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1. Prerequisites and notations

1.1. Root data.
We start by briefly recalling what a root datum is and how one can associate a root datum

to any connected reductive complex algebraic group (and more specifically to any semisimple
compact Lie group). Standard references for what follows are [MT11] and [KJ05].

Definition 1.1.1. ([MT11, Definition 9.10])
A root datum is a quadruple (X,Φ, Y,Φ∨) where

(RD1) the elements X and Y are free abelian groups of finite rank, together with a perfect
pairing ⟨·, ·⟩ : Y ×X −→ Z,

(RD2) the subsets Φ ⊂ X and Φ∨ ⊂ Y are (abstract) reduced root systems in ZΦ⊗Z R and
ZΦ∨ ⊗Z R, respectively,

(RD3) there is a bijection Φ −→ Φ∨ (denoted by α 7−→ α∨) such that ⟨α∨, α⟩ = 2 for every
α ∈ Φ,

(RD4) the reflections sα of the root system Φ and sα∨ of Φ∨ are respectively given by

∀x ∈ X, sα(x) := x−
〈
α∨, x

〉
α

and
∀y ∈ Y, sα∨(y) := y − ⟨y, α⟩α∨.

The Weyl group W of the root system Φ (which is isomorphic to the Weyl group of Φ∨ via
the map sα 7−→ sα∨) is called the Weyl group of the root datum. Moreover, we say that the
root datum (X,Φ, Y,Φ∨) is irreducible if the root system Φ is.

From this, one can easily define a morphism of root data and the corresponding category
of root data.

For a root datum (X,Φ, Y,Φ∨), we denote by V := ZΦ ⊗Z R the ambient space and
V ∗ := ZΦ∨⊗ZR (the notation is consistent since ZΦ∨⊗ZR may be identified with the dual
of ZΦ⊗Z R, via the pairing ⟨·, ·⟩). As usual, we denote by Φ+ ⊂ Φ the set of positive roots
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(with respect to some linear order on V ) and by Π ⊂ Φ+ the corresponding set of simple
roots. Recall that there are elements ϖα ∈ V indexed by α ∈ Π such that

∀β ∈ Π, (β∨, ϖα) = δα,β =

{
1 if α = β
0 otherwise

These elements form a basis of V and are called the fundamental weights of Φ. Dually, we
can define the fundamental coweights ϖ∨

α ∈ V ∗ of Φ by the property

∀β ∈ Π, (ϖ∨
α , β) = δα,β.

We also consider respectively

Q := ZΦ =
⊕
α∈Π

Zα ⊂ V and Q∨ := ZΦ∨ =
⊕
α∈Π

Zα∨ ⊂ V ∗

the root lattice and the coroot lattice of Φ. Further, we have the respective weight lattice
and coweight lattice:

P := (Q∨)∧ = {x ∈ V ; ∀α ∈ Φ,
〈
α∨, x

〉
∈ Z} =

⊕
α∈Π

Zϖα ⊂ V and P∨ :=
⊕
α∈Π

Zϖ∨
α ⊂ V ∗.

Thus, the abelian group X is a W -lattice between Q and P :

Q ⊆ X ⊆ P.

If we enumerate the simple roots Π = {α1, . . . , αn} (with n = rk (X) = dim(V )) and if
C := (⟨α∨

i , αj⟩)1≤i,j≤n is the Cartan matrix of Φ, then we have

det(C) = [P : Q] = [P∨ : Q∨].

Remark 1.1.2. Note that to give a root datum (X,Φ, Y,Φ∨) is the same as to give a
Euclidean root system Φ together with a W -lattice X such that Q ⊆ X ⊆ P . Indeed, given
a root datum (X,Φ, Y,Φ∨), the following bilinear form

(x, y) :=
∑
α∈Φ

〈
α∨, x

〉 〈
α∨, y

〉
certainly defines a W -invariant inner product on the ambient space V , makes Φ into a
Euclidean root system and X is clearly a lattice in V . On the other hand, given a Euclidean
root system and a W -lattice Q ⊆ Λ ⊆ P , the inner product yields a perfect pairing Λ∧×Λ −→
Z and then (Λ,Φ,Λ∨,Φ∨) is indeed a root datum.

The crucial interest of root data relies in the following theorem of Chevalley:

Theorem 1.1.3. (Chevalley classification theorem, [MT11, §9.2])
Let G be a connected reductive algebraic group over an algebraically closed field k and T be
a maximal torus of G. Let Φ be the root system associated to the pair (G,T ) and denote
by Φ∨ := {α∨, α ∈ Φ} its dual root system. Let moreover X(T ) := Hom (T,Gm) and
Y (T ) := Hom (Gm, T ) be the character lattice and the cocharacter lattice of T , respectively.
Then, (X(T ),Φ, Y (T ),Φ∨) is a root datum.
Two semisimple linear algebraic groups are isomorphic if and only if their root data are
isomorphic. For each root datum, there is a semisimple algebraic group which realizes it.
Finally, the group is simple if and only if the associated root datum is irreducible.

This can also be adapted to the study of Lie groups. As usual, a small gothic letter
denotes the Lie algebra of the algebraic (or Lie) group denoted by the same letter, written
in capital standard font.

We let G be a semisimple connected algebraic group over C, B be a Borel subgroup of
G, K be a compact real form of G (i.e. K is a semisimple compact Lie group such that
g = k⊗RC). Then, the subgroup T := K ∩B is a maximal torus of K and the complexified
Lie algebra h := t⊗ C is a Cartan subalgebra of g.
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If Φ denotes the root system of (k, t) (which is just the real form of the root system of
(Lie g, h)) and Φ := {α∨, α ∈ Φ}, then Φ ⊂ it∗ and we may take

X(T ) := {dλ : t −→ iR, λ ∈ Hom(T, S1)} ⊂ it∗

the character lattice of T and similarly, Y (T ) = X(T )∧ := {x ∈ it ; ∀λ ∈ X(T ), λ(x) ∈
Z} ⊂ it is the cocharacter lattice of T and the pairing is of course given by

X(T )× Y (T ) ∋ (λ, x) 7−→ λ(x) ∈ Z.
Then (X(T ),Φ, Y (T ),Φ∨) is a root datum. Note that we have isomorphismsW ≃ NK(T )/T ≃
NG(T

C)/TC and the Killing form (·, ·) on g restricts to the Killing form on k and gives a
W -invariant inner product on V = it∗.

Notice finally that W acts naturally on T by conjugation by a representative in the nor-
malizer NK(T ). This is well-defined since T is abelian. On the other hand, W acts on V ,
V ∗ and on the lattices X(T ) and Y (T ).

We have the following important result:

Lemma 1.1.4. ([KJ05, Lemma 1])
If x 7−→ ex denotes the usual (Lie theoretic) exponential map t −→ T , then the normalized
exponential map

exp : it −→ T
x 7→ e2iπx

is surjective and descends to an isomorphism of Lie groups

V ∗/Y (T )
∼−→ T.

Furthermore, this isomorphism is W -equivariant.

We have the following important isomorphisms

(1) P/X(T ) ≃ π1(K) and X(T )/Q ≃ Z(K).

In particular, one has |π1(K)| × |Z(K)| = [P : Q] = det(C).

Theorem 1.1.5. ([KJ05, Theorem 7])
The group K is determined (up to isomorphism) by its Lie algebra k, the maximal toral
subalgebra t of k and by the lattice X(T ) ⊂ it∗, which can be any lattice L such that Q ⊆
L ⊆ P .
The group corresponding to L = P is the simply-connected group and the one associated to
L = Q is the adjoint group.

