H*(F,Q)
is the coinvariant algebra Q[z,y, z]le, of the Weyl group S3. This is obviously no longer
the case for H*(F(R),Q). The previous corollary retrieves the result over Fy. Notice how-
ever that H*(F(R),F) ~ Falx,y,2]a, is not the reqular representation of &3 over Fa,
as Fa[x,y, z|e, is semisimple, whereas Fo[G3| is not. This gives a counter-ezample to the
Proposition 3.32 of [LT09] in the modular case.
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9.4 The mod 2 cohomology of F(R) as the coinvariant algebra of S3

Proof. For 1 < i < 3, denote o;(z,y,z) the i ™ elementary symmetric polynomial with
variables z, y and z. By the fundamental theorem on symmetric polynomials, one has

(FQ['%" Y, Z}G?)) = (0-1(337 Y, Z)? GQ(xa Y, Z)? 0-3($7 Y, Z)) = (.ﬁU +y+zay+yz+az, l‘yZ)
We thus have to prove that the map defined in the statement induces an isomorphism

]Fg[l',y, Z]
(x+y+z,2y+yz+xz,2y2)

— H*(F(R),Fy).

Next, the map
ro FQ [IE, Y, Z] - FQ [%7 g]
P(z,y,z) — P, y,2+7Y)

defines a retraction of the natural inclusion

v o Folz,y] — Falz,y, 7]
P(z,y) — P(z,y)

and one has
r((z+y+ 22y +yz + oz,2y2)) = @,5°, 7 + 7 + 79).
Indeed, one has r(z+y+2) =0, r(zy+yz+22) =2y + 9T +9) + (T +79) = Ty + 5> + 72
and r(xyz) = 79(T + ) = y(@* + 2y) = °
Therefore, the retraction r induces a zero-graded isomorphism of Fy[S3] algebras

. Fg[l’,y,Z] -~ Fg[l’,y]
(Fof,y,2]%8) (2%, 2% + ¥ + ay)

which, using the relation [Q,]* = [Q;]* + [Qy=,]* from Lemma fits in a commutative
diagram

Falz,y,z] IFQ)

(F2lzy,2]93) /

Falz,y]
(@33 22 +y2+xy)

O
This result (and Lemmas and [9.4.4)) may be used to realize every cohomology class
in H*(F(R),[F3) by closed subvarieties. First, we have obviously
H°(F(R),F2) = Fa ((F(R)]) and H°(F(R),F2) = Fa ([pt]")

as well as
Hl(]:(R)a F2) = {07 [QZ]*7 [Qy=v]*’ [Qw]*}

Next, for two elements w,w’ € &3 such that w < w’ for the Bruhat order, denote by

one defines
1—5q = U et = S’t ot U e;’;,_ U{B}U{Bsu}

- {[855] 7m0} =0
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9.4 The mod 2 cohomology of F(R) as the coinvariant algebra of S3

Now, since Q; M Q,,, we obtain
[1— 80 = [2NQW]* = [ [Qu]" = (2] +([Q=0]")? = [Q2.]" Q=] € H*(F(R), F2).
In the same fashion, we compute

[1—s55]" = [N Q)" = [QuJ )" = ([2.])

and
[1—wo ]* = [Qy=o N Qumi]” = Q=] [Qamu]” = (Qy=o])?.
Hence,
H*(F(R),F2) = {0,[ 1 —sa ]", [1—s5]", [ 1 —wo ]"}.

We also have the following relations in H; (F(R),Fs),

[1—sa]=1[s8—5p5a]=[5as5 —wo],
[1—sg]=[sa—sasp] =[s85a —wo ],
[1—wo | =[50 — 585 ] =[98 —5a58 ]

Recalling the notation x = [Q.]* and y = [Q2y—,|* we can represent this using the GKM
graph of G3:

PN

Y $2

Saspa SpSa

N4

2 y?

RN

Sa sg

2/
\“’\ A

1

where a label on an edge symbolizes the associated fundamental cohomology class and the
relations in H? may be reformulated by saying that the sum of the classes of three parallel
edges in the graph is zero.

X

Remark 9.4.9. We have isomorphisms of real algebraic varieties

F(R) ~ SO(3)/S(0(1) ~ O(3)/O(1 = {(Ly, Lo, Lg) € PAR)® ; Ly & Ly & Ly — R%}

and this allows us to see any element of F(R) as a triple of orthogonal lines in R? and this

gives, for each 1 < i < 3, an algebraic line bundle, called the i*™ universal line bundle over
F(R),

L= ({((Ll,Lg,Lg),v) e F(R) x A3(R) ; v e L;} % ]—"(]R)) .
The action of S3 on F(R), one can make &3 acting on the universal line bundles as

Ly 8q = L2, Ly-sg =Ly,
£2‘5a2£1, £2-$5:£3
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9.4 The mod 2 cohomology of F(R) as the coinvariant algebra of S3

and we have analoguous relations at the level of first Stiefel-Whitney classes. Now, if we let
tl“iV:;_—(R) be the trivial vector bundle of rank 8 on F(R), then we have immediately

tl"iV%_—(R) =L1D Ly D Ls.

Hence, denoting by w; = w(L;) = 1+ wi(L;) € H*(F(R),F2) the total Stiefel-Whitney
class of L;, the Whitney product formula (see for example [MS74, §4]) gives

W)W (o)W (3) = w(triv%_-(R)) =1.
Ezpanding and using the degree on the cohomology algebra, we obtain
W()W()W(3) = 1 & (Tj(Wl([,l),Wl(ﬁg),Wl(ﬁg)) =0, V1<j5<3,

with o; the ™ elementary symmetric polynomial in three variables. Using this and the
formulae for the action of &3 on the Stiefel-Whitney classes, we obtain

wiy=1+z=1+[L]", wo =1+y=1+[Q-]", wgy=1l+a+y=1+2=1+[Q]"

and we retrieve the following isomorphism of rings, given in [Bor53a, Theorem 11.1] and
in [Hel9, Theorem 4.1],
Falwq, wa, ws

H*(F(R).F2) = H*(0(3)/0(1)". Fs) ~ (LI +w)

142



Part V

Construction of an G3-equivariant cellular
structure on the flag manifold of SL;(R)
via binary spherical space forms

This part is taken from [CGS20] and [Gar20] and focuses on 3-dimensional spherical space
forms that is, free quotients of the 3-sphere S? by a finite group of isometries. In [CS17],
the authors give a systematic method to build equivariant cellular structures on spheres,
with respect to the free action of a finite group of isometries. Here, after some reminders
on the method we study the binary octahedral group O and the binary icosahedral group
Z. The octahedral case is of particular interest for us because we have a diffeomorphism
F(R) ~ S3/Qg, where F(R) is the real flag manifold of SL3 and Qg is the quaternion group
of order 8. This diffeomorphism is &3-equivariant and thus, the O-equivariant cell structure
on S? yields an G3-equivariant cellular structure on F(R), for which we describe the cellular
chain complex.

10 Orbit polytopes

The following section gives the main tools for determining fundamental domains for finite
groups acting isometrically on the sphere S3, by using their orbit polytopes. We recall
results from [CS17]. For general properties of polytopes, the reader is referred to [Zie95].

10.1 Finite group acting freely on S"”, orbit polytope and fundamental
domains

Let I' € O(n) be a finite group acting freely on a sphere S®~! C R™ and such that any of its
orbits span R™. Fix vg € S"! and let & := conv (T - vg) be the associated orbit polytope.

Recall that, if a group I' acts on a topological space X, then a fundamental domain for
the action of T on X is a subset D of X such that, for v # v/ € T, the set yD N +'D has
empty interior and the translates of D cover X, i.e. X = U7€F vD.

Theorem 10.1.1 (/CS17, §6.1-6.4]). The following holds:

i) If F and F' are distinct proper faces of & of the same dimension, then F N~F' has
empty interior for every 1 #~v €T,

it) The group I acts freely on the set Py of d-dimensional faces of &, for every 0 < d <
dim(2).

iit) Moreover, the origin 0 is an interior point of & and we have a I'-equivariant homeo-
morphism
oy = sl
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10.2 The curved join

i) Given a system of representatives Fi,...,F, for the (free) action of I' on the set of
facets of & such that the union |J; F; is connected, then this union is a fundamental
domain for the action of I' on 022. Furthermore, there exists such a system.

We finish this section by giving a simple but useful fact.

Proposition 10.1.2. Given distinct facets I, ..., F, of &, form their union D :=J;_, F;,
consider the subset V of T defined by vert(D) =V - vy and assume that vy € (;_; vert(F;).
IfVNV~1 = {1}, then the F;’s belong to distinct T'-orbits. If moreover r|I'| = |, _1|, then
D is a fundamental domain for the action of I' on 047.

Proof. Suppose that there are 1 < i # j < r and v € I' such that F; = vF;. Since
vy € vert(F;), we get yug € v vert(F;) = vert(yF;) = vert(F}), soy € V. On the other hand,
vg € vert(F;) = vy vert(F;), hence vy 1vg € vert(F;), that is y~! € V. Therefore y € VNV L,

so v = 1 and thus F; = Fj, a contradiction. Now, the equation r|I'| = |?,_1| ensures that
Fy,..., F, is a system of representatives of facets and the condition vy € (), vert(F;) shows
that D is connected, hence the second statement follows from the theorem [10.1.1 ]

10.2 The curved join

Here, we shall define the notion of curved join, which allows one to describe the fundamental
domain for 0 as a subset of the sphere. It will also be used to reduce the higher dimensional
cases S~ 1 to S3. For any detail, see [FGMS13, §2.4].

Given W1, Wy C S*71 C R” such that Wy N (—Ws) = (), we define their curved join
W1 « Wy as the projection on Sn1 of conv(W7 U W3). For instance we have

St xSt =§3.

This generalizes as follows: identifying C™ with R?>™ and given the standard orthonormal
basis {e1,...,ea,} of R?™ for each 2 < r < 2m, denote by II, the plane generated by
{er—1,€r}. Suppose II,, NII,, = 0 and let W; and W5 be subsets of the unit circles of II,,
and II,.,, respectively. Then, one can define the curved join W « W5 as above. In particular,
we denote by ¥, the unit circle lying in the k" copy of C in C™ and we have the following
equality

S2m_1 221*22**27,1

Let I' < O(n) be a finite group acting freely on S*~! and let h € N*. Then, we can
make T' act diagonally on R"™. Under the identification S~ = S(h—1n—1 4 §n—1 e have

v (@ xy) =T * Y.
To compute the boundaries, we shall need the following technical result:

Lemma 10.2.1 ([FGMS13, Lemma 2.5]). We have the following Leibniz formula for the
oriented boundary of a curved join

X *Y)=0X %Y — (=1)ImX X « 9y’

In fact, we will use the following general lemma, allowing to recursively determine a
fundamental domain and an equivariant cellular decomposition on "1, once we know one
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on S"~1. More precisely, let I' < O(n) be a finite group acting freely on S"~!. Assume that
D is a fundamental domain for the action on S and that L is a cellular decomposition
of D. We obtain an equivariant cell decomposition K=T-LofS"land L = K /T is a
cellular decomposition of S*~!/T". Assume further that Zisa subcomplex of L that is a
minimal decomposition of D by lifts of the cells of L.

Let h € N* and consider the diagonal action of I" on S"*~!. Then, a fundamental domain
for this action on "~ is given by

D = §th=Hn=1 . p

Furthermore, we construct an equivariant cellular decomposition K' of S"1 and a
minimal cellular decomposition L’ of D’ as follows:

e the (h— 1)n — l-skeleton of L is f/(h,l)n,l =K;

e for the (h—1)n-skeleton of L/, we attach ko(h—1)n-cells to K, where kg is the number
of 0-cells é? of Z and the corresponding attaching map is given by the parametrization

of the curved join K * ev;

e for the (h—1)n+1-skeleton of L, we attach k1(h—1)n+1-cells to the (h—1)n-skeleton
of L', where ki is the number of 1-cells Ell of Z and the attaching map is given by the
parametrization of L' (_1y, * €/;

e we carry on this procedure up to dimension hn — 1.

We can summarize this in the following result:

Lemma 10.2.2 ((FGMS153, Lemma 4.1]). If I' < O(n) is_a finite group acting freely on
St if D is a fundamental domain for this action and sz is a_cellular decomposition of
D, wzth associated I'-equivariant cellular decomposition K =T - L of S*1, then for every
h € N*, the subset

D' = sh=bn-1,p
is a fundamental domain for the diagonal action of ' on SP=1 and the above construction
gives a cell decomposition L' of D', with associated I'-equivariant cell decomposition K' :=

[ L' of Shn1,

11 The octahedral case

In the following two sections, we let both O and Z act (freely) by (quaternion) multiplication
on the left on S3.

We start with a brief reminder on binary poyhedral groups. The reader is referred to
[LT09].
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11.1 Binary polyhedral groups and spherical space forms

11.1 Binary polyhedral groups and spherical space forms

Consider the quaternion group Qs := (i,j) = {£1,+i,+j,+k}, a finite subgroup of the
sphere S? of unit quaternions. The element @ := %(—1 + i+ j + k) has order 3 and
normalizes Qg. Hence, the group

T = (i,w)

has order 24, and the 16 elements of 7 \ Qs have the form §(&1 =44 j + k). The group 7
is the binary tetrahedral group.

Next, the element v := %(1 + 1) has order 8 and normalizes both Qg and 7. Hence the
group
0 :=(w,7)

is of order 48 (since 72 = i) and is called the binary octahedral group and we have O = (t, ).

The set O\ T consists of the 24 elements %(:I:u + v) where u # v € {1,4, 7, k}.

Setting ¢ := (1 4+ V/5), the element o := (¢~ +i+ ) is of order 5 hence the binary
icosahedral group
7T := (i,o0)

has order 120 and we have T < .

The universal covering map S* = SU(2) —» SO(3) can be interpreted as the action of
unit quaternions on the space of purely imaginary quaternions

B:S* — SO3(R).

The respective images of 7, O and Z are the rotation groups 2y, &4 and 25 of a regular
tetrahedron, octahedron and icosahedron respectively, hence the names.

It has been observed by Coxeter and Moser in [CM72, §6.4] that finite subgroups of S3
have nice presentation. Namely, denoting

(6,m,n) := <r,s,t |t =M =t" = rst>,
we have isomorphisms

(2,3,3) =T, (2,3,4)~0, (2,3,5)~T.

Finally, for n € N* and G € {T,O,Z}, we define the polyhedral spherical space form

Pé’n—l = S4n—1/g.

11.2 Fundamental domain

We use Theorem [10.1.1] to find a fundamental domain for @ on S3. To this end, we first
introduce the orbit polytope in R4

P = conv(0).

Then, we know that O acts freely on the set &3 of facets of &2 and by Theorem [10.1.1] it
suffices to find a set of representatives in &3 such that their union is connected; this will
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11.2 Fundamental domain

be a fundamental domain for the action on 9.2, which we can transport to the sphere S3
using the equivariant homeomorphism 0.2 — S3, x s z/|z|.

The 4-polytope & has 48 vertices, 336 edges, 576 faces and 288 facets and is known as
the disphenoidal 288-cell; it is dual to the bitruncated cube. Since O acts freely on s,
there must be exactly six orbits in &?3. We introduce the following elements of O, also
expressed in terms of the generators s and t in the Coxeter-Moser presentation:

Ititj+k _

“o = T 5 14
1—itjtk 1o,—1 Tii= gy = b

w; = R =17 st 14,1

. and lezwzt S,
o 1Hi—g+k —142

Wi 2 s g 14k -1
ik Tk = 72 = st

Wy 1= lﬂ% =t 1st.

Next, we may find explicit representatives for the O-orbits of 3.

Proposition 11.2.1. The following tetrahedra (in R*)
Al = [177—ia7—jaw0]a A2 = [177—ja7-k7w0]7 A?) = [].,Tk;,Ti,WO],

A4 = [177_i7wk77_j]7 A5 = [177—j7wi77—k]7 Aﬁ = [177_iawj77_k]

form a system of representatives of O-orbits of facets of &2. Furthermore, the subset of &
defined by

is a (connected) polytopal complex and is a fundamental domain for the action of O on 0.

Proof. First, we have to find the facets of & by giving the defining inequalities. To do this,
we make the group {£1}* x &4 act on R* by signed permutations of coordinates. Let

3—-2v/2 2—2
— V2-1 — | 2=v2
o= (1) (E2),

By invariance of &, to prove that the 288 inequalities (v,x) < 1, with v € ({£1}* x Ay) -
{v1,v2}, are valid for &2, it suffices to check the two inequalities (v;,x) <1, for i = 1,2. As
there are indeed 288 conditions, we have in fact all of them, hence the facets are given by
the equalities (v,z) = 1 and we find their vertices by looking at vertices of &2 that satisfy
these equalities. We find

vert(2) = {1, 7, Tj, Tk, Wi, Wj, W, Wo } -

Now, since R* = span(Q) and vert(2) N vert(2)~! = {1}, Proposition [10.1.2] ensures that
2 is indeed a fundamental domain for 0.2. O

Remark 11.2.2. The recipe used to find these tetrahedra is quite simple. First, choose Ay
in some O-orbit of 03 and containing 1 as a vertexr. Then, we arbitrarily choose another
orbit and look at the dimensions of the intersections of A1 with the facets of this second orbit.
There is exactly one facet (namely Ag) for which the intersection has dimension 2 and we
continue further until we obtain representatives for the six orbits. Hence, a lot of different
fundamental domains can be produced in this way. The calculations can be done using the
Maple package “Conver” (see [Frd]) and quaternionic multiplication, as in [GAP/).
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11.3  Associated O-equivariant cellular decomposition of 042

It should be noted that all the figures displayed in the sequel only reflect the combina-
torics of the polytopes we consider, not the metric they carry as subsets of S3.

N
‘ N
T; &= :

Figure 10: The six tetrahedra inside 2.