The previous two results show that the initial problem of finding a W -equivariant cellular
structure on the torus T may be reformulated as follows: given a root datum (X,Φ, Y,Φ∨),
with Weyl group W and ambient space V := ZΦ⊗Z R, find a W -equivariant cellular struc-
ture on the torus V ∗/Y .
In this context and, in view of the isomorphisms (1), the group P/X is called the funda-
mental group of the root datum. Notice that this yields a combinatorial way of defining the
fundamental group of any connected reductive algebraic group.
Therefore, we shall fix the following notations:

Notation. Throughout the paper we fix, once and for all, an irreducible root datum (X,Φ, Y,Φ∨),
with ambient space V = ZΦ⊗ R, simple roots Π ⊂ Φ+, Weyl group W = ⟨sα, α ∈ Π⟩, fun-
damental (co)weights (ϖα)α∈Π and (ϖ∨

α)α∈Π, (co)root lattices Q and Q∨ and (co)weight
lattices P and P∨, just as in the beginning of this section. Moreover, we consider the natu-
ral projection (which is W -equivariant):

pr : V ∗ ↠ V ∗/Y
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1.2. Reduction to fundamental domains of (extended) affine Weyl groups.
For a vector v is some vector space, we denote by tv the affine endomorphism of the

vector space defined by the translation by the vector v. Since X is a W -lattice that stands
between Q and P , we may consider the intermediate affine Weyl group

WX := t(X)⋊W.

It is a subgroup of the group Aff(V ) of affine transformations of the space V . In the same
way, we may consider the group WY := t(Y ) ⋊ W of Aff(V ∗) and we have a canonical
isomorphism WX ≃WY , induced by the pairing ⟨·, ·⟩.

In the sequel, by a fundamental domain for the action of a (discrete) group G on a
topological space Z, we mean a closed connected subspace F ⊆ X such that:

∗ For 1 ̸= g ∈ G the subset F ∩ gF has empty interior.
∗ The translates of F cover the whole space: Z =

⋃
g∈G gF .

Lemma 1.2.1. If F is a fundamental domain for the action of WY on V ∗, then the subset
F := pr (F ) of V ∗/Y is a fundamental domain for the induced action of the Weyl group W .
Moreover, if F ∩ (Y \ {0}) + F ) = ∅, then the restricted map

pr : F −→ F
is a homeomorphism.

Proof. The fact that the W -translates of F do cover is obvious. Now let 1 ̸= w ∈ W and
let us prove that F ∩wF has no interior. Since the map pr is onto, it suffices to show that
pr−1(F ∩ wF) has empty interior in V ∗. We compute

pr−1(F ∩ wF) = pr−1(F) ∩ pr−1(wF) = (F + Y ) ∩ (wF + Y )

=

(⋃
x∈Y

tx(F )

)
∩

⋃
y∈Y

ty(wF )

 =
⋃

x,y∈Y
tx(F ∩ ty−x(wF )).

But since W is finite, we have W ∩ t(Y ) = 1 and because w ̸= 1, we have w /∈ t(Y ). As
F is a fundamental domain for WY , given each y ∈ Y , the closed set F ∩ tywF has empty
interior in V ∗ and well as ty(F ∩ ty−x(wF )). Since Y is countable, the conclusion follows
from Baire’s theorem. The second statement is a straightforward verification. □

Remark 1.2.2. Of course, the previous result is auto-dual, i.e. it still holds if we replace
V by V ∗ and Y by X.

1.3. The affine Weyl group.
Standard references for what follows are [Bou02], [Hum92].
The affine Weyl group is an infinite extension of the Weyl group W that contains more

information about the root system Φ than W but still has some of the good properties of
W ; namely it is still a Coxeter group. One can use the affine Weyl group to determine the
subsystems of Φ and to compute the order of W . What follows is quite classical and may
be found for example in [Kan01], [Hum92] and [Bou02].

First, recall that the root system Φ admits a highest root. That is, there exists a unique
root α0 ∈ Φ such that α ≤ α0 for every α ∈ Φ. For this, see [Hum72, §10.4, Lemma A] or
[Kan01, §11.2]. Notice that some authors use the notation α̃ for the highest root, but the
we rather choose α0 for notational purposes.

Given α ∈ Φ and k ∈ Z, define the following hyperplane of V ∗:

Hα,k := {λ ∈ V ∗ ; ⟨λ, α⟩ = k}.
We also consider the orthogonal reflection sα,k with respect to this hyperplane:

sα,k := sα + ktα∨ : λ 7→ λ− (⟨λ, α⟩ − k)α∨,

with tα∨(λ) := λ+ α∨.
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Definition 1.3.1. ([Kan01, §11.1])
Define the affine root system by Φa := Φ × Z, the positive affine roots by Φ+

a := {(α, n) ∈
Φa ; n > 0 or n = 0, α ∈ Φ+} and the negative affine roots by Φ−

a := Φa \ Φ+
a .

If Π = {α1, . . . , αn} and if α0 ∈ Φ is the highest root of Φ, then we consider the (affine)
reflections

∀1 ≤ i ≤ n, si := sαi,0 and s0 := sα0,1.

Then, the affine Weyl group is the subgroup of affine transformations Aff(V ∗) generated by
these reflections:

Wa := ⟨s0, s1 . . . , sn⟩ .

Theorem 1.3.2. ([Kan01, §11.3])
We have the following isomorphism

Wa ≃ Q∨ ⋊W.

Furthermore, if mi,j denotes the order of sisj in Wa (for 0 ≤ i, j ≤ n), then we have a
presentation

Wa = ⟨s0, s1, . . . , sn | (sisj)mi,j = 1, ∀i, j⟩ .
In particular, Wa is a Coxeter group.

Similarly to the finite case, one defines the length of an element of Wa as follows:

∀w ∈Wa, ℓ(w) :=
∣∣Φ−

a ∩ wΦ+
a

∣∣ .
In this context, we have the important notion of an alcove.

Definition 1.3.3. ([Kan01, §11.5])
An alcove is a connected component of the complementary of the reflecting hyperplanes, i.e.
a connected component of the set

V ∗ \
⋃

α∈Φ+

k∈Z

Hα,k

Among these, we consider the fundamental alcove:

A0 : = {λ ∈ V ∗ ; ∀α ∈ Φ+, 0 < ⟨λ, α⟩ < 1}
= {λ ∈ V ∗ ; ∀α ∈ Π, ⟨λ, α⟩ > 0 and ⟨λ, α0⟩ < 1}

A subset of the boundary of A0 of the form ∂A0 ∩Hα,0 or ∂A0 ∩Hα,1, for some α ∈ Φ+, is
called a wall of A0.

Remark 1.3.4. If we decompose the highest root α0 ∈ Φ+ in the basis Π as

α0 =
∑
α∈Π

nαα,

then, it is shown in [Bou02, V, §2.2, Corollaire] that the closure A0 is the convex polytope
given by

A0 = conv

(
{0} ∪

{
ϖ∨

α

nα

}
α∈Π

)
.

The importance of the fundamental alcove relies on the following result:

Theorem 1.3.5. ([Hum92, §4.5 and §4.8])
The closure A0 of the fundamental alcove is a fundamental domain for Wa on V ∗. Moreover,
the group Wa acts simply transitively on open alcoves.
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Note the analogy with the notion of a chamber. Recall that a chamber is a connected
component of V ∗ \

⋃
α∈Φ+ Hα,0. A fundamental domain for the action of W on V ∗ is given

by the closure C0 of the fundamental Weyl chamber C0 defined by

C0 = {λ ∈ V ∗ ; ∀α ∈ Π, ⟨λ, α⟩ > 0} =

{∑
α∈Π

λαϖα ; λα > 0

}
.

This can be found in [Kan01, §5.2].

2. Fundamental domain for the action of W on V ∗/Y

2.1. The simply-connected case.
The main result of this section is the following one:

Proposition 2.1.1. Assume that the irreducible root datum (X,Φ, Y,Φ∨) is simply-connected
(that is, X = P is the weight lattice). Then the set pr (A0) is a fundamental domain for
the action of W on V ∗/Y . Moreover the map restricted projection yields a homeomorphism
pr (A0) ≃ A0.
In particular, the decomposition

V ∗/Y =
∐
w∈W

w · pr (A0)

is a W -equivariant triangulation of the torus group V ∗/Y .