11.3 Associated O-equivariant cellular decomposition of 0.4

We shall now examine the combinatorics of the polytopal complex & constructed in the
previous subsection to obtain a cellular decomposition of it. Since & is a fundamental
domain for O on 042, translating the cells will give an equivariant decomposition of 0%
and projecting to S? will give the desired equivariant cellular structure on the sphere.

The facets of & are the ones of the six tetrahedra A;, except those that are contained
in some intersection A; N A;. We obtain the following facets

-@2 = {[Lijwi]a [Lwi?’rk]? [177_k7wj]7 [ija Ti]: [17Tiawk]7 [lawvaj]v [TjawiaTk]v

[Tk wj, 7] [Ti Wiy T, (735 Tj wols [T Thes wo) s [T Ti wo) }-

We notice the following relations

{ Ti'[l,Tj,wi]:[Ti,wO,Tk], { TJ [1,Ti,Wj]:[Tj,wk,Ti], { Tk'[l,Tj,wk]:[Tk,wi,Tj],
7 (1, wi, k] = [T, Ths Wyl 7j - [L,wj, 7] = [7, Ti, wol, T - [1, wk, Ti] = [Tk, Tj, wo)-
These are the only relations linking facets, hence, we may gather facets two by two and
define the following 2-cells and 1-cells, respectively

& =

]Tj,l,wi[U]l,wi[U]l,wi,Tk[, €5 ::]Ti,1,wj[U]1,wj[U]1,wj,Tk[, e% ::]Ti,l,wk[U]l,wk[U]l,wk,Tj[,
e% =1, 7, e% =1, 7], eé =1, 7,
recalling that, for a polytope [v1,

..oy Up] = conv(vy,...,vy,), we denote by |ui,...,v,[ its
interior, namely its maximal face.

If we add vertices of 2 and its interior, which is formed by only one cell e? by construc-
tion, then we may cover all of & with these cells and some of their translates. Thus, we
have obtained the
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11.3  Associated O-equivariant cellular decomposition of 042

Lemma 11.3.1. Consider the following sets of cells in &
Eg] = {17 Tis Tj? Tk, Wi, wja wk}a

1. g1 11 1 TR R N B | 1

Ey = {ey, Tjeq, Trey, wieq, ey, Tiey, Tpey, Wjey, €3, Tie3, Tje3, Wies},
2 .2 2 2 2 2 2

E7 = {ef, mei, e3, Tjes, e3, Tres},

E} = {e3}

Then, one has the following cellular decomposition of the fundamental domain

9 = H e.
0<j<3
J
eEE@

Tk

Figure 11: The 1-skeleton of 2.

Then, combining Proposition [11.2.1] and Lemma [11.3.1] yields the following result:
Proposition 11.3.2. Letting E° := {1}, E' := {e}, i = 1,2,3}, E? := {¢?, i = 1,2,3}

and E3 := {e3} with the above notations, we have the following O-equivariant cellular

decomposition of 0
0Y = H ge.

0<5<3
ecEJ geO

As a consequence, using the homeomorphism ¢ : 0.2 = S? given by x +— z/|z|, we obtain
the following O-equivariant cellular decomposition of the sphere

= I gee.

0<j<3
e€ Bl ge0

We now have to compute the boundaries of the cells and the resulting cellular homology

chain complex. We choose to orient the 3-cell e3 directly, and the 2-cells undirectly. The
induced orientations seen in & can be visualized in Figure [12]
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11.3  Associated O-equivariant cellular decomposition of 0.4

Wk

Figure 12: The fundamental domain with its 2-cells (back and front).

Proposition 11.3.3. The cellular homology complex of 02 associated to the cellular struc-
ture given in Proposition is the chain complex of left Z|O]-modules

Ko :=(Z[O]ﬁ>zwl3 %, zjop -2 Z[m),
where
T — 1 wj T — 1 1
Oh=|m-1], &= 1 wi mi—1lf, G=Q0-7m 1-7 1-m).
T — 1 -1 1 W

To conclude this section, we show in Figure a tetrahedron in &3 containing 1 as a
vertex. In this picture, we put the points w,jf (with h = 0,1, j, k) at the centers of the facets
of the octahedron. The tetrahedra in question are constructed in the following way: one
chooses an edge of the octahedron and the center of a face which is adjacent to this edge.
The resulting four vertices (including 1) are vertices of the corresponding tetrahedron. This
representation will be useful when we study the application to the flag manifold of SL3(R).

Figure 13: One of the twenty-four facets of &2 containing 1.
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11.4 The case of spheres and free resolution of the trivial @-module

11.4 The case of spheres and free resolution of the trivial O-module

Using Theorem [10.1.1] we derive a fundamental domain for O acting on S* and thus obtain
an O-equivariant cellular decomposition of S3.

Theorem 11.4.1. The following subset of S® is a fundamental domain for the action of O

Fgi=(wix 1x1j*1) U (L7 %7 xwo) U (wj * 1 %75 % 7;)

U(l*Tk*Ti*WO)U(wk*l*Ti*Tj)U(]-*Ti*Tj*WO)‘

As a consequence, the sphere S* admits an O-equivariant cellular decomposition with the
following cells as orbit representatives, where relint denotes the relative interior,

¥ :i=1%0= {1}, e1 :=relint(1 % 7;), & := relint(1 * 7;), &3 := relint(1 * 73,),
et = relint((1 * w; * 75) U (1 % w; % 71,)), €3 :=relint((1 xw; *73,) U (1 % w; * 7)),

3 = relint((1 * wy, * 1) U (1 % wg % 75)), € :=F3

Furthermore, the associated cellular homology complex is the chain complex Ko from the

Proposition [11.3.3

The relative interior of a simplex in 047 is sent to the Riemannian relative interior in
S?, that is, the subset of points of the geodesic simplex which do not belong to any geodesic
sub-simplex of smaller dimension.

From this, we immediately deduce the following result, which gives a periodic free reso-
lution of the constant module over Z[O].

Corollary 11.4.2. The following complez is a 4-periodic resolution of Z over Z[O]

O4q— Oaq—
7O 2L o) P zj0P 2 7[0P 2~ 7[0] —=- 7 0,
where, for q > 1,
T; — 1 W; Tk — 1 1
84q73 =\|T7 — 1 s 8461,2 = 1 Wiy TP — 1 s
e — 1 i —1 1 Wk

O1g—1 = (1 -7 l—7 1- Tk) ) O1q = (de(ﬂ g) :

Recall the augmentation map ¢ : Z[O] — Z defined by ¢ (deo agg> =Y gc0 ag- We
can now compute the group cohomology of O using the previous Corollary. But first, let us
recall the following basic fact:

Lemma 11.4.3. Let G be a finite group acting freely and cellularly on a CW -complex X .

1. If K denotes the cellular homology chain complex of X (a complex of free Z|G]-
modules), then the induced cellular homology complex of X/G is K ®z[q] Z-
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11.4 The case of spheres and free resolution of the trivial @-module

2. If f: ZIG]™ — Z[G]"™ is a homomorphism of left Z|G]-modules, identified with its
matriz in the canonical bases, then the matriz of the induced homomorphism f ®zq)
idg : Z™ — 7" is given by the matriz e(f), computed term by term.

Corollary 11.4.4. The group cohomology of O with integer coefficients is given as follows:

HY(O,Z) =7 if q=0,
HY(O,Z) =Z/48Z if ¢q=0 (mod 4),
HY(O,Z) =Z/2Z if ¢=2 (mod 4),

HY0,Z)=0 otherwise.

Vg > 1,

Proof. In view of Lemmal|l1.4.3} is suffices to compute C(P, Z[O])®z(0) Z, with C(P{, Z[O])
the complex given in Corollary [11.4.2 The notation will become clear later (see Theorem
11.4.7). Computing the matrices £(9;) and dualizing the result leads to the following cochain

complex
( ) x48 x48

1
0
1073 2.7 Z o Z 7273

and computing the elementary divisors of the only non-trivial matrix allows to conclude. [J

10
11
01

0 7. 73

Remark 11.4.5. In [TZ08, Proposition 4.7], Tomoda and Zvengrowski give an explicit
resolution of Z over Z[O]. They use the following presentation

O =(T,U | TU’T =U?, TUT =UTU)
from [CM72]. As we would like to work with presentations, we use the isomorphism
(T,U | TU*T =U?, TUT =UTU) — O

sending T to %(1 +1i) and U to %(1 + 7). Then, the Tomoda-Zvengrowski complez reads

k&7 = ( 7j0] %= 7012 2. 7012 2 7]0] ) ,

with

_(T-1 _(1+TU-U T-1-UT o B

On the other hand, the differentials 0; of the complex Ko from Proposition are given,
through the above presentation, by

T-1 Ur-t tur1t-1 1
o = U-1 , 0= 1 u'r T-1|,8=01-T 1-U 1-TUT ).
TUT ' —1 U-1 1 UT

We claim that the complexes Ko and /Cg;z are homotopy equivalent. This observation relies
on elementary operations on matriz rows and columns. Write Z := U* = T* for the only
non trivial element of Z(QO). Consider

-7 0 0 0 —TUT 0
P=\|z1-T) TUT -U%*|, Q:=| -TUT 0 0],
—-U3T —-TUT 0 U:-TUT U?T 1
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11.4 The case of spheres and free resolution of the trivial @-module

then P,Q € GL3(Z[O]) and

-Z 0 0 0 —(TUT)" 0
Pl = Ut 0 —(Tun)|, Q'=|—-(TUun)! 0 0
v(r-n+uv-tr -u2 -U? ur-*  TurT'-1 1

Now, we have the following relations

T-1 0 0 —Z
—Q'qyTuT=(U-1]|, P'dQ=(1+TU-U T-1-UT 0 |,
0 1+TU? T-U-14+TU 0

UdzP=(0 1-TU U-1).

Hence, the isomorphism

Ko ~KH & <o Z[0] —= 7]0] 0),
confirms that Ko is indeed homotopy equivalent to ICgZ.

In fact, the complex from the Corollary carries geometric information.

Proposition 11.4.6. The following subset of S* 1 is a fundamental domain for the action
Fan—1 1= N1 x Do -+ -k Vg _1) * F3,
with %3 inside Yop_1 * Yoy the fundamental domain from Theorem|11.4.1].

We can now describe the resulting equivariant cellular decomposition on S**~! using

Lemma and Theorem It only remains to consider the boundary of the cells
€% for ¢ > 0. But it follows from the fact that e%¢ = S%*~1 xe%9~1 hence its boundary is
given by all the cells in S%~1, that is, all the orbits under O. This gives the following result,
which we prefer to state using the vocabulary of universal covering spaces. We denote by
C(K,Z[G)) the chain complex of finitely generated free (left) Z[G]-modules given by the

cellular homology complex of the universal covering space K of a finite CW-complex K
with the fundamental group G acting by covering transformations.

Theorem 11.4.7. The chain complex C(Pé"il,Z[O]) of the universal covering space of the
octahedral space forms P?Q”_l with the fundamental group acting by covering transformations
is the following complex of left Z[|O]-modules:

] 84717 1 82 31

0——=Z[O 7|0 —— ... —= 7|0 Z|0)?

7[0] —=0,
where, the boundaries are as in Corollary[I11.4.3

In particular, the complex is exact in middle terms, i.e.
Y0 <i<dn—1, H;(C(PH~1,Z[0]) =0

and we have
Ho(C(Pg ™, Z[O])) = Hin—1(C(PE ", Z[O])) = Z.

Proof. The computation of the complex follows from lemma [10.2.2| and the previous dis-

cussion. The claims on its homology follow, S¥*~! being the universal covering space of

pin—1 O
@]
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12 The icosahedral case

12.1 Fundamental domain

We shall use for the binary icosahedral group Z of order 120 exactly the same method as
for ©. First, we are looking for a fundamental domain for Z in S3. To do this, we consider

the orbit polytope in R*
P = conv(1).

This polytope has 120 vertices, 720 edges, 1200 faces and 600 facets and is known as the
600-cell (or the hexacosichoron, or even the tetrapler). Since T acts freely on &3, there must
be exactly five orbits in &?3. Here again, we consider some elements of Z, also expressed in

terms of the Coxeter-Moser generators s and ¢ and with ¢ := (1 ++/5)/2:

+ . oo ity _ + . pte Yk 41 + . ptite
o; = 5 =1, o =y = s, oy = — =
—_ ot limg 42 - p=p ik _ -1 — . pti—p

o, = 5 = st 4, o = 3 = s t, 0, =

As for O, we may find explicit representatives for the Z-orbits of P5:

Proposition 12.1.1. The following tetrahedra (in R*)

Aq = [l,ak_,alj,a;'], Ay = [1,012,0;',0;'}, As = [1,0;,0;',0]-_],

Ay = [1,0,;,0]7,0;], Ay = [1,0;,0;,0;]

St_l,

= s 142

form a system of representatives of L-orbits of facets of &2. Furthermore, the subset of &

defined by

is a (connected) polytopal complex and is a fundamental domain for the action of T on 0.

Proof. We argue as in the proof of Proposition [11.2.1, Let ¢ := (1 4+ +/5)/2. By invariance

of &, to verify that the following 600 inequalities
<'U7l'> S 17
with v € ({£1}* x 4) - U and

4-2¢ 2— 2p-3 203
U :— 4-2¢ 2— 21 2—3
: 0 ) 1 ) o—1 '\ 2p-3 |

6w
ﬁ‘?‘G
— =

[\
|
€W =

Mtfw
€66

)

€ |w
|
—

2¢—3
2—¢

9 90—1 9
4—2¢p

are valid for &, it is enough to check those for v € U and this is straightforward. Then, the

facets are given by the equalities (v,z) = 1 and we find their vertices:

_ + + _+
vert(2) = {1,0;,07, 0},

17]7

and since vert(2) Nvert(2)~! = {1}, the Proposition [10.1.2| finishes the proof.
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12.2  Associated Z-cellular decomposition of 042

Figure 14: The five tetrahedra inside Z.

12.2 Associated Z-cellular decomposition of 0%

Here also, we investigate the combinatorics of the polytopal fundamental domain & con-
structed above to obtain a cellular decomposition of it. This will give a cellular structure
on 02 and projecting to S? gives the desired cellular structure.

The facets of & are the ones of the five tetrahedra A;, except the ones that are contained
in some intersection A; N A;. We obtain the following facets

D ={l,0; 08, 1,0, 0], [1,017",0]7"], [1,0;',(7;], (L0501

o) 0; 01,0 o, o), [Jk_,af,a;'], [Jk_,a;',aj_}, lof, .05 ,0; ]}

We remark the following relations among them

J;_'[laai_ﬂﬂj] = [Jjaaj_vak_]v 0']-_-[1,0'2_,0';_] = [U]'_>Gi_701c_}v Ui_'[laajva;_] = [0570:7012]7
and
op [0, 07 =0y ,07 0], 0 -[L05,07] = o), 0], 0]

These are the only relations linking facets, hence we may define the following 2-cells

e? ::]1,0]-_70;[, e :z]l,ai_,a;[, eg ::]1,0;705"[, e’ ::]1,02',(7;[, eg :z]l,aj,oj_[.

Now, define the following 1-cells

el =]l 07[, ey:=]l,0[, €} ::]1,0;[, el =|1,07], er =]1,0; .
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12.2  Associated Z-cellular decomposition of 942

If we add to this the vertices of 2 and its interior, which is formed by only one cell 3
by construction, then we may cover all of 2 with these cells and some of their translates.
Thus, we have obtained the following result:

Proposition 12.2.1. Letting E° := {1}, B! := {e}, 1 < i <5}, E? := {e?, 1 < i <
5} and E® := {e3} with the above notations, we have the following T-equivariant cellular
decomposition of the sphere
= I 9ol
0<5<3
e€EI ,geT

where p: 02 = S? is the T-homeomorphism given by projection.

The 1-skeleton of & is displayed in figure

Figure 15: The oriented 1-skeleton of 2.

We now have to compute the boundaries of the cells and the resulting cellular homology
chain complex. We choose to orient the 3-cell e undirectly, and the 2-cells directly.

Proposition 12.2.2. The cellular homology complex of 0 associated to the cellular struc-
ture given in Proposition |12.2.1] is the chain complex of free left Z|I]-modules

Kz ::<Z[I] % g 2 Z[IPLZ[I]),
where
ol —1 o; 0 0 1 -1
+ —
o —1 -1 o 0 0 1
=0 -1, =1 -1 o 0 0 [,
o, —1 0 1 -1 of 0
o, —1 0 0 1 -1 of
3= (0 =1 of =1 o; =1 o7 =1 o —1)
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12.3 The case of spheres and free resolution of the trivial Z-module

Figure 16: The oriented 2-skeleton of & (back and front).

12.3 The case of spheres and free resolution of the trivial Z-module

Here again, we shall describe the fundamental domain obtained above in S? in terms of
curved join and give a fundamental domain on S*»~! and the equivariant cellular structure
on that goes with it. We finish by giving a 4-periodic free resolution of Z over Z[Z].

Theorem 12.3.1. The following subset of S is a fundamental domain for the action of T

T3 :z(l*ag*a;r*a;f)u(l*a;*J;F*J;)U(l*alz*aj*af)

U(lxoy, x0; kol )U(Lxo; *o) x0)).

Therefore, the sphere S® admits a I-equivariant cellular decomposition with the following
cells as orbit representatives

=140 = {1},

el = relint(1x0;), € := relint(1x0;"), €} := relint(l*a;f), e = relint(1x07;"), es = relint(1x0; "),

=2 . — Y B2 T — Y B2 el +
ey :=relint(l x o x0;7), € :=relint(lx 0, x o), e5:=relint(l x oy x0."),

2. N SR taoam) B
ey =relint(l x o x0), €5 :=relint(lx 0] x0;), € =73

Furthermore, the associated cellular homology complex is the chain complex Kz from the

Proposition [12:2.39

Remark 12.3.2. Using the augmentation map € : Z[Z| — Z, we can compute the complex
Kz ®zi7) Z and since we have

det(02 ® Z) = det <

we find that S3 /T is a homology sphere, but it is not a sphere. That is, one has Hy(S*/T,7Z) =
H.(S?,7), and however S? /T is not homeomorphic to S®, since m1(S?/T) =T # 1 = 71(S?).

This space has a long story, it is called the Poincaré homology sphere. It can also be
constructed as the link of the simple singularity of type Eg of the complex affine variety
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12.3 The case of spheres and free resolution of the trivial Z-module

{(z,y,2) € C3; 2% + y3 + 2° = 0} near the origin, as the Seifert bundle or as the dodec-
ahedral space. This last one corresponds to the original construction of Poincaré. For a
detailed expository paper on the Poincaré homology sphere, we refer the reader to [KS79).

Corollary 12.3.3. The following complex is a 4-periodic resolution of Z over Z|T]

Osq— O4q—
215 2% ) Pt ZiIP 2> 7j1pp 221 -7 ——0,
where, for ¢ > 1,
ol —1 o; 0 0 1 -1
+ —
o —1 ~1 0, 0 0 1
Osg-s= |0 =1, Og2=|1 -1 of 0 0|,
o; —1 0 1 -1 o5 0
o, —1 0 0 1 -1 0;'

Oag—1= (0] =1 Uj+_1 o;j =1 o =1 op —1), 84‘1:(29619)'

We are now able to compute the group cohomology of Z using this result.

Corollary 12.3.4. The group cohomology of T with integer coefficients is given as follows:

HYT,Z) =17 if ¢=0,
VgeN, & HYUZ,Z)=7/120Z if ¢q=0 (mod 4),
HYZ,Z)=0 otherwise.

Proof. In view of Lemma|11.4.3} it is suffices to compute C(P%°, Z[Z])®z 7 Z, with C(P$, Z[Z])
the complex given in Theorem [12.3.6, Computing the matrices €(0;) leads to the following
complex

7272 7 787 S.75 9,75 0.7 0
where 0 = 0y ® Z is the matrix given in Remark [12.3.2 O

Remark 12.3.5. The Corollary agrees with the previously known result on the co-
homology of Z, see [TZ0S8, Theorem 4.16].

Theorem 12.3.6. The chain complex C(P%"_l,Z[I]) of the universal covering space of the
icosahedral space forms P%"_l with the fundamental group acting by covering transformations
is the following complex of left Z[Z]-modules:

02

] O4n—1

0——7Z[T Z[IP —...—Z[I]° yAVAE Z[T) 0,

where the boundaries are as in Corollary|12.5.5
In particular, the complez is exact in middle terms, i.e.
Y0 <i<4n—1, H(C(PF 1 Z[Z])) =0

and we have

Ho(C(P7" 1, Z[T])) = Han—1 (C(PT" ™, Z[T))) = Z.
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13 The tetrahedral case

Even if the case of 7 has already been treated in [FGMS16|, we can recover it by applying
the above methods to this case. Note that all the groups in the tetrahedral family are
studied in |CS17], but there T is excluded since, while it is the simplest one of the family,
it is somehow different from all the other ones. Since it’s always the same arguments and
the case is solved, we omit the proofs.

13.1 Fundamental domain

We consider the orbit polytope in R*

P = conv(T).

This polytope has 24 vertices, 96 edges, 96 faces and 24 facets and is known as the
24-cells (or the icositetrachoron, or even the octaplex). Since T acts freely on &3, there
must be exactly one orbit in &?3. We keep the notations of the Section [L1] and define

wi = 1—1—&2—]+k = t_lsa

_ itk _

o wop= "5 =3

o l4+i—j+k -1 2 ’
wj = "5 =st ", and { ik .
1titj—k wij = =

wy = IR — ¢
Proposition 13.1.1. The subset of & defined by
@ = [1,wg,wj,wi,wij,k]

is a (connected) polytopal complex and is a fundamental domain for the action of T on 0.

1

Figure 17: The tetrahedron 2.
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13.2  Associated T-cellular decomposition of 942

13.2 Associated 7-cellular decomposition of 0%

The facets of Z are the following

-@2 = {[ijvw()]v [1,(4)0,0)1‘], [17wiawij]7 [Lwijawj]a

[k,Wj,WO], [kuw()awi]) [k)wiuwij]) [kawljaw]]}

We remark the following relations among them
wij - [1, wj, wo] = [wij, k, wil, wj - [1,wo,wi] = [wj, k, wij],

and
wo - [1, wi, wij] = [wo, k,w;], wi-[1,wij,w;] = [wi, k, wo).

These are the only relations linking facets, hence we may define the following 2-cells

e% :=]1,wj, wol, e% =1, wo, wi, e% =1, wi, wij, ei =]1, wij, wj.

Now, define the following 1-cells

el =1, wijl, €3 :=1,w;[, e} :=]1,wol, ej:=]1,w;.

If we add to this the vertices of & and its interior, which is formed by only one cell 3
by construction, then we may cover all of Z with these cells and some of their translates.
The 1-skeleton of & is displayed in Figure

Figure 18: The oriented 1-skeleton of Z.

Proposition 13.2.1. Letting EY := {1}, B! :={e}, 1 <i <4}, E? := {e?, 1 <i <4} and
E3 .= {e3} with the above notations and denoting by p : 02 = S* the T -homeomorphism,
we obtain the following T -equivariant cellular decomposition of the sphere

= [ 9sle)

0<j<3
ec kI ,geT
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13.3 The case of spheres and free resolution of the trivial 7-module

We now compute the boundaries of the cells and the resulting cellular homology chain
complex. We choose to orient the 3-cell €3 directly, and the 2-cells undirectly.

Proposition 13.2.2. The cellular homology complex of 02 associated to the cellular struc-
ture given in Proposition|15.2.1] is the chain complex of free left Z|T|-modules

Ky e (Zm O T s g 2 g ) ,

where
wij -1
wj -1
81 o wo — 1 ’
wi; — 1

Figure 19: The oriented 2-skeleton of 2.

13.3 The case of spheres and free resolution of the trivial 7-module

Here again, we shall describe the fundamental domain obtained above in S in terms of
curved join and give a fundamental domain on S**~! and the equivariant cellular structure
on that goes with it. We finish by giving a 4-periodic free resolution of Z over Z[T].

Theorem 13.3.1. The following subset of S* is a fundamental domain for the action of T
Fz = (1 xwjj * wi *wo *wj) U (wij *w; * wo * wj *x k).

In particular, the sphere S® admits a T -equivariant cellular decomposition with the following

cells as orbit representatives
e =1x0={1},
e1 = relint(1 * w;;), € := relint(1 *w;), & := relint(1 *wp), € := relint(1 * w;),

€1 = relint(1#w;*wp), €5 := relint(1xwow;), €3 := relint(1xw;xw;;), €7 := relint(1xw;;*w;),

~3 o
e’ =%3.

Furthermore, the associated cellular homology complex is the chain complex ICT from the

Proposition [13.2.9
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13.4  Simplicial structure and minimal resolution

Corollary 13.3.2. The following chain complex is a 4-periodic free resolution of Z over

Z[7]

O4g— O4g—
e ZT S ) ZIT 2> 2T 2> 2 T) 5> Z—>0,
where
wij—l wo -1 1 0
w;—1 0 w;, -1 1
O1g-3 = w(J)—l 2=y wij -1’
wi — 1 -1 1 0 w

84q_1:(1—wij I1—w;j 1—wp l—wi), 64q:(zg€7-g).
Corollary 13.3.3. The group cohomology of T with integer coefficients is given as follows:
HUT,Z)=17 if ¢q=0,
HYT,Z)=17/247 if ¢q=0 (mod 4),
HYT,Z)=7Z/3Z if ¢q=2 (mod 4),
HYT,Z)=0 otherwise.

Vg > 1,

Theorem 13.3.4. The chain complex C(P4T"71,Z[7']) of the universal covering space of the
tetrahedral space forms P%Zl_l with the fundamental group acting by covering transformations
is the following complex of left Z[T]-modules:

02

0—=Z[T) 22z — .. —— 2T -2z -2z — 0,

where the boundaries are as in Corollary[15.3.3
In particular, the complex is exact in middle terms, i.e.
VO <i<dn—1, H;(C(PF 1, Z[T)) =0

and we have

Ho(C(PF ™1 Z[T))) = Hin—1 (C(PF ™1, Z[T))) = Z.

13.4 Simplicial structure and minimal resolution

Since we have chosen polytopal fundamental domains for 7, O and Z, it is clear that we
can refine our cellular decompositions to equivariant simplicial decompositions of S3. We
will just investigate the case of T, since the other ones can be treated in a similar way. The
method is trivial: just take each one of the facets A; of &2 as the 3-cells and their boundary
(up to multiplication) as 2-cells.

For instance, here, take as 3-cells the following open curved joins:
i =Jwo, 1,wij, wj[, & :=lwo, 1w, wis], 3 =Jwo,wsj, k,w;, ¢ =]k, wo,w;,w;|
and as 2-cells the following open triangles:

V1l <i<4, C?::e2

7
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13.4 Simplicial structure and minimal resolution

and
¢t =Jw, 1 wij[, c§ =]wij,wj,wol, ¢ :=]wo,ws,wij[, § =]wo, k,wi;|

and we may keep the 1-cells as they are, i.e. c,} = ez1 for 1 < i < 4. Then, the resulting sim-

plicial homology complex is easily computed (for example, by orienting the 3-cells directly),
just as we did above. One shall find of course a complex that is homotopy equivalent to the
complex K7 defined in Theorem We omit the details.

We conclude by discussing the minimal resolution. Group resolution and group coho-
mology are purely algebraic invariants of the given group GG. Under this point of view, Swan
[Swa65|] proved the existence of a minimal periodic free resolution of Z over G, for a family
of finite groups containing the spherical space form groups. This means a resolution with
minimal Z[G] module’s ranks. He also gave a bound for these ranks. This point has been
discussed in |CS17] for the resolution over the groups P{g. of the tetrahedral family. Here,
we show how to “reduce” our resolution for 7 to the minimal one, that has ranks 1-2-2-1,
compare |CS17, p. 10.6]. (We note that in [CS17, p. 10.5] there is a misprint: one should
read fn(F*) instead of up(G) in the statement of the proposition.) We first describe the
underlying geometric idea, and next we give an explicit chain homotopy.

Geometrically, the construction is as follows: start with the cellular decomposition from
Theorem As seen in Figure the four upper triangles are sent by different group
elements to the four lower triangles. It is clear that there is no way of collecting two triangles
in one single 2-cell but we may proceed as follows. Pick up one triangle, say e%, and one of
its neighbours, say wpe3 and set a; to be the union of these two triangles, namely

2, 2
a1 :=e7 t+ €.

Then, we have that w;ja; = wije% + wijeg and y := wijeg does not belong to the boundary
of the fundamental domain %7 3. However, we may find another pair of coherent triangles
such that one of them is mapped to y by some group element, while the other one is mapped
to some triangle in the boundary of %7 3. For example, take

ag = woeg + wje%.

Then, we have w Lag = e% + y. As a consequence,

-1 _ 2 2
Wo a2 — Wija; = €3 — W€

and this means that we can use the three 2-cells a1, as and 6421 to cover all the boundary
of #73. We would like to add one more triangle to the first two 2-cells in order to reduce
the total number to two, but we easily see that the same procedure fails. However, we
may proceed in the following “dual” way. Let x be a triangle such that w, Ly = e and
wijz = wies. We can take x :=i,w;, wp[ and then we define

byi=a1+rx=¢el+ei+x

and
2 2
by := az +x = wpe3 +wje; + T.

Then, after a simple calculation, we find that
bl — bg + wo_lbg - wijbl =a; —a + wo_laz — Wjja1 + wo_lx — Wi T

= (1 —wij)el + (1 —wj)e3 + (1 —wp)es + (1 — w;)ef = ds(e?),
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13.4  Simplicial structure and minimal resolution

that is, the whole boundary of .%#7 3 is obtained using only the two 2-chains b; and bs.
We can then give the reduced complex. It is given by the following

6/
IC’T:—<0 K, —= K}

8/
K| —= K}, 0>,

where K{) = Z[T](f°), K} = Z[T]{f*), K{ = Z[T|{f, f}) and K} = Z[T] ({2, f3) and

B(f2) = (1 —wiy) ff + (1 —wo) f3,
O4(f2) = (wo +w; — 1) fL + (i + 1) f3,
(f3) = 1+ (=) fl + (wj — 1 +wij) f3,
O (f1) = (wj — 1S,

& (f3) = (wi — 1),

i.e. are given in the canonical bases by right multiplication by the following matrices
;y (wi—1 ; (wot+wi—1 1414 b B
o= <Wi1>7 02 = < L+ (=) wj—1+4wy)’ 0= (1-wy 1-wo).

We finish by giving explicit homotopy equivalences ¢ : K7 — K and ¢ @ K — K7
We define ¢(€') := f* and ¢'(f*) := €’ for i = 0,3 as well as

902(6%) = 12’ /(fz) = 2 4 2 4 woe2
paleh) = a(e) =0, ana [ U AL
pa(e2) := f2, wolJ2) i= Wij€y T €3 T €4
also
pier) = fi +wjf3,
901(6%) :flla and { ‘Pll(fll) = 6%,
pi(e) = fy +wifl, P (f3) = ei.
@1(6411) = f217

We immediately check that oy’ = z'd,C/T and we just have to show that the other composition
is homotopic to idi,. If we define H : Ky — Kuy1 by Ho = Hy =0, Hy(el) = Hi(e}) :=0
and Hl(e%) = ei, Hl(eé) = e%, then we have ¢|p1 = id + 02Hy1 + Hp0y and @hps =
id 4+ 03Hs + H10-, i.e.

(p/ogoz’id;cT-FaH-i-H@

and ¢ is indeed a homotopy equivalence, with homotopy inverse ¢'. Thus, we have proved
that the complex 7 from the Theorem [13.3.1]is homotopy equivalent to the complex

05 )

2T 2> Z[T)?

gl

K%=(o Z[T] Z[T] 0)

defined above.

Remark 13.4.1. Observe that this process works for the group T but fails for the other two
groups, O and L. This is not unexpected, since the resolutions determined in the present work
are characterised by their geometric feature, i.e. constructed through particular orthogonal
representations of the groups, and it is not likely that this characterisation would produce a
minimal resolution, that in general may not be induced by a representation. Indeed, it would
be interesting to investigate the possible bounds for the ranks of a free periodic resolution
mnduced by a linear representation.
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14 Application of the octahedral case to the flag manifold
F(R) of SL3(R)

The O-equivariant cellular structure of S? may be used to obtain a cellular decomposition
of the real points of the flag manifold SU3(C)/T of type As.

First of all, we have to identify spaces and actions. We begin with a trivial lemma.

Lemma 14.0.1. Let P be a finite group acting freely by diffeomorphisms on a manifold X
and Q <P be a normal subgroup of P. Then, P/Q acts freely on the quotient manifold X/Q
and the projection X — X /P induces a natural diffeomorphism

K19 [ (pyg) = XIP.

We will apply this lemma to P = O, Q = Qg and X = S?. One has to be careful at
this point: we let O act on S* on the left, whereas W = &3 naturally acts on F(R) on
the right. Hence we let O act on the right on S* by multiplication. It is straightforward
to adapt our results to this case. For instance we replace A; =: conv(qi,q2,q3,q4) by
A; = conv(gy 24y Vg ,q4 1) and .73 by Ty = pr(Z) where pr(z) = z/|z| is the usual
projection and 9 = U, A and we can do the same for the cells in S3. Briefly, we just have
to replace every quaternion appearing in sections [11.2], [11.3] and [I1.4] by its inverse and left
multiplications by right multiplications.

Now, denoting by F := SU3(C)/T ~ SL3(C)/B the flag manifold, we have a diffeomor-
phism

F(R) ~ SO(3)/S(0(1)3).

Recall the surjective homomorphism B : §3 — SO(3), with kernel {£1}. We have a
surjective homomorphism
6 8% 2 S0(3) — SO(3)/S(0(1)%) ~ F(R).

Now, it is clear that B=1(S(O(1)3)) = {41, 44, +j, £k} = Qg. The lemma [14.0.1| applied to
G=0Qg, N:={£1} =Z(Qg) and X = S3 leads to the following result:

Lemma 14.0.2. Denoting by F := SU3(C)/T the flag manifold of type As, the above defined
map ¢ induces a diffeomorphism

Y :S?/Qs = F(R).

Now, one has W = &3 = <sa, sg | 82 = s% =1, 50585« = 353a35> (the notation s4, sg
makes reference to the simple roots o and 3 of the root system of type As). The reflections
So ans sg can be represented in SO(3) by the following matrices

=D 5= 41
Sa=(100), sg= -
@ 001/ 7" 01 0

These matrices may be obtained from S? using B:

o) nen()
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and this induces a well-defined isomorphism

~

oo 0/Qs — 63
(14+19)/V2 — sg
(1+k)/ﬁ —  Sq

Therefore, recalling that &3 = Ngy,c)(T)/T = (Nso3)(SO(3) NT))/(SO(3) N T) acts on
F(R) by multiplication on the right by a representative matrix, one obtains the following
relation

V(z,g) € S* x O, Y(B(x)) - o(g) = ¢(xg).

Henceforth, using the lemma [14.0.1] one obtains the following result:

Proposition 14.0.3. The diffeomorphism 1 from the Lemma is ©z-equivariant. In
particular, the O-equivariant cellular structure on S defined in Theorem induces an
G3-equivariant cellular structure on the real flag manifold F(R).

Corollary 14.0.4. The fundamental groups of the real flag manifold F(R) and of its quo-
tient space by S35 are given by

T (F(R),x) = Qs and 71 (F(R)/G3,%)=0.