Only the second part of the last statement deserves a proof. First, we need a small
technical lemma:

Lemma 2.1.2. The following holds

∀λ, λ′ ∈ A0, ∃w ∈W ; w(λ− λ′) ∈ A0.

Proof. Let µ := λ− λ′. Since, λ, λ′ ∈ A0, we have −1 ≤ ⟨µ, α⟩ ≤ 1 for α ∈ Φ+ and this still
holds for any root α ∈ Φ because Φ− = −Φ+. Thus, by W -invariance of the pairing ⟨·, ·⟩,
we get

∀α ∈ Φ, ∀w ∈W, −1 ≤ ⟨w(µ), α⟩ ≤ 1

and in particular, we have also ⟨w(µ), α0⟩ ∈ [−1, 1].
Now, as the closure C0 of the fundamental Weyl chamber is a fundamental domain for

the action of W on V ∗, there is some w ∈ W such that w(µ) ∈ C0. But we have seen that
−1 ≤ ⟨w(µ), α0⟩ ≤ 1 and thus w(µ) ∈ A0. □

Remark 2.1.3. The proof above shows in particular that an element w ∈ W such that
w(λ−λ′) ∈ A0 has length ℓ(w) = |{α ∈ Φ+ ; ⟨λ, α⟩ < ⟨λ′, α⟩}|. Moreover, since the longest
element w0 ∈W is characterized by w0(Φ

+) = Φ−, we have −A0 = w0A0.

Proof of proposition 2.1.1. In view of the second part of the Lemma 1.2.1, we have to
prove that for λ, λ′ ∈ A0, we have λ = λ′ as soon as λ− λ′ ∈ Q∨. Using the Lemma 2.1.2,
we find w ∈ W such that w(λ − λ′) ∈ A0. Since W acts on Q∨, we are left to prove that
A0 ∩Q∨ = {0}.

Next, recall that the Weyl chamber C0 is a union of alcoves (see [Hum92, §4.3]) and since
W acts simply transitively on the set of chambers, for every alcove A there is a unique
w ∈ W such that wA ⊂ C0. Hence, if 0 ∈ A, then 0 ∈ wA and therefore wA = A0 (see
[Bou02, VI, §2.2, Proposition 4]). We have shown that for any alcove A such that 0 ∈ A,
there exists w ∈W such that A = w(A0).

Finally, let q ∈ A0 ∩ Q∨. Then t−q(A0) is an alcove containing 0 is its closure. The
above discussion ensures the existence of w ∈W such that t−qA0 = wA0 and since Wa acts
simply transitively on the set of alcoves (cf [Kan01, §11.5, Proposition B]), this implies that
tqw = 1 and since t(Q∨) ∩W = 1, we get tq = 1 so q = 0. □

We arrive to the main result of this section, which summarizes the discussion above:
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Theorem 2.1.4. Let K be a simply-connected simple compact Lie group, T ≤ K a maximal
torus, W := NK(T )/T its Weyl group, A0 ⊂ it the (dual) fundamental alcove and exp : it→
T , x 7→ e2iπx the normalized exponential map. Then A0 is an r-simplex (with r = dim(T ))
and its image exp(A0) ⊂ T is a fundamental domain for W , homeomorphic to A0.

In particular, the decomposition

T =
∐
w∈W

w · exp(A0)

is a W -equivariant triangulation of the torus T .

2.2. The adjoint case.
We are looking for a fundamental domain for the action of the extended affine Weyl group

Ŵa := t(P∨)⋊W on V ∗ in the case where Y = P∨ is the coweight lattice. Things get trickier

in this case, mostly because Ŵa is no longer a reflection group (except in type Bn as we
shall see).

After the study of this question, the author realized that the main result of this section
(Corollary 2.2.9 below) was known since 1984 and is due to Komrakov and Premet [KP84].
However, this paper turns out to be rather hard to find on the Internet and is written in
Russian. For the sake of self-containment and as our work is independent of the one of
Komrakov-Premet, we give a full proof of this. Our method is quite close to the one used
in [KP84]. Moreover, we describe the fundamental domain as a convex hull, which is a new
result, as far as the author knows.

The group Ŵa acts on alcoves (transitively sinceWa⊴Ŵa does) but not simply-transitively.
We introduce the stabilizer

Ω := {ϕ ∈ Ŵa ; ϕ · A0 = A0}

and we see that we have a decomposition Ŵa ≃Wa ⋊ Ω. In particular, one has

Ω ≃ Ŵa/Wa ≃ P∨/Q∨ ≃ P/Q.

Thus, Ω is a finite abelian group. The following table details the fundamental groups of the
irreducible root systems:

Type Ω ≃ P/Q

An (n ≥ 1) Z/(n+ 1)Z
Bn (n ≥ 2) Z/2Z
Cn (n ≥ 3) Z/2Z
D2n (n ≥ 2) Z/2Z⊕ Z/2Z
D2n+1 (n ≥ 2) Z/4Z

E6 Z/3Z
E7 Z/2Z
E8 1
F4 1
G2 1

Table 1. Fundamental groups of irreducible root systems

The description of Ω given in [Bou02, VI, §2.3] will be useful. First, to simplify the notations,
we denote by r := rk(Φ) = dim(V ) the rank of Φ and we index the simple roots by I :=
{1, . . . , r}, that is

Π = {α1, . . . , αr}.
Given the highest root α0 =

∑r
i=1 niαi of Φ, recall that a weight ϖi is called minuscule if

ni = 1 and that minuscule weights form a set of representatives of the classes in P/Q (see
[Bou02, Chapter VI, Exercise 24]). Dually, we have the same notion and result for minuscule
coweights. Let

J := {i ∈ I ; ni = 1}.
7
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Proposition-Definition 2.2.1. ([Bou02, VI, §2.3, Proposition 6])
Let α0 =

∑
i∈I niαi be the highest root of Φ and w0 ∈W be the longest element. For i ∈ I,

denote by Wi ≤ W the Weyl group of the subsystem of Φ generated by {αj ; j ̸= i} ⊂ Π.
For i ∈ J , let wi

0 ∈Wi be the longest element of Wi and wi := wi
0w0.

Then the element tϖ∨
i
wi ∈ Ŵa is in Ω and the map

J → Ω \ {1}
i 7→ ωi := tϖ∨

i
wi

is a bijection.

Remark 2.2.2. Note that, with the preceding notations, wi
0 and w0 have order 2 and w−1

i =

w0w
i
0 sends ϖ∨

i to −A0. Indeed, denoting by Φi := Φ ∩ Z ⟨Π \ {αi}⟩ the subsystem of Φ
generated by the simple roots other than αi, for j ̸= i we have wi

0 ∈W (Φi) and〈
wi
0ϖ

∨
i , αj

〉
=
〈
ϖ∨

i , w
i
0αj

〉
= 0,

because wi
0αj ∈ Φi. Since wi

0ϖ
∨
i ∈ P∨ and W stabilizes the set

{λ ∈ V ∗ ; ∀α ∈ Φ, −1 ≤ ⟨λ, α⟩ ≤ 1},
we have that

〈
wi
0ϖ

∨
i , αi

〉
is an integer between −1 and 1. Of course, it is not 0 and if it is

−1, then we have wi
0αi = −αi, so wi

0(Π) ⊂ Φ− and thus wi
0 = w0, a contradiction. Hence,

we have wi
0ϖ

∨
i = ϖ∨

i and thus w−1
i ϖ∨

i = w0w
i
0ϖ

∨
i = w0ϖ

∨
i ∈ −A0 since w0αi ∈ Φ−.

We shall prove the following result:

Proposition 2.2.3. The subset of A0 defined by

FP∨ := {λ ∈ A0 ; ∀i ∈ J, ⟨λ, αi + α0⟩ ≤ 1}
is a fundamental domain for the action of Ω on A0.