We are now in a position to state and prove the principal result of this section:

Theorem 14.0.5. The real flag manifold F(R) = SO(3)/S(O(1)?) admits an S3-equivariant
cellular decomposition with orbit representatives cells given by

eé- =) (7798 ((62)71)) ,
where Tgg : S — S3/Qg is the natural projection, v : S/ Qg — F(R) is the G3-equivariant
diffeomorphism from the Proposition and eé- are the cells of the O-equivariant cellular
11.4.1

decomposition from the Theorem

Furthermore, the associated cellular homology complex is the chain complex of free right
Z]&3]-modules

Ky = ( 2l 2 2l 2ozl - Zle] ),

where
5458 1 wo — 1 1—sp
81:(1—35 1 —wy 1—sa), Or=|5a—1 sass 1 , O3=|1—wy
1 sg—1 sasp 1— s,

Proof. This only relies on Proposition [14.0.3{and the fact that ((eé)_l)iyj is an O-equivariant
cell decomposition of S3, the group O acting by right multiplication on the sphere. Next,
we have to determine the images of the points of O we used to construct .%o 3 under the
projection
O g
T 0 -0 / Qg ~ 63.

Recall that, denoting by s, and sg the simple reflections in the Weyl group W = &3, we
have

S3 = <sa, sg | 83 = s% =1, 545850 = 8ﬁ8a85> = {1, 54,58, Sa58, S35as SaSBSa }
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and we denote by wp := 5,535, the longest element of 3. We compute
Ti b 88, Tj > Wo, Tk F Sa, Wi, Wj, Wk = 585a, Wo H> SaS3-

Thus, the resulting cellular homology chain complex can be computed from the one in
Theorem [11.4.1] replacing each coefficient ¢ € O in 0; by 7°(¢~') and transposing the
matrices. 0

Finally, using Figure we can describe the 3-cells in a more combinatorial way. More
precisely, one can describe all the curved tetrahedra having a given element w € G3 in its
boundary. By right multiplication by w™!, we may assume that w = 1. First consider
the octahedron as in Figure with vertices (and centers of faces) given by the images of
the ones of [L3| under the projection 7€ : @ — &3 as in Figure A curved tetrahedron
containing 1 can be described in the following way:

1. Choose a face F of the octahedron,
2. Choose an edge of F',

3. The curved tetrahedron has its vertices given by the center of F', the two vertices of
the chosen edge of F' and 1.

Sa

wo wo

Sa

Figure 20: A curved tetrahedron in F(R) containing 1 in its boundary.

Remark 14.0.6. Note that in this representation, many different cells can have the same
vertices. For instance, the 1-cell formed by the edge linking 1 to the wg on the right, and
then from the other copy of wo on the left, back to one is not a trivial path in F(R). In fact,
it corresponds to the element j of the group Qg ~ m(F(R),1).
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Part VI

Normal homogeneous metrics on flag
manifolds and Dirichlet-Voronoi
fundamental domain

In this final part, we adopt a Riemannian point of view on flag manifolds. As usual, we
let K be a semisimple compact Lie group, T' < K be a maximal torus, W = Ng(T)/T is
the Weyl group and F = K/T is the flag manifold, whose real points are denoted by F(R).
We hope to generalize the construction of equivariant cellular structures on flag manifolds
using a Dirichlet- Voronot fundamental domain for W acting on F. To do this we need a
Riemannian metric on F, for which the group W acts by isometries. A natural class of
metrics to consider on F are the normal homogeneous metrics, that is, the ones coming
from bi-invariant metrics on the compact Lie group K.

After recalling the basics of Riemannian geometry on Lie groups and homogeneous
spaces, we prove that the natural metric on the real flag manifold SO(3)/S(0(1)3) ~ S3/Qg
is normal homogeneous and we study the geodesic properties of the cell structure of the
previous part. In particular, we prove that the 1-cells are geodesics.

The last section introduces Dirichlet-Voronoi domains for a discrete group of isometries
acting on a connected complete Riemannian manifold. We study some properties and prove
in particular that such domains are indeed fundamental domains. Next, we focus on the
case of W acting on F, equipped with a normal homogeneous metric. Under a condition on
the injectivity radius of F, it can be seen that the interior of the Dirichlet-Voronoi domain
is a cell and its boundary is a sphere, which is a first step toward a construction of an
equivariant cellular structure on F(R), from a cell structure on a Dirichlet-Voronoi domain,
which is compatible with the partial action of W. As we shall see, this is reasonable only for
real flag manifolds. As a preliminary result for a future project, we compute the injectivity
radius of the flag manifolds SO(n)/S(O(1)™). We finish by proving that this method indeed
gives an &3-equivariant cellular structure on SO(3)/S(0(1)3) and we exhibit the associated
equivariant chain complex.

15 The Riemannian structure on F(R) inherited from the
round metric on the sphere S?

15.1 Lightning introduction to Riemannian geometry

We start by giving some reminders on Riemannian manifolds and in particular on bi-
invariant metrics on flag manifolds. For more details on Riemannian manifolds, the reader
is invited to have a look at [Lee| or [GHLO4].

Recall that a Riemannian manifold is a pair (M, g), where M is a smooth manifold and
g is a symmetric positive-definite (2, 0)-tensor on M. To simplify the notation, we use freely
the Einstein convention for repeated indices. For instance, we simply write 2;¢! to mean
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15.1 Lightning introduction to Riemannian geometry

>, zie'. Denote by X (M) :=I'(T'M) the set of vector fields on M (i.e. the sections of the
tangent bundle TM of M, identified with derivations of the algebra C*>°(M,R)) and recall
that an affine connection on M is a bilinear map V : X(M) x X (M) — X (M) denoted by
(X,Y) — VxY, which is C>°(M,R)-linear on the left and which satisfies the Leibniz rule
on the right, i.e. such that

VixY = fVxY,

v/ € CTALR), VXY € X (M), { Vx(fY) = df(X)Y + VxY.

If (M, g) is a Riemannian manifold, then there exists a unique affine connection on M such
that for all vector fields X,Y, Z € X (M) we have

{ Z(9(X,Y)) =g(VzX,Y) + g(X,V2Y),
VxY — VyX = [X,Y].

This is called Levi-Civita connection on M. It may be implicitly defined by the Koszul
formula

29(VxY, Z) = X(g(Y, 2)) + Y (9(Z, X)) = Z(9(X,Y)

3 ()
T+ 9(X,Y1,2) + 9(1Z.X),Y) - g(I¥ Z), X).

It may be useful to express these objects in local charts. If p € M, take (z!,...,2") a
local system of coordinates around p and define the metric coefficients

_ (9 9
95 = 9\ Gz Bud

as well as (g*) the inverse matrix of (g;;). If V is the Levi-Civita connection on M, we
define the Christoffel symbols T’ f] by

0 L 0
V&<%J‘nmﬂ’

1 Qa0
Fszigkl <8glz + gij gz]) .

i.e.

oxi | i Ozl
Now, a geodesic is a curve v :]a, b[— M such that the covariant derivative of v/ =: 4 vanishes,
that is
Viy =0, where Vs := (v*V)% :
Here, the connection 7*V is defined as the only connection on v*(T'M) such that, for
x €la,b], v € R = T,(]a,b]) and for a vector field X € X' (M), one has

(V' V)y (V" X) =7 (Vi) (X)) - (D)

Using the Christoffel symbols, this can be rephrased as the following differential system of
dim M equations:

A k. dy' ﬂ -0

dt? Yodt dt '
Using the Picard-Lindelof theorenﬂ given pg € M, there exists an open neighborhood
U C M of py and € > 0 such that, for p € U and v € T,M with |v| < ¢, there is a unique

2lalso called the Cauchy-Lipschitz theorem
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15.1 Lightning introduction to Riemannian geometry

geodesic ¢, :] —2,2[— M such that ¢,(0) = p and ¢,(0) = v. With this notation, we consider
the exponential map
Exp,, : Br,u(0,e) — M
v — (1)

Like the maximal solutions of an ordinary differential equation, the maximal geodesics need
not to be defined for all t € R. When they are, the manifold M is said to be geodesically
complete. It can be shown that, in this case, the exponential map Exp, is defined on the
whole tangent space T,,M, for every p € M.

Next, we define the length of a curve « : [a,b] — M by the integral

b b
LG = [ VoGO A0 = [ 130

For p,q € M two points on a connected Riemannian manifold (M, g), denote by C(p, q) the
set of piecewise smooth curves 7 : [0,1] — M such that v(0) = p and (1) = ¢ and define
the quantity

d = inf L(»).
4(p, q) Lot (7)

This is well-defined since C(p, q) # 0 (see [Lee, Proposition 2.50]) and it is easy to see that
the function dy : M x M — R4 is a distance on M, making (M,dy) into a metric space.
Furthermore, we say that a geodesic v between two points p and g of M is minimal if
L(vy) = dy4(p, q). Moreover, the topology induced by this distance is the original topology of
M (see |[GHLO4, Definition-Proposition 2.91]). In fact, according to the Theorem 6.15 from
[Lee|, every geodesic is locally minimal and every minimal curve is a geodesic, when it is
given the unit-speed parametrization ([Lee, Theorem 6.4]). However, it is typically not true
that any two points of M can be joined by a minimal geodesic. For example, the points
(—=1,0) and (1,0) cannot be joined by a segment in R?\ {0}. Even if so, there can be several
minimal geodesics between two given points, for instance, two antipodal points on a circle
can be joined by two different minimal geodesics. A manifold in which any two points can
be joined by a (minimal) geodesic is called complete. Recall the Hopf-Rinow theorem:

Theorem 15.1.1 (Hopf-Rinow, [Lee, Theorem 6.19]). Metric and geodesic completeness
are equivalent in a connected Riemannian manifold. Moreover, if the manifold is complete,
then any two points can be joined by a minimal geodesic.

A local isometry between Riemannian manifolds (M, g) and (N, h) is a smooth map
f: M — N such that

Vp € M, Yu,v € TyM, hyp)(dpf(u),dpf(v)) = gp(u,v).

Note that this condition implies that f is a local diffeomorphism, by the inverse function
theorem. Moreover, a local isometry is called an isometry if it is a diffeomorphism. Note
that an isometry preserves Riemannian distances between points.

Let 7 : (M ,g) — (M, g) be a smooth submersion between Riemannian manifolds. For
x € M, we define the following subspaces of T, M
Vp = ker(dyn) = Tp(n Y(n(z))) and H, :=V,t,

the orthogonal being taken with respect to the inner product g,. These are respectively
called the vertical and horizontal tangent spaces. We say that 7 is a Riemannian submersion
if d,7 restricts to a linear isometry from Hy to T )M, i.e.

Vu,v € Hy, Gu(u,v) = Ir(z) (dam(u), dym(v)).
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15.2 Bi-invariant metrics on Lie groups and homogeneous spaces

We say that 7 is a Riemannian covering map if it is a covering map, that is also a Riemannian
submersion.

Proposition 15.1.2 ((GHL04, Proposition 2.81]). If 7 : M — M is a Riemannian covering
map, then the geodesics of M are the projections of the geodesics of M and conversely, every
geodesic of M lifts to a geodesic of M.

We shall need the following fundamental result:

Theorem 15.1.3. Let (M, g) be a connected Riemannian manifold and G be a Lie group
acting freely, properly and isometrically on M. Then, there exists a unique Riemannian
metric g on M /G such that the projection 7 : M — M /G is a Riemannian submersion.
If moreover M and M /G are geodesically complete (which is the case for instance if M
is compact and G is finite, by the Hopf-Rinow theorem), then the geodesic distance on M /G
s given by
Ve, y € M, dg(m(x),7(y)) = érelg dg(z, hy).

Proof. The existence and uniqueness of g is a standard fact and can be found for instance in
[Lee|, Corollary 2.29 or in [Bes87, §9.12]. Only the statement about the distance remains to
be proved. Take z,y € M and T := 7(z), § := 7(y). Fix some h € G. Since M is complete,
there exists a minimizing geodesic arc v : [0,1] — M such that v(0) = z and (1) = hy.
Then 7 o 7y is a geodesic linking  and ¥ and since 7 is a Riemannian submersion, it is a
local isometry so one has

1
L) E [ o000, ) = L o).

Hence, m o v is a geodesic between T and % of the same length as 7, so by definition of
the geodesic distance, one gets dg(Z,y) < dy(x,hy). Because h € G is arbitrary, we get
dg(Z,y) < infy, dgy(x, hy). We have to prove the converse inequality to conclude. Consider
then a minimizing geodesic arc 7 : [0,1] — M/G between T and y. Using again the
Proposition there exists a geodesic arc v : [0,1] — M such that 7 oy = % and we
have L(vy) = L(¥) = dg(Z,y). By construction, there exist hg, h1 € G such that v(0) = hox
and (1) = hiy we have d,(z, hy 'h1y) = dy(hor, h1y) < L(v) = d3(Z, 7). O

Remark 15.1.4. If we take M = S*"*! endowed with its natural round metric and G =
Z./27 acting on S*"*1 as the antipode, then M /G = P"(C) and there is a unique metric on
P*(C) making the projection S?"*1 — P"(C) into a Riemannian submersion. This metric
is called the Fubini-Study metric. Using the previous Theorem, we can easily see that the
induced distance dpg on P™"(C) is given by the following

[(p, q)|
Ipllllall

Vp,q € P*(C), drs(p,q) = arccos

15.2 Bi-invariant metrics on Lie groups and homogeneous spaces

We now review some basic facts about invariant Riemannian metrics on Lie groups and
their flag manifolds. Let G be a Lie group and g := T1G be its Lie algebra. For an element
p € G, denote by L, : G — G and R, : G — G left multiplication maps ¢ — pg and q — gp,
respectively. Of course, there may exist many Riemannian metrics on G, but a natural
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15.2 Bi-invariant metrics on Lie groups and homogeneous spaces

restriction is to look for invariant metrics. More precisely, a Riemannian metric g on G is
said to be left-invariant if

Vpe G, VXY €g, gp(diLy(X),d1Ly(Y)) = g1(X,Y).

Denoting by Xy(G) the set of left-invariant vector fields on G (i.e. the set of all X € X(G)
such that dqL,(X,) = X,q for all p,q € G) and using the bijection Xy(G) — g defined by
X — X1, we see that ¢ is left-invariant if and only if the following is true:

Vp € Gv Vva € XE(G)v gp(Xp7Y;7) = gl(XbYl)-

Analogously, g is right-invariant if the above condition is verified for right-invariant vector
fields on G. Finally, the metric g is bi-invariant if it is both left and right-invariant.

Lemma 15.2.1. Let G be a Lie group. The map g — g1 is a bijective correspondence
between the set of left-invariant (resp. right-invariant) metrics on G and the set of inner
products on g.

Furthermore, the same map restricts to a bijective correspondence between the set bi-
inwvariant metrics on G and the set of ad-invariant inner products on g.

In particular, if G is compact then the Killing form k(X,Y) = tr(ad(X) oad(Y)) on g
is negative definite ([Bes87, Lemma 7.36]) and thus there exists a bi-invariant metric on G.

A first convenient fact about bi-invariant metrics is that the associated Levi-Civita con-
nection is easily computed on invariant vector fields.

Lemma 15.2.2. If g is a bi-invariant Riemannian metric on a Lie group G and if V is the
associated Levi-Chivita connection, then

1
VX,Y € Xg(G), VxY = §[X,Y]

Proof. Let Z € Xy(G) and note that, since g is bi-invariant, the function g(X,Y’) is constant
on G and hence Z(g(X,Y)) = 0. Also, since g; is ad-invariant on g, we have g(X,[Y, Z]) =
9([X,Y], Z). Hence, the Koszul formula reads

29(VxY, 2) = X(9(Y, 2))+Y (9(Z, X)) = 2(9(X, Y ) +9([X, Y], 2)+9([Z, X], Y)—g([Y, Z], X)
=9([X,Y],2) —g([X, 2], Y) + 9(X,[Z,Y]) = g([X, Y], Z).

Since this is true for arbitrary Z, the result follows. O

We now come to the following important result:

Theorem 15.2.3 ([YWL19, Theorem 2.5]). If G is a compact Lie group endowed with a
bi-invariant metric g and H < G is a closed subgroup then the orbit space G/H, endowed
with the induced Riemannian metric given by the Theorem[15.1.3, is a geodesic orbit space,
meaning that every geodesic on G/H is the orbit of a one-parameter subgroup of G.

Proof. Using |[GHLO04, Proposition 2.81], we only have to prove that G is a geodesic orbit
space. Denote by g the Lie algebra of G. For p € G and X € g, let v be the curve defined
on R by v : t +— petX. Then v is an X-integral curve, i.e. 7/ = X o v, where X € Xi(G) is
the left-invariant vector field associated to X € g. Then, one calculates

vieR, V30 L (V)0 (* X0 © (v (Vi X)) () = (V£X) (20 =0,

d
dt
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15.3 The quaternionic bi-invariant Riemannian metric on the flag manifold of SL3(R)

since vi()?) = %[)?,)Z] = 0 by Lemma |15.2.2, we get that V3% = 0 and hence v is
a geodesic and by the Picard-Lindelof theorem, this is the only geodesic on G such that
v(0) = p and 7/(0) = pX = d1L,(X). Then, we have proved that any geodesic on G is of
the form t +— pe!™ for some p € G and X € g and hence is a one-parameter subgroup of

G. O]

15.3 The quaternionic bi-invariant Riemannian metric on the flag mani-
fold of SL;(R)

We shall now equip the manifold F(R) with a bi-invariant Riemannian metric. An SUs-
invariant Riemannian metric on F = SU3(C)/T is easily seen to be determined by its value
on the tangent space T F (this is a general fact about homogeneous spaces which relies on

Lemma [15.2.1f). Now,
sl3(C) =h & @D (Ces & Cfs)
oedt
is the root spaces decomposition of sl3, with (es, fs5, hs)sca+ the Serre basis of sl3, and
dt = {a, B,a + [} is the set of positive roots, then one has the Cartan decomposition

suz(C) =t@ @ ps, with ps:=R(es — fs) DRi(es + f5) and t= @ Rihs.

dedpt ug vs dedt

Now, one has T1F ~ @scq+ ps =: p and recalling that the Killing form ~(X,Y) :=
6tr(ad(X) cad(Y)) = 6tr(XY) on suz(C) is a negative-definite symmetric bilinear form
(since SUj is compact, see [Bes87, Lemma 7.36]), any left SUs-invariant metric g on F may
be written as

g=— ng k(s )ps, With z; € RT, V6 € @F

and this metric is bi-invariant if and only if x5 = zs for all §,6’ € ®*. Thus there is only
one bi-invariant metric on F, up to scalar. These standard considerations can be found in
[Sak99] or [PS97]. Then, we take the quaternionic bi-invariant metric

s 1 1
9" = =g lba + Klg + Blpars) = ~ 75l

on F, and restrict it to F(R). The reason of taking such a normalization will appear soon.
Notice that this metric is Finstein, meaning that the Ricci tensor is a scalar multiple of the
metric tensor, i.e. there exists a function A such that Ricgs = Ag® everywhere.

Proposition 15.3.1. The metric g8 on SO(3) defined above induces a Riemannian metric
g® on F(R) making (F(R),g%) into a geodesic orbit space. Moreover, for p € SO(3) and
X € 50(3) := s03(R), the arc-length of the geodesic 7 : s — pesX - S(O(1)3) is given by

¢ X r
Vt>0, L
Mo,g) = Wk
where || - || is the Frobenius norm, defined by ||(a; ;)i ||F = Z” la; ;%

Proof. The first statement is just a particular case of the Theorem [15.2.3] For the second
statement we just calculate, for t € R,

ef
L(Vo,4) / \/97(5 dS—/ \/g (s) (PXexp(sX), pXexp(sX))ds
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15.4 TIsometry between F(R) and the quaternionic spherical space form S?/Qg

:/Dtmds:tm:tht”;%

15.4 Isometry between F(R) and the quaternionic spherical space form

S3/ Qs

Recall the isomorphism

14 —
g o
4k
V2 Sa

We equip S?/Qg with the quotient metric o, induced by the standard round metric on
S? and we shall prove that the diffeomorphism ¢ from Lemma [14.0.2]is in fact an isometry.
For this, we need the following lemma:
Lemma 15.4.1. The map

s3 2, 50(3)

q +— Matg ;) (L(g)R(q))

is smooth and we have

R 4B 50(3)
0 —
(x,y,2) +— 2(28 :ch)
y —x 0

In particular, if S® is equipped with the standard round metric induced from R* and SO(3)
with the bi-invariant metric g% defined above, then we have an isometry

B:S*/{£1} = SO(3).

Proof. Recall the space V := Ri @ Rj @ Rk of pure quaternions. For u,h € V ~ R3, we
simply compute

diB(u) - h = % B(1+tu)(h)|,—g = % (1 + tu)h(1 + tu)

t=0
d _ 9 o

=% (h 4 thu + tuh + t“uhu

Hence, by computing the matrix of dy B(u) with respect to the canonical basis (i, j, k) of V,

one obtains the matrix from the first statement.

)| ,—o = M+ uh = uh — hu = [u, h).

Now, since {41} acts freely and isometrically on S3, the map S* — S3/{#1} is a Rie-
mannian covering, hence a local isometry (in particular, a local diffeomorphism). Therefore,
if we prove that B is a local isometry, then B will be a bijective local isometry, hence an
isometry by the inverse function theorem, as required. But since B is a homomorphism of
Lie groups, it suffices to show that d;B is a linear isometry. This is where the normaliza-
tion by 4—18 comes into the game. Since we have endowed S with the round metric, we can
compute for u := (z,y,2) € R3 = T} S3,

0 z -y

B(u)? 4
g3 (diB(w), d1B(u)) £ _Su(diB)?) _ —tr| |-z 0 =
48 8 Yy -z 0
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—y*—z xy xz ,
:—Etr Ty —z2 — 22 Yz =22+ 422 = ¢} (u,u).
xz Yz —x? —y?

O]

Proposition 15.4.2. If we endow respectively S3/Qg and F(R) with the metrics go, and
g°, then the map ¢ of Lemma[14.0.3 is an isometry.

Proof. The quotient map
S /L) — (8°/{=1})/ K1 =~ 87/ Qs

is a Riemannian covering, hence a local isometry. On the other hand, the map
SO(3) - 80(3)/5(0(1)%) = F(R)

is a Riemannian covering too. Now, since B : S?/{#1} — SO(3) is an isometry by the
previous Lemma and since the following diagram commutes

§3/{+1} 2~ 5O(3)

C

§/Qs—— F(R)

one concludes that v is a bijective local isometry, hence a global isometry. O

In particular, combining Proposition [15.4.2] and Theorem [15.1.3 yields the following
corollary:

Corollary 15.4.3. For q:=a +bi +cj +dk € S, one has

dgs(1,B(q) = n_nin1 dss(1,eq) = arccos |a|
and

PR o |
dys(1,9(a)) = min dss(L,99) = _ min_(arccos(a)) = min (arccos]z])

16 Interpretation of the quaternionic cellular structure on
F(R) in terms of geodesics

16.1 Geodesics in F(R) as projections of geodesics in S*

Now that we know what geodesics look like and that we can compute the distance between
two flags, we can start describing the cells. But before that, we have to adapt the curved
join construction to F(R). This is not as easy as in the case of S?, since there can exist
many minimizing geodesics between two points in F(R) (as for two antipodal points in S?).
Since SO(3) acts transitively by isometries on F(R), it suffices to look at geodesics starting
at 1 and translate them. It turns out that, if a matrix in SO(3), seen as a rotation, has
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16.1 Geodesics in F(R) as projections of geodesics in S3

angle different from 7, then there will be a unique minimizing geodesic linking it to 1. For
this, we shall use the matrix logarithm.

Recall that, given X € s0(3) and 6 € [0, 27|, we have the Rodrigues formula (see|CL10,
§2])
e = I3+ sin(0) X + (1 — cos(h)) X2,
and if 6 #£ 0, 7, then

hence we obtain sin(6)X = /X ()

1
(eox o eﬂ‘)X)_

X pu—
2sin(0)
Thus, if R € SO(3) is a rotation with tr(R) # —1, 3, then there is a unique X € s0(3) such
that eX = R and X is given by

_ %fnw)(}z _'R), § = arccos (““?‘1) .

We shall denote X :=log(R). This is uniquely defined as soon as 6 # 0, 7. If § = 0, we can
just take log(R) = 0. With this notion, we see that the curve g : t — et1o8(R) ig a4 geodesic
from 1 to R in SO(3) and hence its projection 7z : t — e!1°2(F)S(0(1)3) is a geodesic from
1 to R-S(0(1)3) in F(R).

Now, we have to prove that the images of the geodesics we used in S to construct our
O-cellular decomposition go to geodesics in F(R). Denote by mgo, : S* — S?/Qg the natural
projection and recall the isometry ¢ : S3/Qg — F(R). We have the following result:

Proposition 16.1.1. Let
q = (cosw, sinw cos ¢, sinw sin p cos #, sinw sin p sin ) € s3

be a point expressed in spherical coordinates, with 0 < w,p < 7 and 0 < 0 < 2xw. Suppose
0 < w < § and denote by v, the unique minimizing geodesic such that 74(0) = 1 and
7¢(1) = q. Then one has

VO <t <1, (omg)Te(t) = exp(tXy) - S(O(1)) =: 74(1),

where
0 —sin(p)sin(f) sin(y) cos(0)
X :=2w | sin(p)sin(0) 0 —cos(p) € s50(3).
— sin(¢p) cos(0) cos(p) 0

In particular, one has
L(7g) = L(7g) = w-
Moreover, B o~y is the only geodesic (up to reparametrization) in SO(3) from 1 to B(q).

Proof. The round metric on S? is given in spherical coordinates (around 1) by the matrix
(gij) where g;; = 0 for ¢ # j and

Jow =1, gpp = sin?w, gge = sin® wsin? .

hence, the Christoffel symbols Ffj are easily computed and the geodesic equations 7’“ +

FZ’yWJ = 0 for a curve t — (w(t), ¢(t),6(t)) are given by the system

¢ — sin(w) cos(w) (p? + sinQ(ga)éz) =0,
¢ + cot(w)pw — sin(p) cos(p)0? = 0,
0 + 0(cot(p)p + cot(w)w) = 0.
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16.2  The cells of the G3-equivariant cellular structure of F(R) as unions of open geodesics

Hence, the curve
Vg : t = (cos(tw), sin(tw) cos ¢, sin(tw) sin ¢ cos 6, sin(tw) sin ¢ sin §)

is a geodesic, with ¥,(0) = (1,0,0,0) and 74(1) = g. Moreover, it is minimizing since

1 . . 1 .
L(%,) = /0 VI 0y Ga(). 7o1))dt = /0 (1) 4 sin® w(t) ((1)? + sin® p(1)0(1)? ) dt

=0

1
_ / Ot = w = des(1, ).
0
Now, since 0 < w < 5, we have 2tw < m and hence, we can compute
tr(B(9,4(t))) = 2cos?(tw) — 1 = cos(2tw) # —1.

Thus, the logarithm log(B(7,4(%))) is well-defined and the Rodrigues formula yields

0 —sin(y)sin(f) sin(y) cos(0) o
log(B(74(t))) = 2tw [ sin(y) sin(h) 0 —cos(p) = tX,,
— sin(y) cos(0) cos(yp) 0

so that B(9,(t)) = e¥e. Finally, since yomg, = moB where 7 : SO(3) — F(R), we have the
result. The statement about uniqueness follows immediately from the fact that log(B(q)) is
uniquely defined and that SO(3) is a geodesic-orbit space. O

Recall that in the Section we have denoted % =U; & and % = pr(%).

Corollary 16.1.2. For every q € Fo, the logarithm log(B(q)) € so(3) is well-defined
and the curve t — exp(tlogB(q)) is the only minimal geodesic in SO(3) from 1 to B(q).
Furthermore, its projection 74 is a geodesic in F(R).

Proof. In view of Proposition we only have to prove that $(q) > 0, because in this
case we will have w, = arccos(R(q)) < 5. Hence, we have to prove that for 1 <i < 6 and
for x = (21,29, x3,24) € /A\i, we have z1 > 0; given that the /A\i’s are defined as convex hulls,
it suffices to show that their vertices have positive first coordinates. But since these vertices
are among

(1a_17070) (1,0,—1,0)

1 1 1
V2 V2 V2

the result is now clear. O

1
{2(1,11,11,11), (1,0,0,—1)},

16.2 The cells of the G;3-equivariant cellular structure of F7(R) as unions
of open geodesics

We shall now describe the cells in F(R) from Theorem 3.4.6 of |[CGS20] as unions of images
of geodesics in F(R), with respect to the quaternionic metric g°. First, we briefly recall the
curved join construction. Given two points x and y # —z in S?, we write = * y to denote
the image 7z, ([0, 1]) of the unique minimal geodesic 74, : [0,1] — S? joining them. The
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16.2  The cells of the G3-equivariant cellular structure of F(R) as unions of open geodesics

resulting curve is called the curved join of x and y. Also, x % y denotes the image 7, ,(]0, 1[)
that is, the image of the geodesic v, , with endpoints removed. We can extend the curved
join to subsets of S3: if U,V C S? are such that U N (—=V) = 0, then we can define

UxV := Uu*v.

ueU
veV

This is easily seen to be associative on subsets. We may also define U V= Uy % .

We introduce some notation. If ¢ € S? with tr(q) > 0, recall the unique geodesic
Yq from 1 to ¢ on S? and its image v, := 1 o mg, o 7, on F(R) defined by 7,(t) =
exp(tlog(B(g)))S(O(1)?). We shall denote by I'y := v, (]0, 1[) the image of the open geodesic
(Yg) 0,11~ Next, for u # v € {i,j, k}, let

U 7=001) and = ) 45
qETuin qETuiTu
as well as
ey = P(mo,(ey U F -1 and " i=ah(mog(e"’)) = U 1—1q_1'
quu*W'u quuiT'u
Note that we may of course define also, for u € {1, j, k},
U 7:00,1)  and  ef i=1(mos(ef) = | Ty
qETuin quu*wo

With this notation we can determine the images A; 1= w(ﬂ'gg(&)) as

Al = Uquk F‘FJ’ A4 = Uqu; Fqu’
A2 = Uqu}; Fqu’ and A5 = UquJ Fqu7
A3 = UqE€g qu—i, A6 = Uquk Fqu

Remark 16.2.1. We have used quaternions to define these subsets, however, it should be
remarked that one can write them using only the exponential. For instance, one has

I 4 gip tT —_ qin ™ _ o tm
98 ATCCOS (COS A ;—sm A ) 0 1 —sin cos & sin =

\/37.” —y/1—sin 0 sin & — cos &
—sin & . .

2 cos I +sin & cos ¥ —sin &F 0

To see this, first notice that

U= U L= U &L= U T

o —10 _1 o _q 1 o
qETj*w; qET; Hw; q€(1¥1; ) w; qeim'y::1

S(0(1)%), 0 <s,t <1

= { exp

(o]

But, one has that q¢ € im (7 —1) if there exists 0 < t < 1 such that ¢ = cos tz — isin 4 . To

simplify notations, denote ¢; := cos tz and s; := sin %. Then, one has

! = (ct + s¢) +ilce — s¢) — jlee + s¢) — k(e — 5t)
o 2
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16.2  The cells of the G3-equivariant cellular structure of F(R) as unions of open geodesics

= cos(wt) + isin(wy) cos(yr) + 7 sin(wr) sin(pt) cos(0:) + k sin(wy) sin(py) sin(6y),

where

Ct + St
2

Ct — St ct + St
, ¢ = arccos | ————=1, 6y = arccos -
t V2

W = arccos <
s us
3 — sin 3

Wl
9%

. o . . S
Now, we have that z € qui_1 =1im 7y, if there exists 0 < s < 1 such that z = e
S(0(1)3) and since we have

0 —sin(py) sin(0;)  sin(¢y) cos(6y)
qui—l = 2w; | sin(py) sin(6;) 0 — cos(pt)
— sin(ipy) cos(6y) cos(¢t) 0
0 1—sinf —¢ —s
2 arccos (“55t) 2 e
= —4/1 —sin 0 Sy —¢
3 —sin %T 2 L
Cct + St Ct — St 0

and we find indeed the announced description.

We are now in a position to state the main result:

Theorem 16.2.2. With the above notation, the real flag manifold F(R) = SO(3)/S(0(1)3)
admits an Ss-equivariant cellular decomposition with orbit representatives cells given by

e’ == {1-5(0(1)")},

1._ 1. 1.
¢ = 1—‘7_1_71, ey 1= FT;17 93 = F’T‘IJI’

e% = U Fq—l, 2% = U Fq—l, e% = U Fq—1,

o o o o o o
qE(n*wk)U(wk*Tj) qE(Tj*wi)U(wi*Tk) qE(Tk*wj)U(w]'*Ti)
as well as

= AUV UA U UM U UAsUeE UAUEM UAgUED.

Moreover, the closures of the 1-cells ejl are minimal geodesics from ¢ to ¢° - 58, ¢? - wy
and ¢° - s,, respectively.

Proof. We just have to check that, if /é; is a cell of the analogue of the cellular decomposition
provided by the Theorem [11.4.1] for the action of @ on S? by multiplication on the right,
then one has v o mg, (é‘;) = e;'», in other words,

6;- =1 (T"Qs ((62)71)) )
but we have defined the cells e;'- in this way.

Next, take for instance the closure e} =~ -1([0,1]), the other two being treated in the

same way. By the Corollary [16.1.2, v _-1 is a geodesic in F(R) and by the Corollary (15.4.3
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[

we have dgs(1, 1/)(?)) = min (arccos (:l:

(2

) ,arccos(O)) = 7. Thus, we have to show that

= o

L(fyT;1) = 7. But since 77;1(1) =mo (7, 7) = sg and

. T /00 0
st = 5 (843):

by the Proposition [15.3.1, we get L(y.-1) = 2—\1&]\ log(sp)llr = 7 = dgs(1, sg), as required.
’ O

Remark 16.2.3. We can also describe more explicitly the 1-cells as

el = {exp <8 0 —92) S(O1)3), 0<t< 1} = {e%% -S(0(1)?), 0<t< 1},

t
0t o

0 -0 n
e = {exp<m 0 0) S(O(1)*), 0<t< 1} = {67"“ S(O(1)%), 0 <t < 1}.
0 0 O

Notice that the closure ¢3 is a fundamental domain for &3 acting on F(R).

17 Dirichlet-Voronoi domain for a normal homogeneous met-
ric on K/T

17.1 Definition and general properties

In this section, we fix (M, g) a connected complete Riemannian manifold, with geodesic
distance d, and W < Isom(M) a discrete subgroup of the isometry group of (M,g). By
a classical result (see [AKLMO7, Lemma 2.1] for instance), this means that each W-orbit
is discrete as a subset of M. We fix also zqg € M a regular point, i.e. a point with trivial
stabilizer.

Inspired by the study of Fuchsian groups, we may consider the Dirichlet-Voronoi domain
of W acting on F:

Definition 17.1.1. Let xg € M be a regular point.

e The Dirichlet-Voronoi domain centered at xg is the following subset of M :

DV :={xeM; YweW, dxy,z) < dwz,x)}.

o For w € W, we denote by H,, the dissecting hypersurface
Hy,:={z e M ; d(zg,z) = d(wzg,z)}.
If the action if free and considering the orbit space M /W equipped with the quotient

metric g/W and the associated distance dj;/y, the set DV can be interpreted as the set of
elements x € M realizing the distance of their orbit: d(zo,x) = dyr/w (Wxo, Wa).
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17.1 Definition and general properties

Remark 17.1.2. As mentioned earlier, the domains DV as defined above are mainly studied
for hyperbolic manifolds (see [Bow93]) or more generally manifolds with constant sectional
curvature (see [Rat06, §6.6]). This is because we want DV to be a fundamental polyhedron
for W acting on M and in particular, geodesically convex. In the case of flag manifolds,
the curvature is no longer constant and one has to be careful with the meaning of convexity,
because minimal geodesics are not unique in general. A relevant notion to introduce regard-
ing this matter is the injectivity radius inj, (M) of M at xg (see [Lee, §6.2] or |[GHLO,
Definition 2.116]).