This will be done step-by-step. Once and for all, we fix the notation

α0 =

r∑
i=1

niαi

for the highest root of Φ. First, we have to obtain more information about how Ω acts on
A0 and how its Weyl part acts on roots. The fact that Ω is formed of affine isomorphisms
will considerably constrain these actions.

Lemma 2.2.4. The subgroup Ω ≤ Ŵa acts on the set {0} ∪
{

ϖ∨
i

ni

}
i∈I

and on the subset

{0} ∪ {ϖ∨
j }j∈J .

Proof. Let ω ∈ Ω. Since ωA0 = A0 and Ŵa ≤ Aff(V ∗), we also have ωA0 = A0. But A0

is a convex polytope with vertices {0} ∪ {ϖ∨
i /ni}i∈I (see [Bou02, VI, §2.2]) and since ω is

affine, it sends any vertex of A0 to another one. Hence, Ω indeed acts on the first set.
Now, we have to see why a minuscule coweight ϖ∨

j is sent by ω ∈ Ω to 0 or a minuscule

coweight. We just have seen that, if it is non-zero, then there is some i such that ω(ϖ∨
j ) =

ϖ∨
i /ni. Using the description given in the Proposition 2.2.1 for Ω, we can write ω = ωk =

tϖ∨
k
wk for some k ∈ J . Note that if i ∈ {j, k}, then ni = 1 and thus ω(ϖ∨

j ) is indeed a

minuscule coweight, so we may assume that i ̸= j, k. Let i′ ∈ I and consider the simple
reflection si′ : λ 7→ λ− ⟨λ, αi′⟩α∨

i′ . We immediately see that si′(ϖ
∨
j ) = ϖ∨

j − δi′,jα
∨
j and by

induction, we conclude that there are integers λk
i′ ∈ Z such that

wk(ϖ
∨
j ) = ϖ∨

j −
r∑

i′=1

λk
i′α

∨
i′ .

8
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Hence, we compute

ϖ∨
i

ni
= ωk(ϖ

∨
j )

def
= wk(ϖ

∨
j ) +ϖ∨

k = ϖ∨
j +ϖ∨

k −
r∑

i′=1

λk
i′α

∨
i′ .

Taking the pairing of this equation against αi yields

1

ni
= −

∑
i′

λk
i′
〈
α∨
i′ , αi

〉
= −

∑
i′

λk
i′Ci′,i,

where C = (Ci′,i) ∈Mr(Z) is the Cartan matrix. Thus, the sum above is an integer, which
implies that ni = 1. □

Now, we outline the way an element wi ∈W acts on roots.

Lemma 2.2.5. Let i ∈ J and consider the corresponding element ωi = tϖ∨
i
wi ∈ Ω. Then

the element w−1
i ∈W takes Π \ {αi} into Π and αi to the lowest root −α0, that is{

w−1
i (Π \ {αi}) ⊂ Π
w−1
i (αi) = −α0

Moreover, if j ̸= i, then nw−1
i αj

= nj; in other words, the numbers of occurrences of αj and

of w−1
i (αj) in α0 are the same. In fact, we have

αj = wi(αk) ⇔
ϖ∨

j

nj
= ωi

(
ϖ∨

k

nk

)
.

Finally, if j ∈ I is such that ωi(ϖ
∨
j ) = 0, then w−1

i (α0) = −αj.

Proof. First, we prove that w−1
i (Π \ {αi}) ⊂ Π. Consider αj ∈ Π with j ̸= i. If we have

ϖ∨
i = ωi(0) =

ϖ∨
j

nj
, then nj = 1 and i = j, which is excluded. Thus, by the Lemma 2.2.4,

there is some k ∈ I such that ωi

(
ϖ∨

k
nk

)
=

ϖ∨
j

nj
. We compute

(∗)
〈
ϖ∨

k , w
−1
i αj

〉
= nk

〈
wi

(
ϖ∨

k

nk

)
, αj

〉
= nk

〈
ϖ∨

j

nj
−ϖ∨

i , αj

〉
=

nk

nj
.

Now, let ℓ ̸= k. If ωi

(
ϖ∨

ℓ
nℓ

)
= 0, then we have〈
ϖ∨

ℓ , w
−1
i αj

〉
= −nℓ

〈
ϖ∨

i , αj

〉
= 0,

otherwise, there is some ℓ′ ̸= j such that ωi

(
ϖ∨

ℓ
nℓ

)
=

ϖ∨
ℓ′

nℓ′
and we compute similarly〈

ϖ∨
ℓ , w

−1
i αj

〉
= nℓ

〈
wi

(
ϖ∨

ℓ

nℓ

)
, αj

〉
= 0.

In any case, we have

(∗∗) ∀ℓ ̸= k,
〈
ϖ∨

ℓ , w
−1
i αj

〉
= 0

Hence, equations (∗) ans (∗∗) imply that Φ ∋ w−1
i αj =

nk
nj
αk, thus nj = nk and w−1

i αj =

αk ∈ Π. This proves the first and third statements at once.
We have to see why wiα0 = −αi. First, since ni = 1, the vector ϖ∨

i is a vertex of A0,

hence the vector w−1
i ϖ∨

i is a vertex of −A0, that is, w
−1
i ϖ∨

i belongs to the set {0}∪{ϖ∨
j /nj}.

Since w−1
i ϖ∨

i ̸= 0, there is some j such that w−1
i ϖ∨

i = ϖ∨
j /nj , so we have

(†)
〈
ϖ∨

i , wiα0

〉
=
〈
w−1
i ϖ∨

i , α0

〉
= −1.

9
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Now, let j ̸= i. Here again, we have ωi(0) = ϖ∨
i ̸=

ϖ∨
j

nj
, so there exists k such that

ωi

(
ϖ∨

k
nk

)
=

ϖ∨
j

nj
. We compute, using the equation (†),

(‡)
〈
ϖ∨

j

nj
, wiα0

〉
=

〈
wi

(
ϖ∨

k

nk

)
+ϖ∨

i , wiα0

〉
=

〈
ϖ∨

k

nk
, α0

〉
− 1 = 0.

Now, we have wiα0 ∈ Φ and the equation (‡) ensures that for j ̸= i, we have
〈
ϖ∨

j , wiα0

〉
=

0, so there is µ ∈ {±1} such that wiα0 = µαi. But if µ = 1, then w−1
i αi = α0 ∈ Φ+ and

using the first statement, we obtain w−1
i (Π) ⊂ Φ+, thus wi = 1, a contradiction.

To prove the last statement, we compute〈
ϖ∨

j , w
−1
i α0

〉
=
〈
wiϖ

∨
j , α0

〉
= −

〈
ϖ∨

i , α0

〉
= −1.

If k ̸= j, then there exists ℓ such that ωi

(
ϖ∨

k
nk

)
=

ϖ∨
ℓ

nℓ
and we have〈

ϖ∨
k

nk
, w−1

i α0

〉
=

〈
ϖ∨

ℓ

nℓ
−ϖ∨

i , α0

〉
= 0.

These two equations together show that w−1
i α0 = −αj , as required. □

Lemma 2.2.6. For ωi = tϖ∨
i
wi ∈ Ω and a simple root αk ∈ Π, the root wiαk is simple

except in the case where ωi(ϖ
∨
k ) = 0, in which case it is the lowest root.

Proof. We compute

ω−1
i = w−1

i t−ϖ∨
i
= w−1

i t−ϖ∨
i
wiw

−1
i = t−w−1

i (ϖ∨
i )
w−1
i = tω−1

i (0)w
−1
i .

Since Ω acts on {0} ∪ {ϖ∨
ℓ /nℓ}, there exists k0 ∈ J such that ϖ∨

k0
= ω−1

i (0) and the
conclusion follows from the first two statements of the Lemma 2.2.5. □

Recall that the extended Dynkin diagram of the root system Φ is its Dynkin diagram to
which we add a new vertex corresponding to −α0, which is linked to the other vertices in
the same way as for the classical Dynkin diagram.