It follows immediately from the above definition that for w € W, the subset M \ H,
is the disjoint union of the two open subsets {z € M ; d(zo,x) < d(wxg,z)} and {z €
M ; d(xo,z) > d(wzg,z)} and moreover, the interior of DV is the connected component of
M\ U yew Hw containing zo.

It is reasonable to expect DV to be a fundamental domain for W acting on M. This
is indeed the case and we shall need a technical preliminary result on the behaviour of the
hypersurfaces H,, with respect to minimal geodesics. This has been done in [AKLMO07], a
result which we reproduce here for the sake of self-containment. One should be careful with
the terminology: though we call the H,,’s “hypersurfaces”, they are not submanifolds of M
a priori.

Lemma 17.1.3 ([AKLMO07, Lemma 2.2]). Let yo,y1 € M be distinct points of M and
consider the hypersurface H = Hyy,, = {x € M ; d(z,y) = d(z,y1)}. If x € H, then
every minimal geodesic from yg to x meets H only at x.

Proof. Let 49 be a minimal geodesic parametrized by arc-length such that +¢(0) = yo and
Y0 (¢) = z, where ¢ = d(yo,x) and suppose for contradiction that vo(t) € H for some t < /.
We compute

d(x,y1) = d(z,90) = d(y0,70(t)) + d(10(t), z) = d(y1,70(t)) + d(70(t), 7),

and so we are in the case of equality in the triangular inequality. Let 1 be a minimal
geodesic from v (f) to y; and let 49 be the curve s — (¢ —s) for 0 < s < £ —¢. The
situation can be visualized as follows:

Then, the concatenation v, := =1 * g is a piecewise smooth curve from z to y; satisfying
L(v2) = L(71) + L(70) = ¢ = d(z,y1). By [Car92, Chapter 3, Corollary 3.9], this implies
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that 7o is in fact a (smooth) minimal geodesic from x to y;, which coincides with the
geodesic s — (¢ — s) on a non-empty interval and by Picard-Lindeldf, this implies that
v2(s) = y0(€ — s) for 0 < s < £ and thus yo = 70(0) = 12(¢) = y1, a contradiction. O

Another interesting feature of DV is that it is path-connected. More precisely, we have
the following result:

Lemma 17.1.4. The domain DV is geodesically star-shaped with respect to xg, meaning
that for every x € DV and any minimal geodesic v : [0,1] — M from xo to x, we have
v(t) € DY for every t € [0,1]. In particular, DY is path-connected.

Proof. Let t € [0,1] and w € W. We write

Ao, wy(t) = d(wo, (1)) + d(wy(t),we) — d(3(t),z)  (wis an isometry)
> d(zg, wx) — d(y(t), x) (triangular inequality)
> d(xo, ) — d((t), ) (zo € DV)
= d(x0,7(t)) (v is minimal)
and therefore we have ~(t) € DV, as required. O

Proposition 17.1.5. The Dirichlet-Voronoi domain DV is a geodesically star-shaped fun-
damental domain for W acting on M.

Proof. Obviously we have M = |J,,c;;» wDV. On the other hand, if z € DV NwDYV for some
w e W\ {1} and if B = B(x,0) is a small (geodesic) ball centered at x with radius 6 > 0
included in DY NwDV, then B C H,,. However, if we denote by v a minimal geodesic from
xo to x parametrized by arc-length and if £ := d(zg,z) = L(y), then d(~(t),z) =0 —t < ¢
for t > ¢ — 6 and thus v(t) € Hy, for £ — 6 < t < ¢, contradicting Lemma Therefore,
DYV N wDY has empty interior. O

We intend to use the domain DV to build a W-equivariant CW-structure on M. However,
this is too much to ask in the general setting, as the walls of DV, i.e. the subsets of the
form H, N DYV containing a non-empty open subset of H,,, are not necessarily cells. For
example, letting the cyclic group Cy = {1, s} act on S? via the antipode, we have that Hy is
a circle. However, we see that if we take again a Dirichlet-Voronoi domain for the induced
action of Cy on H,, we finally obtain indeed a Cy-CW-structure on S%. This gives a hope
of a general method for constructing a W-equivariant cell structure on flag manifolds. The
first feature to ask is that the interior of DV should itself be a cell and to ensure this, we
have to control the size of DV.

Before stating the result, we introduce some notation: for any x € B(xo,inj, (M)) we
denote by v, the unique minimal geodesic from x( to x, extended to R by completeness of
M. The geodesic v, is defined by v, (s) = Exp,, (su/[|ul|) for any s € R, where u := v,(0) €
T,,M.

Proposition 17.1.6. If the domain DV satisfies

DV C B(xo, p) for some 0 < p < inj, (M),

then the open domain DV is a dim(M)-cell.
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Proof. Let § := max,epy d(zg, ) < p. This maximum exists as DV is closed in the compact
subset B(zo, p) ~ Br, m(0,p) of M. By Lemma [17.1.3) for y € Br, am(0,6) \ {0}, there is
a unique 0 < d§,, < § such that v,(d,) € 9DV and in fact we have §, = dist(Exp(y),dDV).

Thus, the element 'yy(%) is in the interior of DV and the assignment

o

® : B, wm(0,6) — DY
’ v(I9ll6,/6)  otherwise.

defines a continuous map. Conversely, if z €DV \{1}, then there is a unique 0 < §, < §
such that v;(d;) € 0DV and if £, := d(1,z), then the assignment

v DY — Br, 11(0,6)
. 0 ifx=1,
v Exp (v,(00s/6,)) otherwise.

is continuous. It is routine to check that it defines an inverse to ®. O

We finish this section by a technical lemma that helps finding a bound on § > 0 such

that DV C B(xg,d) when the acting group W is finite and under some injectivity radius
condition:

Lemma 17.1.7 (“No antenna lemma”). Let W < Isom(M) be finite, with associated
Dirichlet-Voronoi domain DY and assume that DV C B(xo, p) for some 0 < p < inj, (M).
If 0 < 6 < p is such that the intersection DV N S(x0,d) of DV and the sphere of radius §
consists of isolated points, then DV C B(xg,?).

Proof. If there is some z € DV such that d(zg, z) > 9, then x := ~,(§) € DV N S(xp,d) and
thus for any 0 < £ < d(z, z), the element ~.(5 +¢/2) is in DV NCB(zo, ) N B(z, ). We will
prove however that this set is empty for € > 0 sufficiently small.

As DV N S(xp, d) consists of isolated points, we may choose 0 < & < %5 such that
DY N S(xo,9) N B(x,2¢) = {x}.

Suppose for contradiction that y € DV NCB(x0,8) N B(x, ). We denote dy := d(zo,y) and
compute

d(x77y(5)) < d(x,y)+ d(ya'Yy(d)) <e+ d(')’y(dy)v’Yy(é)) =et+dy—0<e+ d(w,y) < 2,

50 Yy (0) € DY N S(xp,6) N B(z,2¢) and so v,(d) = x = 7,(J) and therefore v, = ~. as there
is only one minimal geodesic from zg to z, since 2 € DV C B(xo,inj,, M). This proves that

DV NEB(z0,8) N Blx, &) = .([5, 5 + ).

The situation (which we are to prove is impossible) is depicted in Figure giving its name
to the lemma.

On the other hand, by Lemma [17.1.3] if we have d(zo,7.(t)) = d(wzxo,7:(t)) for some
1# w e W and some 6 <t < dy, then t =: t,, is unique (we set t,, := (6 + dy)/2 in other
cases) and therefore, if § < s < ty,, then d(xo,7:(s)) < d(wzg,7:(s)). Since W is finite, we
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Figure 21: The forbidden antenna v, ([0, + £[).

may choose to such that 0 < tg < minjzpew tw < dy with d(zo,7.(t0)) < d(wwo,7:(to)) for
all 1w e W.

For a unit vector v € Ty, M, we let ¥ : R — M be the geodesic s — Exp, (sv). The
following set

{v € St m(0,1) 5 ¥(to) €DV}
= {v € Sr,,m(0,1) ; d(z0,7"(t0)) < d(wz0,7"(t0)), V1 #w € W}
is an open neighborhood of u := 7,(0) in Sz, a(0,1). Hence, we may choose 0 < n < 1

such that .
Yu € STIOM(O’ 1), [lu—v]| <n = ~"(ty) €DV .

Since the map Exp,, is continuous, by shrinking 7 if needed and as v.(to) € B(z,¢), we
may assume that vY(t9) € B(x,¢) for ||lu —v|| <n. As d(zo,7"(to)) = to > ¢, we obtain

Vv € S1, m(0,1), [[u—v| <n = +"(to) EDOV ﬂCB(xo,é) N B(z,e) = v:([6,0 + €[).

Thus, we can find some v # Fu such that Exp,, (tov) u Y (to) = v2(s) 4 Exp,, (su) for
some § < s < § 4+ ¢e. But since tg,s < d+¢ < 3(p+0) < p < inj, (M), this implies that
tov = su and so u and v are colinear and on the same sphere, a contradiction. O

Remark 17.1.8. In the case where inj, (M) < oo, the existence of some 0 < p < inj, (M)
such that DV C B(xo, p) is equivalent to the assumption DV C B(wo, inj, (M)).

17.2 Some conjectures on a potential method to build a W-cell structure
on K/T

Back to the case of flag manifolds, we take as usual K a semisimple compact Lie group and
T < K amaximal torus in K, with their Lie algebras ¢ and t and Weyl group W = Ng(T')/T.
We fix, once and for all, a normal homogeneous metric g on the flag manifold F := K/T,
i.e. a metric coming from a bi-invariant metric on K. The analysis given at the beginning
of Section is still valid in the general case and we see that such a normal homogeneous
metric g is unique up to a scalar. The geodesic distance induced by g is simply denoted by
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d. Note that we still have the Cartan decomposition ¢ = t & p as in Section [15.3] and we
identify ThF ~ p.

Since the action of W is free, any point is regular and in particular, denoting abusively
by 1 the class of 1 in F, we consider the Dirichlet-Voronoi domain

DV :={zeF; d1,z) <dw,z), Yw e W}.

By the preceding section, DV is a geodesically star-shaped fundamental domain for W in
F. Moreover, as the normal homogeneous metric g on F is unique up to scalar, the domain
DYV doesn’t depend on the chosen normal homogeneous metric.

In order to prove that the (intersections of the) walls of DV do form cells, we pull
the situation back to the tangent space T3 F = p via the Riemannian exponential map
Exp : p — F. This last map fits in a commutative square

exp g =Expg

4

p="NF F

Exp

where expy is the Lie group exponential map, which coincides with the Riemannian expo-
nential map Expy since the metric on K is bi-invariant.

Of course, in order not to lose information doing this, the exponential map should be
injective on DV. As DV is centered at 1, a natural sufficient condition for this to hold is to
have

sup d(1,z) < inj(F), ()
z€DY
with inj(F) the injectivity radius of F (which is the same at all points, since F is a homo-
geneous space). As we will see, this condition somehow solves the problem with convexity
mentioned in Remark [I7.1.2

If this is true, then we can find 0 < § < inj(F) such that DV C B(1,0) and Exp realizes
a homeomorphism B(1,d) ~ B,(0,9) = B2V, where B2V is the Euclidean 2N-ball, with
N := dim¢ F = |®T] is the number of reflections in W. Thus, we can project the “cells”
onto the bounding sphere S(1,0) = 9B(1,6) =~ S,(0, d), just as we did for binary polyhedral
groups. More precisely, we consider the map

ms : B(1,6)\ {1} — S,(0,0) ~S*N-!
5EXP71(€U)

x — TE e T
[Exp~* (z)]]

Geometrically, this can also be defined using geodesics: for x € B(1,4), as d(1,z) < inj(F),
there is a unique minimal geodesic v from 1 to z, which we extend until it meets the sphere
S(1,0) and the preimage of this point under Exp is ms(z). Now, if we have a wall P, :=
DV N Hy and if y = 75(x) for x € Py, then the unique minimal geodesic from 1 to Exp(y)
intersects P, in at least one point and in fact in a unique point by Lemma so that
z = 75 ' (y) is well-defined and thus 74 restricts to a homeomorphism P, = m5(P,,) C S?V~L.
We may glue these homeomorphisms together to obtain a homeomorphism

75 : ODY — §2N-1
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which in turn restricts to a homeomorphism
oDV N F(R) — sV,

This approach may also be used to prove that the interior of DV is a cell (see Proposition

17.1.6| above).

We would like to find a parametrization of a wall using this homeomorphism and thus to
prove that the intersections of walls are cells and how to compute their oriented boundary.
However, one should be aware that “walls” are not connected in general: they are rather
finite unions of cells. We shall see this while we investigate the case of SL3(R).

However, this is expectable only in the case of the real flag manifold F(R) as the walls
are not unions of cells in the complex case. We have seen above that for the flag manifold
S? of type Aj, the curve H, is an equatorial line. On the other hand, if we restrict our
attention to the real points, then we indeed obtain cells and an equivariant cell structure.
To obtain a structure on the whole manifold S?, we can take any O-cell of the structure
on the real points and consider again a Dirichlet-Voronoi domain centered at this 0-cell,
intersected with Hg to further decompose the wall. We obtain a cell structure on the wall
with two 0-cells and two 1-cells and this, together with the 2-cell given by the interior of
DV, leads to the well-known Ch-cell structure on S2.

A similar trick could work in general: for any wall H,,, we take a point in H,, N F(R)
and consider a Dirichlet-Voronoi domain in H,, centered at this point, for the action of the
subgroup Staby (H,). The problem is that it is not clear how to choose the centers of
the various new domains in the walls. In doing so, we should try to get the least possible
number of walls.

We may summarize the above discussion in the following conjectures:

Conjecture 17.2.1. The Dirichlet-Voronoi domain DYV satisfies the condition , i.e.
DY C B(1,inj(F)).

By Proposition|17.1.6] this would imply that DV is a 2N-cell. Concerning a cell structure
on the flag manifold, we focus on the real points to give a precise statement:

Conjecture 17.2.2. If Conjecture [17.2.1 is true and if I C W is any subset of W, then

the relative interior of DV N (e Hw is a (possibly empty) union of (N — |I|)-cells

Finally, inspired by the case of SU(n)/T, which we investigate below, we conjecture that
the injectivity radius has the following Lie theoretic meaning:

Conjecture 17.2.3. The injectivity radius of F = K/T is the minimal distance between

two elements of the Weyl group W. Moreover, it is equal to d(1,r), for some reflection r of
w.

17.3 The case of SU(n) and the link with the Fubini-Study metric

In the case K = SU(n) and T'= S(U(1)") the subgroup of diagonal matrices in SU(n), the
flag manifold is F,, := SU(n)/T and the Killing form is given by

VX,Y €su(n), k(X,Y)=2ntr(XY)
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and the induced norm on su(n) is v/2n times the Frobenius norm | - || and we equip F,
with the associated normal homogeneous metric g,,. First some good news: we can compute
inj(7, (R))!

Proposition 17.3.1. For n > 2, we have

inj(Fn(R), gn) = T/n.

Moreover, this is the distance between 1 and any reflection in W = S,,.

Proof. We use Klingenberg’s Lemma [Car92, Chapter 13, Proposition 2.13] (or [KIli82,
Proposition 2.6.8]) to estimate the injectivity radius. For this, we have to bound the length
of a closed geodesic and the sectional curvature. More precisely, if the sectional curvature
Kz, ) of Fn(R) satisfies Kz, (g) < Kmax and if £ is the minimal length of a closed geodesic
in F,,(R), then we have
7 l
inj(F,(R)) > min <, > :

" V Kmax 2
e For Z € su, = t®p, we denote by Z' € t and Z° € p be the only two elements
such that Z = Z' + ZP. By O'Neill’s formula |[GHL04, Theorem 3.61] and using the

fact that the metric on SU(n) is bi-invariant, the sectional curvature of 7, (see also
[GHLO4, Theorem 3.65]) is

1 1 3
K7, (X,Y) = 210G YPIR 4 11X Y2 = 20X VIR + 210X V)2,

where (X,Y) is a pair of orthonormal vectors in p = Ty F = t+ and || - | = v2n| - ||F
is the norm on p. First notice that we have Kz, (X,Y) < 3|[X,Y]|> + 2||X,Y]|? =
|[X,Y]||? for any such pair (X,Y). On the other hand, there is a sharp estimate of
the Frobenius norm of a commutator of matrices proved in [BWO08, Theorem 2.2]:

VA, B € My(C), |[[4, Blllr < V2[|All| Bllp.

Thus we obtain
0< Kr, (X,Y) < IX,Y]IIP =2n|[X,Y]||% <

The same argument works for F,(R) and we have 0 < Kz, (g) <

e First notice that if 5 : ¢ — X is a closed geodesic in SU(n) such that eX = 1 and

X # 0, then there is at least one eigenvalue of X with module at least 27 and since the
norm || X || is the 2-norm of the vector of eigenvalues of X (with multiplicities), we
get || X|[|p > 27, This implies that Lgy,)(3) > 27v/2n > 2my/n. As the submanifold
SO(n) C SU(n) is totally geodesic, this also holds for SO(n). Now we have

S(O)") = {diag(e1,...,€n) ; € =1, e162---€n =1}

and
in  dgyn)(1,1) = dsy (1, diag(=1,-1,1,....1
1€ 5(0(1)) sum)(1,t) = dsy(n (1, diag(=1,-1,1,...,1))
0 7
-7 0
:\/ﬁ O. :271.\/6

o/ g
and therefore, if v : [0,1] — F,(R) is a closed geodesic such that v(0) = (1) = 1,
then L(v) > 2my/n. This, together with the above observation on closed geodesics of
SU(n), implies that any closed geodesic in F,,(R) has length at least 27+/n.
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Combining the two estimates above and applying Klingenberg’s Lemma, we obtain
inj(F, (R)) > /.

Besides, let X := diag (( % 7),0,...,0) be the above matrix and 7 : t — e'* - S(O(1)3).
Then ¢ — ~(t/2) and ¢t — ~(1 — ¢/2) are two distinct minimal geodesics from 1 to s,, of
length m/n and thus inj(F,(R)) < my/n. O

Remark 17.3.2. Notice that this agrees with [Pit04)]. Using the fact that Fs is of positive
curvature, he also was able to give the injectivity radius of F3(C). However, this approach
cannot be generalized as the other flag manifolds (apart from types Ay and As) only have
non-negative curvature, rather than positive curvature, see [Wal72]. See also [WZ18] for a
complete classification of simply-connected compact homogeneous spaces of positive curva-
ture.

On another hand, we notice that the above proof can be extended to the complex case
as soon as the following elementary conjecture holds:

Conjecture 17.3.3. For X € su(n) such that || X||p < V27, if eX € T then X € t. In
particular, this implies that inj(Fy, gn) = /1.

Unfortunately, we were not able to prove it so far. We just have numerically verified it
using Maple [Map19|. Still, we have the following weaker result:

Lemma 17.3.4. For n > 2, the injectivity radius of F;, satisfies

(P ) = [

Proof. Indeed, since we have already seen that the curvature satisfies 0 < Kz, < %, it
suffices to prove that the length of a closed geodesic (based in 1, say) is at least 7. Indeed,
letting p denote the spectral radius of a matrix, by |[LM19, Example 5.13], the (Lie group)
exponential map of SU(n) is injective on the Ad-invariant subset {X € su(n) ; p(X) < 7}
and thus if X € p C su(n) is such that eX € T, say eX = 0 with tg € t and if p(X) < ,

then p(tg) < 7 too and thus X =ty € t, s0 X € tNp and X = 0. Therefore, if t +— !XT is a

closed geodesic such that 7(0) = (1) = 1, then p(X) > mand so [ X|[r = /> sesp(x) |A]2 >
p(X) > m, as required. O

The Conjecture seems really hard to decide here, because the expression of the
distance is very unhandy. We will see that there is another distance on F,, induced by a
(product of) Fubini-Study metric, which seems to be a good “approximation” of the intrinsic
distance d on F,.

More precisely, if k& € SU(n), then the columns [k;1];,...,[kin]i define a family of
pairwise orthogonal lines in C" and the resulting map SU(n) — (CP" )" induces an
embedding

L: Fp s (CP" ",

Furthermore, the space (CP"~1)" is endowed with a natural metric: the product metric of
the Fubini-Study metric on each copy of CP*~!. It turns out that this metric is compatible
with the metric on F,,. More precisely, we have the following result:
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Lemma 17.3.5. If grs denotes the product metric on (CP"~1)" induced by the Fubini-Study

metric on each factor, then the restriction of grs to Fn < (CP"1)" is proportional to the
normal homogeneous metric g, on F,. More precisely,

gn =21 U gps.

Proof. Denote by (-,-) the usual Hermitian product on C" and (-, -)p := R((:,-)) the associ-
ated dot product. Denote also by (ei)izlj,“?n the canonical basis of C". We have

0 (%)
Tia((CP™ 1) @SPan ei) _{< )},
(%) 0

that is, Tiq((CP"*~1)") can be identified with the space of matrices with zero diagonal and
the subspace T1F, = p is given by the skew-Hermitian matrices with zero diagonal. By
definition of the product metric, we have

n

VX = (2i5),Y = (yij) € Tia((CP" "), gps(X,Y) => ((@ij)i Wig)idg = Y. R(wis¥ij)-
j=1 1<i,5<n
Now, if X and Y are skew-Hermitian (i.e. if Z; ; = —;; and similarly for Y'), then we have
grs(X,Y) Z R(zi ;7i ;) Zifﬁ (iyji) = —R(tr(XY)) = =3 (tr(XY) + tr(XY))
1<4,5<n

KXY) _ galX,Y)

= —2(tr(XY) + tr("X'Y)) = — tr(XY) = on  2n

g

Corollary 17.3.6. If drs denotes the geodesic distance on (CP"~1)" induced by grs, then

V%Z/ € ‘Fnu dFS(I)y) < d(l‘,y)

By [Mic19], it is known that the two distances d and dpg are equivalent on F,,. We have
a candidate for a bound for the case of real points and more precisely, we formulate the next
conjecture:

Conjecture 17.3.7. The following holds
Vl’,y € fn(R)> dFS(.T,y) < d(%,y) < \/idFS(:U’y)‘
This would suggest that the distances are close enough to consider the following domain
instead of the classical Dirichlet-Voronoi domain associated with g,:
DVrg :={x € F,(R) ; drs(1l,2) < dps(w,z), Yw € &,}.

Though we haven’t found a proof of it yet, it should be easier to prove that max,epy ¢ drs(1, z)
is smaller than inj(F,(R), grs) than with the distance d. Indeed, we have the following sim-
ple formulas:
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Lemma 17.3.8. The injectivity radius of the metric grs on (CP"~1)" is given by

L n—1lyn m
an((CP 1) ,QFS):?

Moreover, if = AT € F,, with A = (ai;)i; € SU(n), then

dps(1,z) = | ) arccos(|ayi)?

In particular, for w € &,, we have

n
dps(w, ) Z arccos(|a; ;|)? = Zarceos(\aw(i)’i])?
w;, ;70 =

Proof. 1t is clear that the injectivity radius of a product metric is the minimum of the
injectivity radii of the factors. On the other hand, by O’Neill’s formula, the curvature of
CP"! is given by

Kepn 1 (X,Y) =14 3(X,Y)2 € [1,4]
and since CP"! is simply-connected, Klingenberg’s special estimate (|[Kli82, Theorem

2.6.A.1]) implies that inj(CP"™') = Z, hence the first statement. For the second state-
ment, recall that the Fubini-Study distance dpg on CP"~! satisfies

drs(Cp, Cq) = arccos | (p. ) ’
pllq]
Therefore, we obtain
n n
drs(1, AT)? des ej, (@i )i Zarccos(| (ej, (@) Zarccos la;j j|)?
7j=1 7j=1

d

The equality g, = 2n t*grg in Lemma relates two natural metrics to consider on
Fn. However, the calculations involving drg, though a bit more manageable than the ones
with d, are still hard to handle and even if the injectivity radius condition on DV g is true,
it remains to compare the distances d and dpg precisely as in the later Conjecture above.
Hence, it is not clear if working with dpg is efficient enough for our purpose.

17.4 The particular case of F3(R) ~ SO(3)/S(0(1)3)

In this last section, we use the Dirichlet-Voronoi domain DV for F3(R) to construct a third
G3-equivariant cell structure on it. We use the metric induced by S* on F3(R) to do the
calculations, as the associated distance is far easier to handle. Throughout this section, we
denote by DVs3 the Dirichlet-Voronoi domain for &3 acting on F3(R). We first determine
the maximal value of the function d(1,—) on DVj3. Recall that we have the projection

¢:S? - F3(R) = S?/Qg from Lemma
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Lemma 17.4.1. The radius
1 V2
1 = 4 — —_ =
Iax d(1,z) = 4v/3 arccos (2 + ) o

of DV3 is smaller than the injectivity radius ©/3, i.e. Conjecture |17.2.1 holds and in

o
particular the interior DVs is a 3-cell. Moreover, this maximum is attained by the following
twenty-four points

6 (4+ 2 +bi+cj+dh),

where (b, c,d) is any permutation of (i%, :I:%, + (% - %))

Proof. First, we have to prove that DV3 C B(1,inj(F3(R))) = B(1,7v3). Recall from
Corollary [15.4.3| that (after normalization) the distance from 1 to an element ¢(q) € F3(R),
where ¢ = a + bi + ¢j + dk € S3, with respect to the metric g3 = 483° is given by

d(1,¢(q)) = 4v3 min (arccos(|z])).
r=a,b,c,d
On the other hand, the projection ¢ takes the elements \%(1 + k), %(1 +1i) and \%(1 +7)
to the reflections s, sg and wy = s, of &3 respectively and thus, for ¢ = a+bi+cj +dk,
a direct computation shows that

(50, 9(q)) = ming—gzqp+e(arccos(|z/v/2)),
d(sg, ¢(q)) = minx:aib7cid(arccos(|x]/\/§)),
(50, 8(0)) = Ming—asepa(arccos((al /v2)).

Take ¢ = a + bi + ¢j + dk € S? such that ¢(q) € DV3. In particular, the inequalities
d(1,9(q)) < d(s,¢(q)) are valid for any reflection s € &3. Up to multiplication by an element
of Qg = {£1, +i,+j, £k}, we may assume that |a| > ||, |c|, |d| and that a > 0 in such a way
that d(1,¢(q)) = 4v/3arccos(a). Therefore, taking the cosine of the inequalities associated
to the reflections yields among other inequalities the following system

a> (a+b)/V2, a(v2—1) > b,
a>(ate)/V2, < a(v2—1) > =+c,
a>(a+d)/V2, a(v/2 —1) > +d.

Hence, we obtain
1—a? =0+ +d*<3a*(V2-1)? = 1<d*(10-6V2)
and thus

1

d(1,¢(q)) = 4v/3arccos(a) < 4v/3 arccos (\/m

) ~ 4.31166 < V3 ~ 5.4414,

as required.

Now that we know that DV3 C B(1,inj(F3(R))), we want to apply Lemma|17.1.7, To do
this, it is enough to show that there is at most a finite number of x € DV3 such that d(1, z) is
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equal to &y and to find them. As above, if ¢(q) € DV3 for ¢ = a+bi+cj+dk € S? for which
we assume that a > |b|, |c|,|d|, we have a(v/2 — 1) > |b|, |c|,|d| and similar computations for
583 and sgs, show that we also have

2a >

max |z|.
r=axbxctd

Specializing at a = 1/2 4+ v/2/4 (so that d(1,z) = dp), we obtain the following system of
inequalities

bl lel, ld] < v2/4,
b+ctd <1/24/2/4,
b+ 2+ d* = £(5—2V?2)
and this defines a full truncated cube, intersected with a sphere, as depicted in Figure

02 0
b 03 o3 02

Figure 22: The blue triangles are faces of the truncated cube and the red parts describe the
intersection of the sphere with the full cube.

This full truncated cube is the convex hull of its twenty-four vertices listed in the state-
ment, and these lie on the sphere. As the Euclidean norm on R? is uniformly convex,
any point in this truncated cube which is not a vertex belongs to the open ball of radius
%(5 — 24/2), hence is not on the sphere. Therefore, the considered intersection consists
exactly of the twenty-four points of the statement. O

Theorem 17.4.2. For each I C &3, the relative interior of DV3N(,c; Huw is either empty
or a union of (3—|I])-cells. In other words, Conjecture[17.2.9 holds for F3(R). The resulting
cellular decomposition of DV3 induces an Gs-equivariant cellular structure on the real flag
manifold F3(R), whose cellular homology chain complex

Z[&3) — 2> (3] — 2> 2[S3)12 2> 7[S5)°

has boundaries given by (left) multiplication by the following matrices

0 0 0 0 0 sg —sg 0 0 -1 0 1
0 0 0 1 -1 0 0 0 sgsa 0 0 -1
O — —wo 0 0 0 0 O 0 wo 0 sg —wo O
1 $gSa —SgSa 0 0 sq —s¢ 0 0O 0 0 0 0 |>
0 sgsa —sSgsa 0 0 O 0 0 —wg O we O
0 0 1 -10 0 sg —s3 0 0 0 O
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1 0 wo 0 0 0 —wo
1 —sasg 0 0O -1 0 0
1 s 0 -5 0 0 0
10 sa 0 0 -1 0 Lig
A
s _

d=|1 1 0o 0 0 -s5 0 |, O3:= 1580
1 0 —sgsa =1 0 0 O 1*%53
0 -1 —wp 0 —-sg 0 O l_sﬂsa
0 sp 1 0 0 0 -—sg Sasp
0 wo —wg —1 0 0 0
0 —sgsa 1 0 0O -1 0

Proof. First observe that, for p := (x,y, 2) € R3 such that 72 := 22 + y? + 22 < 7, we have

0 = 2 1 (x2+22) cos(tr)+y?  yz(cos(tr)—1)+arsin(tr) zy(1—cos(tr))+zrsin(tr)
exp <t (*w 0 y)> =— yz(cos(tr)—1)—arsin(tr)  (z24+y?)cos(tr)+22  zz(cos(tr)—1)+yrsin(tr)
—z2-y0 r 2y(1—cos(tr))—zrsin(tr) zz(cos(tr)—1)—yrsin(tr)  (y>422) cos(tr)+z?
0 z z
projects modulo S(O(1)*) to the minimal geodesic 7(,, ») from 1 to exp (*w 0 g) inside
—z —y

F3(R). Moreover, the map S* — SO(3) is a diffeomorphism on a neighbourhood of (1,0, 0, 0)
to a neighbourhood of the identity in SO(3) and composing the above geodesic with the
inverse of this local diffeomorphism gives a map

\Ilq : ]Oa ]-] — SS
— sin(tr) r(1+cos(tr))
t T\/W ( sin(tr) Y, 2, ZL‘)

Notice that if we have a vertex % + ? + bt 4+ ¢j + dk as in Lemma [17.4.1} we can compute
its image in SO(3) and take the logarithm of the result (using the Rodrigues formula for

instance). The resulting twenty-four points of Exp~!(DV3) € R3 are denoted by pf’ﬁi,

according to which one of the coefficients (b, c,d) is + (% — %) and to their signs. For

example, the vertex % + % — (% — %) 1+ %j — %k‘ is sent to pl_’+’_. Then, the points

pfi{i are the vertices of a truncated cube (see Figure .

We now prove that the walls Hy,, N DV3 are unions of cells. To do this we choose a

triangulation of each of the octagonal faces of this truncated cube using six triangles, like in

Figure This leads to a triangulation of the boundary of the truncated cube 9 conv(pli”féi)

Figure 23: Triangulation of an octagon using six triangles.

since the other faces already are triangles. Fix a triangle of this triangulation, with vertices
p, p' and p”, say. Take also a point p := A\p + up’ + (1 — XA — p)p” in the open triangle (i.e.
0 <A\ p, A+ u < 1). We project it to the point pg := dop/|pl2 € S(0,00) and consider the
minimal geodesic 7,, such that 7,,(0) = 1 and v,,(1) = pg. There is a unique 0 < ¢y < 1
such that 7,,(to) € 0DV3 and there is a unique w € &3 such that ~,,(t9) € H,. This
can be seen as follows: from the formula defining the map W¥,, and the equations for the
distances d(1, ¥y, (t)w), where w € {3(1£i+j+k), %(1—}—1’), %(1 +7), %(l—kk)} describes
a system of representatives of elements of &3 in S3. Now, if v,,(t) € H,, for some w and
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17.4 The particular case of F3(R) ~ SO(3)/S(0(1)3)

some 0 < t < 1, then t is unique by Lemma [17.1.3| and may be explicitly determined, as a
function depending on the triplet (A, u, w). Then, tg is given by

to=min{0 <t <1; Jwe Sz ; v, (t) € Hy}.

After elementary but tedious computations we will omit, we find that there is a unique
w € S3 such that v,,(ty) € H,, for each p in the open triangle with vertices p, p’ and p” and

that this holds for any open triangle of the triangulation of conv(pf;%’i). Therefore, the

relative interior of each facet of Conv(pf’fgi) projects to a 2-cell in S(0,89) ~ S? and the

image of this 2-cell under the inverse homeomorphism 7rg01 : 5(0,80) = dDVs5 lands in the
relative interior of a unique wall H,, N DV3. As the obtained 2-cells glue together to form
a cell decomposition of S?, we obtain that for each w € &3 the relative interior of the wall
H, N DVs ~ 75,(H, N DVs3) is a disjoint union of two 2-cells in S? if w is a reflection, and
of four 2-cells if w has length 2. By taking the closures of these cells we obtain the 1-cells
and the stated G3-equivariant cellular structure on F3(R).

The computation of the orbits and boundaries is routine, using the twenty-four vertices
of the fundamental domain DV3. The detailed combinatorics of the cellular decomposition
of DV3 can be found in Appendix [C] O

The domain DVs3 can be represented by Exp~(DV3) C R? as in the following picture:

0.2 o
0.6 0.6 0.2

Figure 24: The truncated cube conv(pffg’i) ~ Exp 1 (DV3) C R3.

Remark 17.4.3. We finish with the following observations:

e In the truncated cube in Figure[2]), each face corresponds to a connected component of
some Hy, for w € &3 and we have observed experimentally that the edges are minimal
geodesics in F3(R).

e [t could also be interesting to look for some kind of “dual” of this decomposition;
something like a Delaunay triangulation in the sense of [LLO0/. The combinatorics of
the resulting chain complex could be nicer but it is not clear at all how to achieve this.
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A Hyperbolic extensions of finite irreducible Weyl groups

As the irreducible hyperbolic Coxeter groups have rank < 10 and are all classified (see
|Che69]), we can check each reflection of each irreducible finite Weyl group to see which one
of them give hyperbolic extensions. There may be other possible reflections and extensions,
but the resulting Coxeter diagram must appear in the following table. The computations
were made using [GAP4]. Qf\course, for the case of Ga = I(6), we find in particular the

diagram corresponding to I2(6) defined above.