The Lemmae 2.2.5 and 2.2.6 show that the Weyl part of any element of Ω permutes the
vertices of the extended diagram and since the pairing is W -invariant, it also preserves the
edges of the diagram. Hence we obtain the following result:

Corollary 2.2.7. The group Ω acts on the extended Dynkin diagram D̂, giving rise to a

normal inclusion Ω ⊴ Aut(D̂). Moreover, the factor group Aut(D̂)/Ω is isomorphic to the

automorphism group Aut(D) ≤ Aut(D̂) of the finite Dynkin diagram D of Φ (see Table 2.2).
In other words, there is a semi-direct product decomposition

Aut(D̂) ≃ Ω⋊Aut(D).

Proof of Proposition 2.2.3. By definition of a fundamental domain, we have to prove that
the set

F := {λ ∈ A0 ; ∀i ∈ J, ⟨λ, α0 + αi⟩ ≤ 1}
satisfies the following conditions:

a) the set F is closed in A0 and connected,
b) for 1 ̸= ω ∈ Ω, the set F ∩ ωF has empty interior in A0,
c) the union of the Ω-translates of F cover A0, that is A0 =

⋃
ω∈Ω ωF.

To prove a), we just have to notice that the closure of F in V ∗ is an intersection of closed
half-spaces, so it is a convex polytope. Thus, the set F , being the intersection of this closure
and A0, is closed and convex.

Let ω ∈ Ω \ {1}. For λ ∈ F , writing ω = ωi = tϖ∨
i
wi, we calculate

⟨ωi(λ), α0 + αi⟩ =
〈
wiλ+ϖ∨

i , α0 + αi

〉
= 2 +

〈
λ,w−1

i α0 + w−1
i αi

〉
,

10
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but, by the Lemma 2.2.5, we have w−1
i αi = −α0 and there is some k ∈ J such that

w−1
i α0 = −αk ∈ Π. Since λ ∈ F , we have

⟨ωi(λ), α0 + αi⟩ = 2 +
〈
λ,w−1

i α0 + w−1
i αi

〉
= 2− ⟨λ, α0 + αk⟩︸ ︷︷ ︸

≤1

≥ 1.

This proves that, if λ ∈ F , then ⟨ωi(λ), α0 + αi⟩ ≥ 1. Thus, if λ ∈ F and ωi(λ) ∈ F , then
⟨ωi(λ), α0 + αi⟩ = 1. Therefore, we have

F ∩ ω−1
i F ⊆ A0 ∩ {λ ∈ V ∗ ; ⟨ωi(λ), α0 + αi⟩ = 1},

and the later subset has empty interior in A0, concluding the proof of b).
Finally, to prove c), let λ ∈ A0. We have to find some ω ∈ Ω such that λ ∈ ωF . Choose

i ∈ J such that
⟨λ, αi⟩ = max

j∈J
⟨λ, αj⟩ .

If ⟨λ, α0 + αi⟩ ≤ 1, then λ ∈ F and ω = 1 is the desired element. Otherwise, pick j such
that ωi(ϖ

∨
j ) ̸= 0. We have〈

ω−1
i (λ), α0 + αj

〉
=
〈
w−1
i (λ−ϖ∨

i ), α0 + αj

〉
=
〈
λ−ϖ∨

i , wiα0 + wiαj

〉
=
〈
λ−ϖ∨

i , αk − αi

〉
,

where wiαj = αk ∈ Π for some k; which is ensured to exist by the Lemma 2.2.6. If i = k,
then this is zero. Otherwise, we get〈

ω−1
i (λ), α0 + αj

〉
=
〈
λ−ϖ∨

i , αk − αi

〉
= 1 + ⟨λ, αk − αi⟩︸ ︷︷ ︸

≤0

≤ 1.

Hence, for every j such that ωi(ϖ
∨
j ) ̸= 0, we have

〈
ω−1
i (λ), α0 + αj

〉
≤ 1. Now, let j such

that ωi(ϖ
∨
j ) = 0. Then, by the Lemma 2.2.6, we have wiαj = −α0 and thus〈

ω−1
i (λ), α0 + αj

〉
=
〈
λ−ϖ∨

i , wiα0 + wiαj

〉
=
〈
ϖ∨

i − λ, α0 + αi

〉
= 2− ⟨λ, α0 + αi⟩︸ ︷︷ ︸

>1

< 1.

Therefore, for every j ∈ J we have
〈
ω−1
i (λ), α0 + αj

〉
≤ 1 and thus ω−1

i (λ) ∈ F . □

Remark 2.2.8. The proof of c) above gives a concrete way to find, given λ ∈ A0 \ FP∨,
an element ωi ∈ Ω such that λ ∈ ωiFP∨. Namely, it is the element corresponding to the
minuscule coweight ϖ∨

i with index i such that ⟨λ, αi⟩ = maxj∈J ⟨λ, αj⟩.
Corollary 2.2.9. The convex polytope of V ∗ defined by

FP∨ : = {λ ∈ A0 ; ⟨λ, α0 + α⟩ ≤ 1, ∀α ∈ Π ; nα = 1}
= {λ ∈ V ∗ ; ⟨λ, α0⟩ ≤ 1, ∀α ∈ Π, ⟨λ, α⟩ ≥ 0 and nα = 1 ⇒ ⟨λ, α0 + α⟩ ≤ 1}

is a fundamental domain for the extended affine Weyl group Ŵa.

Proof. This is obvious using the Proposition 2.2.3, the fact that A0 is a fundamental domain

for Wa and since Ŵa = Wa ⋊ Ω. □

We can now investigate the injectivity condition. We have the following result:

Lemma 2.2.10. The hypothesis of the Lemma 1.2.1 is fulfilled in the adjoint case. In other
words, one has

FP∨ ∩ (P∨ \ {0}+ FP∨) = ∅.
Proof. Let λ, λ′ ∈ FP∨ ⊂ A0 such that µ := λ − λ′ ∈ P∨. We have to show that µ = 0.
First observe that −1 ≤ ⟨µ, α⟩ ≤ 1 for any root α ∈ Φ.

Suppose that µ /∈ A0. Since ⟨µ, α0⟩ ≤ 1, there must be some i such that −1 ≤ ⟨µ, αi⟩ < 0.
But ⟨µ, αi⟩ ∈ Z since we have assumed that µ ∈ P∨, so we get ⟨µ, αi⟩ = −1. Thus, we
compute 1 ≥ ⟨λ′, αi⟩ = ⟨λ, αi⟩+ 1 ≥ 1 and hence, ⟨λ′, αi⟩ = 1. Furthermore, we have

1 ≥
〈
λ′, α0

〉
=
∑
j

nj

〈
λ′, αj

〉
= ni +

∑
j ̸=i

nj

〈
λ′, αj

〉︸ ︷︷ ︸
≥0

≥ ni ≥ 1 ⇒
〈
λ′, α0

〉
= ni = 1

11
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and thus, ⟨λ′, α0 + αi⟩ = 2, a contradiction since λ′ ∈ FP∨ .
We have shown that µ ∈ A0 ∩ P∨. By [Bou02, VI, §2.2, Prop. 5], if µ ̸= 0, then

there is some k ∈ J such that µ = ϖ∨
k . Since λ ∈ FP∨ , we have 1 ≥ ⟨λ, α0 + αk⟩ =〈

λ′, α0 + αk

〉︸ ︷︷ ︸
≥0

+2 ≥ 2, which is absurd. □

Type Extended Dynkin diagram

Ã1 α1 α̃

∞

Ãn (n ≥ 2)

α1 α2
· · ·

αn−1 αn

α̃

B̃2 = C̃2 α̃ α1 α2

B̃n (n ≥ 3)

α1

α̃

α2 α3
· · ·

αn−1 αn

C̃n (n ≥ 3) α̃ α1 α2
· · ·

αn−1 αn

D̃n (n ≥ 4)

α1

α̃

α2 α3
· · · αn−2

αn

αn−1

Ẽ6

α1 α3 α4 α5 α6

α2

α̃

Ẽ7

α1 α3 α4 α5 α6

α2

α7α̃

Ẽ8

α1 α3 α4 α5 α6

α2

α7α̃ α8

F̃4 α̃ α1 α2 α3 α4

G̃2 α1 α2 α̃

Table 2. Extended Dynkin diagrams of irreducible root systems.
The white dots stand for the roots corresponding to minuscule weights and
the crossed dots represent the lowest root α̃ := −α0.

12
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Corollary 2.2.11. If K is an adjoint group, then exp(FP∨) is homeomorphic to the polytope
FP∨ and is a fundamental domain for the action of W on T . In particular, the decomposition

T =
∐
w∈W

w · exp(FP∨)

is cellular, regular and W -equivariant.

The Lemmae 2.2.5 and 2.2.6 may be used to give a useful characterization of the element
wi = wi

0w0 from the Proposition 2.2.1.

Proposition 2.2.12. For any i ∈ J , the element wi is the unique element w ∈ W of
minimal length such that

ϖ∨
i ∈ ww0(C0),

where w0 is the longest element of W .

Proof. Let w ∈ W such that w−1(ϖ∨
i ) ∈ w0(C0) = −C0 with ℓ(w) minimal with respect to

this property. First, we prove that tϖ∨
i
w ∈ Ω, that is, w(A0) +ϖ∨

i = A0.

Since A0 = conv({0} ∪ {ϖ∨
j /nj}j∈I), it is sufficient to prove that for any j ∈ I, we have

w
(
ϖ∨

j

nj

)
+ϖ∨

i ∈ A0. Recall that W acts on the set {λ ∈ V ∗ ; ∀α ∈ Φ, −1 ≤ ⟨λ, α⟩ ≤ 1}.
This, together with the fact that −w−1(ϖ∨

i ) ∈ C0, implies that −w−1(ϖ∨
i ) ∈ A0. Thus, we

have −w−1(ϖ∨
i ) ∈ A0 ∩ P∨ and so there is some k ∈ J such that w−1(ϖ∨

i ) = −ϖ∨
k (see

[Bou02, VI, §2.2, Proposition 5]).
Claim 1 : For j ̸= i, we have w(ϖ∨

j ) ̸= ϖ∨
j .

Suppose the contrary, then

w−1

(
ϖ∨

j

nj
+ϖ∨

i

)
=

ϖ∨
j

nj
−ϖ∨

k

and by the Lemma 2.1.2, there exists some v ∈ W such that vw−1
(
ϖ∨

j

nj
+ϖ∨

i

)
∈ A0 and

thus

1 ≥

〈
vw−1

(
ϖ∨

j

nj
+ϖ∨

i

)
, vw−1(α0)︸ ︷︷ ︸

∈Φ

〉
=

〈
ϖ∨

j

nj
+ϖ∨

i , α0

〉
= 2,

a contradiction.
Claim 2 : For j ̸= i, we have

〈
ϖ∨

j , w(αk)
〉
̸= 0.

Indeed, for each k′ ̸= k, we have (wsk′)
−1(ϖ∨

i ) = −sk′(ϖ∨
k ) = −ϖ∨

k ∈ −C0 and because
ℓ(w) is minimal, this implies that ℓ(wsk′) = ℓ(w) + 1 and thus w(αk′) ∈ Φ+. This yields〈
w−1(ϖ∨

j ), αk′

〉
=
〈
ϖ∨

j , w(αk′)
〉
≥ 0 for each k′ ̸= k. If

〈
ϖ∨

j , w(αk)
〉
= 0, then w−1(ϖ∨

j ) ∈

C0 and so w−1
(
ϖ∨

j

nj

)
∈ A0 ∩P∨ and we may choose k′ ̸= k in J such that w−1

(
ϖ∨

j

nj

)
= ϖ∨

k′ .

Taking the pairing of this equation against w−1(αj) yields 1/nj ∈ Z, i.e. nj = 1 and
w−1(ϖ∨

j ) = ϖ∨
k′ . Now, the action of W on P∨/Q∨ being trivial, we have that ϖ∨

j ≡ ϖ∨
k′

(mod Q∨) and because nj = nk′ = 1, this implies k′ = j and thus w−1(ϖ∨
j ) = ϖ∨

j . The

Claim 1 forbids this, so our assumption that
〈
ϖ∨

j , w(αk)
〉
= 0 was wrong.

Claim 3 : We have w(αk) = −α0.
Indeed, we have seen that w(αk′) ∈ Φ+ for k′ ̸= k and because w ̸= 1, this yields w(αk) ∈ Φ−.
Now, for j ̸= i, we have

0 ≥
〈
ϖ∨

j , w(αk)
〉
= nj

〈
w−1

(
ϖ∨

j

nj

)
, αk

〉
and

〈
w−1(ϖ∨

j ), αk

〉
̸= 0 by the Claim 2, so −1 ≤

〈
w−1

(
ϖ∨

j

nj

)
, αk

〉
< 0 and it is an integer,

so it equals −1 and thus
∀j ̸= i,

〈
ϖ∨

j , w(αk)
〉
= −nj

13
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and we already have ⟨ϖi, w(αk)⟩ =
〈
w−1(ϖ∨

i ), αk

〉
= −1 = −ni. This gives that w(αk) =

−α0, as claimed.
Let j ∈ I. For j′ ̸= i, we compute〈

w

(
ϖ∨

j

nj

)
+ϖ∨

i , αj′

〉
=

〈
w

(
ϖ∨

j

nj

)
, αj′

〉
and this is non-negative because w−1(αj′) ∈ Φ+. This holds because we must have ℓ(w−1sj′) =

ℓ(sj′w) = ℓ(w) + 1 since (sj′w)
−1(ϖ∨

i ) = w−1(ϖ∨
i ) ∈ −C0 and ℓ(w) is minimal with respect

to this property. On the other hand, we have〈
w

(
ϖ∨

j

nj

)
+ϖ∨

i , αi

〉
= 1 +

〈
w

(
ϖ∨

j

nj

)
, αi

〉
︸ ︷︷ ︸

≥−1

≥ 0.

This proves that

w

(
ϖ∨

j

nj

)
+ϖ∨

i ∈ C0.

Moreover, using the Claim 3 we get〈
w

(
ϖ∨

j

nj

)
+ϖ∨

i , α0

〉
= 1 +

〈
ϖ∨

j

nj
, w−1(α0)

〉
= 1−

〈
ϖ∨

j

nj
, αk

〉
≤ 1

and thus w
(
ϖ∨

j

nj

)
+ϖ∨

i ∈ A0, and tϖ∨
i
w ∈ Ω as required.

Now, since tϖ∨
i
w ∈ Ω, the Lemmae 2.2.5 and 2.2.6 are valid for w and let v := ww−1

i

where wi = wi
0w0 is the element from the Proposition 2.2.1. By these Lemmae, we have

v(αi) = −w(α0) = αi and, if j ̸= i, we have v(αj) ∈ Π except in the case where v(αj) = −α0,

so w−1
i (αj) = −w−1(α0) = αk with k such that −w−1(ϖ∨

i ) = ϖ∨
k = −w−1

i (ϖ∨
i ). In this case,

we have αj = wi(αk) = −α0, which is excluded. Hence we get v(Π) ⊂ Φ+ and v = 1. □

Remark 2.2.13. The above characterization may also be used to generalize the construction
of the ωi’s to P∨. More precisely, for any λ ∈ P∨, consider the element wλ with minimal

length among those w ∈ W such that λ ∈ ww0(C0) and define uλ := tλwλ ∈ Ŵa. Note that
for i ∈ J , we have ωi = uϖ∨

i
∈ Ω. The assignment λ 7→ uλ results in a well-defined map

P∨ u−→ Ŵa.

We finish this section by giving the vertices of the polytope FP∨ .