‘ Type ‘ Dynkin diagram \ Hyperbolic diagram ‘ Refloction ‘ ot ‘
,/i\f i
6
) 1—5 " and both
6 and -
1
*— e R
*——o—o |
As 1 2 3 . )
4 4 .
Cs 3—5—5 4l: 531 .
3
4 4 )
4
b3
Dy 1 2 E 82253 o
1 .2
3
4
Fy T—ﬁ—z 4 o -
2
) '—‘—I—’—‘—'—’ 858332)545556(5552)“45351 no

Table 6: Hyperbolic extensions of finite irreducible Weyl groups.
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B Presentations of m(T(Hs)) and 7 (T(Hy))

In this appendix, we make the presentation of 71 (T(W)) from Theorem more explicit
in the cases of H3 and Hy.

We write U3 =: {f;, 1 <i < 30} for the set of (abstract) generators of m(T(Hz)). We
obtain the presentation
m1(T(H3)) = (V3 | Ra),

where

R3 :={foaforfi» fiofizf11, fifesf2o, fafoefo1, fifeofis, fafesfie, fafaofie, faferfi7, fsfeefas. f5f5 fi2,
fisfisfias fafy fi1, frefiafors firfiafags frofsfy s fogfe f23, faofouf7, forfs fo2, fo feafsg, fi5figfro,
fasfighiaforfou, feafigfrofinfas, fagfooforferfis, fifsfisfa f3, fafofiafs fo s fafsofrofaefs s

forfiafosfe fr. fo2figfi1fa0fous fogfiifoefs foo frrfigfesfiafags frfefisfr fo o fiefigf26fisfs0}-

We verify the following relations among generators:

f1 = fisfsfg fa, f5 = frofsfs frafe, fo = f11fsfs fiaf2, fr= firfa, fo = fiofs, fiz = fi1figs f15 = f1afi3,
fi6 = fo1f1a, fis = fiof1afis, f20 = firfis, fo2 = fsfs fir, f2s3 = frofsfs fiafars foa = fiafsfs fiafies

Jos = fy fsfs fizs foe = fo for, for = f3 fiz, fos = f3 fiafor, fao = fu fsfs fiafigs f30 = f5 fig-

Thus, replacing the generators on the left hand sides by the words on the right hand
side yields a presentation (T (Hz)) = (¥4 | RS) with

Ui = {fi, i €{2,3,4,8,10,11,13,14,17,19,21}},

=:I11

and

Ry :={f13f3f5 fafsfizfi [5, fafrofsfiafs F1afafs fiofs » Sferfrafafinfisfor fs finf13f1as forfrafiafiafiofs for figfiefe,
fsfs fizfiafor frofinfor fiafsfg fig, forfrafsfiify forfs fiafsfs fiafe, finfiofs fsfs finfiafrofrafsfs fa,
firfsfrofii fa fsfs firfs fiofinfa, fafrofafrofy fsfs frafiof1afs Frofa f3, fafafisfg finfiofs fofrofsfiafy fiife s

frofsfs frafor fiofi1fioferfrofiafsfg f11, fefs fizfizfiafigfinfizfigfrofiafafs fii}-

We notice that any of the above relation becomes trivial once abelianized and indeed,
71 (T (Hs))2> = 7.
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In terms of Hs-conjugates of qo := Sorm,, the 11 generators {f;, i € I11} of m1(T(Hz))
given above may be written f; = ¢;* where the u;’s are given by

S281

{uitien, = {a;y(3231)2, Y21 s0s1, S1, 5081, Y s3, 2y 's3, (v71s1)%, s3(v7 1), ssysi, say, Yy},

with

T = s3s1%, Y= ((8182)2)83.

We can do the same for Hy;. We have a presentation
T (T(Hs)) = (V4 | Ra),

where Wy =: {f;, 1 <i <60} and

Ry = {f5 fg fighrof2, fifrfizf5 fo» fifsfigfe f3» fafr0fiofy f5 s frfiafaafigfy » fafiifaofiafy » fafraforfigfy » fefasfipfasfy
f3 fs8fzgfeofs1, foafsrfagfaofe, fefogfa2f3sfia, fofagf20f32f 10, fo fasfassf13f58> f17f39f32f33f36, f5fo5f18f24f 10> fe f28faaf33f12,
fsfagfanfaafiy, frofiifsaferfar, frofopfarfaafiy, firfayfrafigfae, fazfrfs foafig: fs3fisfsofsafsg, fazfagfozfazfoe, f1 f57fi3f32f54,
frofarfisfiafee, fsgfi3fagfaafior Fsgfsafs0f15fs53, fo feofsof30f53, foufssfa2fa1for, fasfasfisfssfo, fasfasfogfyafigr fasfiafs0f21f4g,
fo foofs7f30fsg, fsfifs fg figs fo1f20fsefo8fs s fi18fsgfsaf3af35, fsfsrfiafazfss, fafsafsifaofee: f17f36f33f35 39, fafoufrof2sfy s
fafsefa1f33f54> fsfsgf21f33f 13, frf31f20f34f13, fofssfarfiefss, faafssfi2feofs, fisfasfrofs fos, faafyy fsof20fsss f18F30f15f16f 285
fasfzgfa0fazfas, firfacfsgfaofis: fazfisfsafeofas, firfsfafy f7 . fra8fysfagfaifae. f1 fizfanfiefa, frfsrfisfarfse, firfesfssfsafs
fsfsofi1faofae, firfazfofe fos, fapfasfarfasfiz, foafssfonfayfors fosfaof21farfao, fsofiyfagfaefs » feafysfosfy f53, frofs3gfzsfsafar,
f5 fosfaofaafsa, fo fsefyif33fsa, faafsofsafiafag, f18fa7f36f38f49: Frof3tfagfsaft, fo faofasfiafss: fasfarfiifeofe. fo fagfarficfss:
fo1fsgfarfaofe, fo1fy forfasfass fo fasfarfiifeos feafsofasfaofar, fasfssfsafiifag: frofsefiefazfar, f1 foofzrfeefs2, frfarfogfssfo2,
f51f55fa6fasfs, f23fsyfisforf38, fagfsafi1fasfos, fa3fysfsefy fs2, frofsofi3faefaa, faafarfsofacfins f5 f51f55f26f48> f5 fz9faafis5f56>
faafsgfafsafas, f23f36fonfinfag: fr7rf2of16 1431, f3 fraforfisfa, fsafrafsofszfsg, fo fiifaofrafa, fosfsifafssfae, fo f26faqf3afi2,
frofasfsy fs7 853, fagfa1fs0fsnfas, frfssfiafaofas, fo fssfiafazfaor f17faafarf30fae, fogfsafiafaofay, faafasforfugfar, fosfaofarfaifig,
fsfarfagfsef53, fsgfasfogfsifo, faafsrfogfazfsgs fisfesfigfisfag, fsfizfasforfzg, fagf20fs0fyy faa, fsfasfazfrafsr, frf36fa1f15f57,
feofa0fz0f53f2: fisfasfaafsnfag, frofasfagfaofag: fo fsofssfasfsr, frofsrfazfiefse, fs1fi6fs0f32f60, f5 fsef15fasfagr fazfozfsofsgzfas,
fagfaofaofaofig: Fagfs1fsrfssfios farfaofsefssfs » f1ofssfogf2ofaa, fi fssfsgfarfss, fiofeefiaf15fa7, feof39f31fsaf3, feofaafsofiefs1,
fasfssfafssfosr fasfoefszifacfisr fasfarfiafsafeo, frofsrf3afssfsg, fogfazfsofiafsz, faefugfsofenfyr, fasfasfanfaofsg, fo f51f56f2754gs

Fsgf3sforfssfis fsgfiafaolasfs + f1 fsafsefiazfsr, firfarfasfarfag. frfiafaafaofsys f5 feofanfaafin, fs faafagfiafeor fafssfazfsyfsal-

We verify the following relations among generators:
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f1 = fsafirafs0fssfagfarfos, f5 = firfesfg f3 fo2f26f57f10faaf36 33 21 f30faaf10, f6 = f5 fs2f31fi7f36 33f50f22f56 232637 f10f27f49;
f7 = fs3forfasfasfsogfiafsafafirfesfy fa f52f26f37f10fsaf36F33F21 f30fa4f10f17,

fs = fo3forfasfasfogf1af31 1736 3350 22 36 a5 26 37 10 27 fagf2afiof17f23 g f3 f52f26f57
frofaafs6fazfarf30fauf10f17fo3 0 fa0farf10f37 fo6 2336 f20 5033 36 f17f31 52 3,

f11 = fo fafrafqq f3s8fasfs1 f30foufsrs f12 = foyferfigfe fafrafsgfo, f13 = faszforfasfasfsgfiafsafafaafagfonfiofarfeefoafy fag,

fis = fy f3fa1farfi0fs fafrafosfofar, fre6 = faafsgfaafiofsrf2efs2fy »

f1s = faafiofirf2sfy fa fo2fa6fsrfi0faafs6 3321 30 auf10f17 fagfofaofarfrof37fagf23f36 00 50 33 36 f17f31 52 3, f19 = fiofafs fg

f20 = farfaafzof31fozfagfor, fas = firf23fy f3 fsaf31f17f56 33 50 f22F 36 2326 f37 10 27549,

fas = faof33fg faefiafy fafroforfo1fs fo2farfiyfagf3af50 22 36 232637 10 f27f49 f20 = foafagfoafiofsrSaefs2fy fiafsrfis,

fa2 = fo1f38f23f51 f30faaf37F26 g for forfiofa fafiafagfo, f3a = fazfssfofafy fiofsr

f35 = faz2faafr0f53f30f40fg fs5afasf3sf21 50 24 37 50 27 fqu f39 = fg faef1afs f2froforfa1fofogfarfoafsgfa1fogfsgfa1f33fsefir,

fao = f3o0fs3fy fo fo6fiafs f2fr0farf21f38f4af10 24 30 2133 f36 faaf10f37fo6 52 3 0 fa3 17,

fa1 = faafr0fs3f30f40fg fsafasfsgfa1f3gf2afs7 50, faz = forfaefasfag, fas = fo1f3s8f23f31, fas = fonf36f23fagf50 o1 fa9,

fae = f31f26fanf36f23f26 50 21 493 f52f31f17f36f33F50f22f36 a3 26 37 1027 fa9fg f23f17f10 24 30 21F33f36faaf10f37fa6f 52 3 f0fa3f17f10f54,
far = faefsgfaofs fo2f31f17f36 33 50 22f56 232637 f10f271fs0fg f23f17f10f24F50 2133 f36faaf10f37F 56 50 3 f0fa3f17f10f 24>

fag = faafsof3rfaafs0fay fasfasfoafofaofagfssfiofaafs0l37 243031233821, f51 = fafsofosfaafiofsrfogfesfaefanfsof33f36f17f31 523,

fsa = fo fa6f14fs f2fr0forf21 49 f2af37f06 14 f50 33 38 27f53, fs5 = fafsofogf3rfi0faafs6fonf50farfaafs0fay f3s8f23f52fofa0fsgfs3f10f4al389 »
fs6 = faafr0f53f30f49f9 f5ofazf3gf21 30 24 3750 33 F 53 27 38 f33 50 14f26f37faq a0 a1 f2rfiofs fafrafagfofa, for = f3gfaofofs2,

fs8 = fo2f31f17f36f33f50f22 36 aa 26 37 f10faaf23F52f, f17f31f1afafss o637 10 1436 55 36,

foo = foafy fafoyforfiogfe fafrafagfofaifsofarfriofafs fg fagfss

feo = fo fa6f14fy fof10forf21f38fsaf 102430 f21 33 f36faaf10f37 26 503 0f23f17-

As for Hs, replacing the generators on the left hand sides by the words on the right hand
side yields a presentation m1(T(Hy4)) = (V) | R)) where

Uy ={fi,i€{2,3,4,9,10,14,17,21, 22,23, 24, 26, 27, 30, 31, 33, 36, 37, 38, 44, 49, 50, 52, 53} },

=:l24
and the relations of R/ become all trivial in the abelianization and thus 71 (T(Hy)) = Z**.

In terms of Hy-conjugates of qo := Sorm,, the 24 generators {f;, i € Ia4} of w1 (T(Hy))
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given above may be written f; = ¢;* where the u;’s are given by

3

{ui}i6124 — {($y54)47 (54333/)454 = THy, (51(95453)52) 5182YS4, TYS4, (:Uy)845 t523/54, tSQy(l‘y)&la

(s2(saz)®2s5}) 2 sas384, sozy(wy)®, wzyss, (v2y)*s, wtsoyss, (xtsay)™, (sawss)®ssysa,
J,‘Sg(.’[‘y)&l, 81t82y847 (828351)213_1847 ‘I‘thy(-Ty)&l, 84:1;‘t32y(1'y)847{132y($y)84,
(z2y)*4si?yss, s1522ysasi?yss, ((ysax)™)3ssyss, wayss(si?ysass)®si?ysalt,

with
._ S ._ 2\s ._ L
x = 53517, y = ((s152)7)%3, 2z := s3545152, t 1= $3545251.

C Figures describing the combinatorics of the Dirichlet-Voronoi
domain for SO(3)/{£1}?

In this appendix we give some figures that help visualize how to obtain the chain complex
from Theorem We choose representative cells in each dimension and in each one of
these figures, the cells that belong to the same G3-orbit share the same color and the order
on the colors given in the legends corresponds to the order chosen to build the matrices of
the boundaries of the complex. Moreover, for simplicity we replace s,, sg and wp = 545354
respectively by a, b and c. Finally, we chose to orient p ~ R? directly and the 2-cells
accordingly.

199



(b) The 1-cells representing
orbits: black, red, green, blue,
orange, teal, brown, pink,
gray, lightgray, cyan, lime

(a) The O-cells representing
orbits: black, red, cyan, green,
brown, pink

Figure 25: The O-cells and 1-cells of F3(R)

(a) The 2-cells representing
orbits:  red, blue, green,
brown, teal, orange, pink

(b) Some translates of the rep-
resenting 2-cells

Figure 26: The 2-cells of F3(R)
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Résumé. Ce travail vise a construire des structures cellulaires explicites sur des espaces apparais-
sant en théorie de Lie, équivariantes pour 'action d’un groupe de Weyl W. En général, I’étude de
telles structures sur un W-espace X a pour but d’exhiber un complexe bien défini dans la catégorie
homotopique bornée K°(Z[W]) des Z[W]-modules, qui est un modele pour le foncteur dérivé des
sections globales RI'(X,Z) dans la catégorie dérivée DP(Z[W]).

Les deux classes d’espaces sur lesquelles nous nous concentrons sont les variétés de drapeaux
et tores maximaux des groupes de Lie compacts. Plus spécifiquement, étant donné un groupe de
Lie simple compact K et un tore maximal T' < K, on donne une structure simpliciale générale sur
T, équivariante pour l'action du groupe de Weyl W := Nk (T)/T et nous décrivons la W-algebre
différentielle graduée associée, en fonction du réseau des caractéres de 7. Pour les groupes de
Coxeter finis non cristallographiques, nous constuisons des variétés hyperboliques compactes qui
peuvent étre vues comme des analogues des tores, en utilisant des extensions hyperboliques plutot
que des extensions affines. Dans le cas des groupes diédraux, ce sont des surfaces de Riemann
arithmétiques.

Concernant les variétés de drapeaux, nous étudions trois décompositions cellulaires &3-
équivariantes distinctes de la variété de drapeaux réelle F3(R) de R3, qui constitue le premier
exemple non-trivial. La premiere utilise le graphe de Goresky-Kottwitz-MacPherson de &3 et un
plongement algébrique F3(R) < RP7, la deuxieme utilise le fait que le revétement universel de
F3(R) est la 3-sphere et fournit un complexe d’homologie cellulaire particulierement joli et simple.
La troisieme est probablement la plus prometteuse, puisqu’elle repose sur un domaine de Dirichlet-
Voronoi, défini uniquement & partir d’une métrique riemannienne normale homogene sur F3(R).
Ainsi, il est raisonnable d’attendre de cette méthode qu’elle se généralise aux autres variétés de
drapeaux. Nous donnons quelques résultats préliminaires dans ce sens.

Mots-clefs : structures cellulaires et simpliciales équivariantes, complexes de chaines cellulaires,
variétés de drapeaux, groupes de Weyl, tores, groupes de Coxeter hyperboliques, métriques nor-
males homogenes.

Abstract. This work aims to construct explicit cellular structures on spaces arising in Lie theory,
that are equivariant with respect to the action of a Weyl group W. In general, the main purpose
of studying such structures on a W-space X is to exhibit a well-defined complex in the bounded
homotopy category K°(Z[W]) of Z[W]-modules, which is a model for the derived functor of global
sections RT(X,Z) in the derived category D°(Z[W)).

The two classes of spaces we focus on are flag manifolds and maximal tori of compact Lie
groups. More precisely, given a simple compact Lie group K and a maximal torus T' < K, we give a
general explicit simplicial structure on 7', equivariant with respect to the action of the Weyl group
W := Ng(T)/T and we describe the associated W-dg-algebra, depending on the character lattice
of T'. For non-crystallographic finite Coxeter groups, we construct compact hyperbolic manifolds
which may be seen as analogues of tori, using hyperbolic extensions rather than affine extensions.
In the case of dihedral groups, these are arithmetic Riemann surfaces.

Concerning flag manifolds, we study three different G3-equivariant cellular decompositions of
the real flag manifold F3(R) of R?, which is the first non-trivial example. The first one starts with
the Goresky-Kottwitz-MacPherson graph of &3 and an algebraic embedding F3(R) — RP7, the
second one uses the fact that the universal cover of F3(R) is the 3-sphere and yields a particularly
nice and simple cellular homology chain complex. The third one is perhaps the most promising one,
as it relies on a Dirichlet-Voronoi fundamental domain, defined using only a normal homogeneous
Riemannian metric on F3(R). Therefore, this method is expected to be generalizable to other flag
manifolds. We give some preliminary results in this direction.

Keywords: equivariant cellular and simplicial structures, cellular chain complexes, flag manifolds,
Weyl groups, tori, hyperbolic Coxeter groups, normal homogeneous metrics.
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