Proposition 2.2.14. Let Bm be the set of all isobarycenters of points in {0} ∪ {ϖ∨
j }j∈J

with a non-zero coefficient with respect to the origin. In other words,

Bm :=

 1

|J ′|+ 1

∑
j∈J ′

ϖ∨
j ; J ′ ⊆ J


= {0} ∪

{
ϖ∨

i1
+ · · ·+ϖ∨

ik

k + 1
; 1 ≤ k ≤ |J | and ij ∈ J, ∀j

}
.

Then the vertices of the polytope FP∨ are given by

vert(FP∨) = Bm ∪
{
ϖ∨

i

ni

}
i∈I\J

.

In particular, if |J | > 1 (i.e. if Φ is of type An>1, Dn or E6), then |vert(FP∨)| > r + 1, so
the cellular decomposition from the Corollary 2.2.11 is no longer simplicial.
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Proof. Denote V := Bm ∪ {ϖ∨
i /ni}i∈I\J . If J = ∅, then Bm = {0} and the statement is just

the last corollary from [Bou02, VI, §2.2]. So we may assume that J is non-empty. Denote

∀i ∈ I, Hi := {λ ∈ V ∗ ; ⟨λ, αi⟩ = 0} and H0 := {λ ∈ V ∗ ; ⟨λ, α0⟩ = 1}.
We also introduce the following affine hyperplanes

∀j ∈ J, H0
j := {λ ∈ V ∗ ; ⟨λ, α0 + αj⟩ = 1}.

By construction, any facet of FP∨ is of the form FP∨ ∩Hi for some 0 ≤ i ≤ r or FP∨ ∩H0
j

for some j ∈ J . Therefore, any face f of FP∨ is of the form

f = FP∨ ∩

⋂
i∈If

Hi ∩
⋂
j∈Jf

H0
j


for some subsets If ⊆ I and Jf ⊆ J such that |If |+ |Jf | = codim FP∨ (f) = r − dim(f). In
particular

∀v ∈ vert(FP∨), ∃Iv ⊆ I, ∃Jv ⊆ J ; |Iv|+ |Jv| = r and {v} = FP∨ ∩

⋂
i∈Iv

Hi ∩
⋂
j∈Jv

H0
j

 .

It is straightforward to check that any point of V is in at least r hyperplanes among
{Hi, H

0
j ; i ∈ I, j ∈ J}, so V ⊆ vert(FP∨).

Conversely, let v ∈ vert(FP∨) and take Iv and Jv as above.
Assume first that Iv ∩ Jv ̸= ∅ and let k ∈ Iv ∩ Jv. As ⟨v, α0 + αk⟩ = 1 and ⟨v, αk⟩ = 0,

we get ⟨v, α0⟩ = 1. Since v ∈ FP∨ , this implies that ⟨v, αj⟩ = 0 for any j ∈ J , so Jv = J . If
J = I, then v = 0 ∈ V. Otherwise, there is some ℓ ∈ I \ J with ⟨v, αℓ⟩ > 0, so ℓ /∈ Iv and we
have {

ϖ∨
ℓ

nℓ

}
= FP∨ ∩

 ⋂
ℓ̸=i∈I

Hi ∩
⋂
j∈J

H0
j

 ⊆ FP∨ ∩

⋂
i∈Iv

Hi ∩
⋂
j∈Jv

H0
j

 = {v},

thus v = ϖ∨
ℓ /nℓ ∈ V. So if Iv ∩ Jv is non-empty, then v ∈ V.

Now, if Iv ∩ Jv = ∅ we have 1

|Jv|+ 1

∑
j∈Jv

ϖ∨
j

 ⊆ FP∨ ∩

⋂
i∈Iv

Hi ∩
⋂
j∈Jv

H0
j

 = {v}

and thus v = 1
|Jv |+1

∑
j∈Jv ϖ

∨
j ∈ V. □

Example 2.2.15. The following figures display the fundamental domain FP∨ inside the
fundamental alcove, itself inside the fundamental chamber for the respective root data of
type A2, B2 and B3.

2.3. The general case.
We now have to see what happens if the W -lattice Y is such that Q∨ ⊊ Y ⊊ P∨. To

simplify notations of this section, we identify a lattice L ⊂ V ∗ with its translation group
t(L) ⊂ Aff(V ∗). We shall give a fundamental domain for the intermediate affine Weyl group
WY := t(Y )⋊W and prove that the quotient map is injective on it. It will be described as
a polytopal complex. In this paper, by a polytopal complex we mean a finite union of closed
convex polytopes, each one of which intersecting any other one along a common facet. For a
more general definition and treatment of polytopal complexes, we refer the reader to [Zie95,
Chapter 5, §5.1].

First, we shall identify Y with a subgroup of Ω. In fact, there is a correspondence between
W -lattices Q∨ ⊆ Λ ⊆ P∨ and the subgroups of Ω. In order to state this correspondence
properly, we temporarily drop the letter Y and we work in the root system Φ only.
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α

β
α0 = α+ β

ϖ∨
α

ϖ∨
β

Figure 1. The fundamental domain FP∨ (in green) insideA0 (in blue) inside
the Weyl chamber C0 (in gray) in type A2.

α

β
α+ β = ϖ∨

β
α0 = 2α+ β = ϖ∨

α

Figure 2. The fundamental domain FP∨ (in green) insideA0 (in blue) inside
the Weyl chamber C0 (in gray) in type B2 = C2.

Proposition 2.3.1. Recall that Ŵa ≃Wa ⋊ Ω and denote by

π : Ŵa ↠ Ω

the natural projection. Given a W -lattice Q∨ ⊂ Λ ⊂ P∨, we define a subgroup WΛ :=

Λ⋊W ≤ Ŵa. Then we have a bijective correspondence

{Λ ; Q∨ ⊆ Λ ⊆ P∨ is a W -lattice} 1−1←→ {H ≤ Ω}
Λ 7−→ ΩΛ := π(WΛ)

π−1(H) ∩ P∨ =: Λ(H) ←− [ H

Moreover, for a W -lattice Q∨ ⊂ Λ ⊂ P∨, we have

[Ω : ΩΛ] = [P∨ : Λ],

or, equivalently
|ΩΛ| = [Λ : Q∨].

Finally, we have a decomposition

WΛ ≃Wa ⋊ ΩΛ.

Proof. First, we prove that the maps Ω• and Λ(•) are well-defined. It is clear that, given
a W -lattice Λ, the set ΩΛ = π(Λ ⋊ W ) = {ϕ ∈ WΛ ; ϕ(A0) = A0} is a subgroup of Ω.

Conversely, leH ≤ Ω be a subgroup. We have that Λ(H) = π−1(H)∩P∨ is a subgroup of Ŵa

16
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α

β

γ

α+ β

α+ β + 2γ

β + 2γ

α+ β + γ = ϖ∨
α

β + γ
α0 = α+ 2β + 2γ = ϖ∨

β

ϖ∨
γ

Figure 3. The fundamental domain FP∨ (in green) inside the fundamental
alcove A0 (in blue) in type B3.

and since Λ(H) ⊂ P∨, Λ(H) is countable, hence discrete. We readily haveQ∨ ⊂ Λ(H) ⊂ P∨,
which gives rk (Λ(H)) = rk (Q) = rk (Φ). Moreover, if x ∈ Λ(H) and w ∈ W , then we have
π(x) = π(x · t0w) = π(t0w ·x) (recall that Ω is abelian) so wx ∈ π−1(H) that is, wx ∈ Λ(H)
and Λ(H) is indeed a W -lattice lying between Q∨ and P∨.

We have to prove that Λ◦Ω• = id and ΩΛ(•) = id. Take a W -lattice Λ between Q∨ and P∨

and let us show that Λ(ΩΛ) = Λ. If µ ∈ Λ, then µ ∈ P∨ and by construction, π(tµ) ∈ π(Λ⋊
W ) so µ ∈ π−1(π(WΛ)) ∩ P∨ def

= Λ(ΩΛ). On the other hand, if µ ∈ π−1(π(WΛ)) ∩ P∨, then
there are ν ∈ Λ and w ∈W such that π(tµ) = π(tνw), that is, 1 = π(tνwt−µ) = π(tν−w(µ)w).
Hence tν−w(µ)w ∈ Wa, which means that ν − w(µ) ∈ Q∨ ⊂ Λ, but since ν ∈ Λ and Λ is a
W -lattice, we have µ ∈ Λ.

Now, let H ≤ Ω be a subgroup and let us prove that ΩΛ(H) = H. Let x ∈ ΩΛ(H) =
π(WΛ(H)). There exist tµw ∈ Λ(H)⋊W such that

x = π(tµw) = π(tµ1 · t0w) = π(tµ)π(

Wa

∈

t0w)︸ ︷︷ ︸
=1

= π(tµ)

and this is in H because µ ∈ Λ(H) = π−1(H) ∩ P∨, so x ∈ H. Now, if y ∈ H, then
we have y = π(tµw) for some µ ∈ P∨ and w ∈ W because π is onto, but the same
calculation as above shows that y = π(tµw) = π(tµ), so µ ∈ P∨ ∩ π−1(H) = Λ(H) and thus
y ∈ π(WΛ(H)) = ΩΛ(H), as required.

Next, the fact that [P∨ : Λ] · [Λ : Q∨] = [P∨ : Q∨] = |Ω| ensures that the two equalities
are indeed equivalent. But since ker(π) = Wa ≤WΛ we have

ΩΛ = π(WΛ) = im (WΛ
π→ Ω) ≃WΛ/ ker(π|WΛ

) = WΛ/ ker(π) = WΛ/Wa ≃ Λ/Q∨.

Finally, using the above equality we see that the short exact sequence

1 // Wa
// WΛ

// ΩΛ
// 1

17
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is exact. It splits since the short exact sequence

1 // Wa
// Ŵa

π // Ω // 1

is split. □

We have a useful characterization of elements of ΩΛ, once Λ is known.

Lemma 2.3.2. Let Λ be a W -lattice between Q∨ and P∨ and consider ωi, ωj ∈ Ω. Then,
the following holds

a) We have ωi ∈ ΩΛ if and only if ϖ∨
i ∈ Λ.

b) The group ΩΛ acts on the set A0 ∩ Λ.
c) We have ωiΩΛ = ωjΩΛ if and only if ϖ∨

i −ϖ∨
j ∈ Λ.

Proof. a) This is obvious, we have

ωi ∈ ΩΛ ⇔ ωi ∈WΛ ⇔ ϖ∨
i = ωi(0) ∈ Λ.

b) If λ ∈ A0 ∩ Λ, then in particular we have λ ∈ A0 ∩ P∨ so by [Bou02, VI, §2.2,
Proposition 5] there is some k ∈ J such that λ = ϖ∨

k ∈ Λ. Thus, if ωi ∈ ΩΛ, we
have ωi(λ) = ωi(ϖ

∨
k ) = wi(ϖ

∨
k ) +ϖ∨

i ∈ Λ because ϖ∨
i ∈ Λ by a) and wi(ϖ

∨
k ) ∈ Λ

since Λ is a W -lattice.
c) First, we compute

ω−1
j ωi = (tϖ∨

j
wj)

−1tϖ∨
i
wi = w−1

j tϖ∨
i −ϖ∨

j
wi = tw−1

j (ϖ∨
i −ϖ∨

j )
w−1
j wi.

Thus, we have

ω−1
j ωi ∈ ΩΛ ⇔ tw−1

j (ϖ∨
i −ϖ∨

j )
w−1
j wi ∈ ΩΛ ⇔ w−1

j (ϖ∨
i −ϖ∨

j ) ∈ Λ ⇔ ϖ∨
i −ϖ∨

j ∈ Λ.

□

Return to the case Λ = Y and recall the notations from the preceding subsection: I =
{1, . . . , r}, Π = {αi, i ∈ I}, α0 =

∑
i niαi and J = {i ∈ I ; ni = 1}. Recall also that the

polytope
F := FP∨ = {λ ∈ A0 ; ∀j ∈ J, ⟨λ, α0 + αi⟩ ≤ 1}

given in Proposition 2.2.3 is a fundamental domain for Ω in A0.

Proposition 2.3.3. The following holds

∀ω ∈ Ω \ {1}, codimF (F ∩ ωF ) = 1.

More precisely, for 1 ̸= ω ∈ Ω, the polytopes F and ωF intersect along their common facet
F ∩ {λ ∈ V ∗ ; ⟨λ, α0 + αj⟩ = 1}, where j ∈ J is such that ω(ϖ∨

j ) = 0.

Proof. We can write ω = ωi for some i ∈ J . Observe that if ω(ϖ∨
j ) = 0 then, using the

Lemmae 2.2.5 and 2.2.6, we compute for λ ∈ V ∗,〈
ω−1(λ), α0 + αj

〉
=
〈
w−1
i λ+ϖ∨

j , α0 + αj

〉
= 2 + ⟨λ,wiα0 + wiαj⟩ = 2− ⟨λ, α0 + αi⟩ .

Hence, we have

(2) ωi(ϖ
∨
j ) = 0 ⇒ ∀λ ∈ V ∗, ⟨λ, α0 + αj⟩+ ⟨ωi(λ), α0 + αi⟩ = 2.

This being said, let us prove that

F ∩ {λ ; ⟨λ, α0 + αi⟩ = 1} = F ∩ ωF.

Let λ ∈ F such that ⟨λ, α0 + αi⟩ = 1. By (2), we have
〈
ω−1(λ), α0 + αj

〉
= 1 and if k ̸= j,

we have wiαk = αk′ for some k′ ∈ J and we compute〈
ω−1(λ), α0 + αk

〉
=
〈
w−1
i λ+ϖ∨

j , α0 + αk

〉
= 1 + ⟨λ, αk′ − αi⟩ = ⟨λ, α0 + αk′⟩ ≤ 1.

Hence ω−1(λ) ∈ F and so λ ∈ F ∩ ωF .

18
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Conversely, if λ ∈ F ∩ ωF , then by (2) we get

1 ≥ ⟨λ, α0 + αi⟩ = 2−
〈
ω−1(λ), α0 + αj

〉︸ ︷︷ ︸
≤1

≥ 1

hence ⟨λ, α0 + αi⟩ = 1, as required. □

Corollary 2.3.4. To the W -lattice Y we associate the following subgroup ΩY of Ω from
Proposition 2.3.1:

ΩY = {ϕ ∈WY ; ϕ(A0) = A0} ≤ Ω.

Choose a representative ω ∈ Ω for each coset [ω] ∈ Ω/ΩY and define

FY :=
⋃

[ω]∈Ω/ΩY

ω · FP∨ .

Then FY is a polytopal complex and is a fundamental domain for the action of ΩY on A0.

Proof. By the Proposition 2.3.3, for every subset A ⊆ Ω, the subset
⋃

a∈A aF is a connected
closed polytopal complex.

The rest of this proof is very standard. Let k := [P∨ : Y ] = [Ω : ΩY ], choose representa-

tives x1, . . . , xk ∈ Ω such that Ω/ΩY = {xiΩY , 1 ≤ i ≤ k} and define FY :=
⋃k

i=1 xiFP∨ .

Let λ ∈ A0. Since FP∨ is a fundamental domain for Ŵa, there is some ω ∈ Ω such that
ω−1(λ) ∈ FP∨ and writing ω = uxi for some 1 ≤ i ≤ k and some u ∈ ΩY , we obtain
u−1λ ∈ xiFP∨ ⊂ FY . On the other hand, if u ∈ ΩY , then

FY ∩ uFY =
⋃

1≤i,j≤k

xiFP∨ ∩ uxjFP∨ =
⋃
i,j

xi(FP∨ ∩ x−1
i uxjFP∨).

If FY ∩uFY has non-empty interior, then there are some i, j such that FP∨ ∩uxjx−1
i FP∨ has

non-empty interior. This implies that uxjx
−1
i = 1, thus xix

−1
j ∈ ΩY so i = j and u = 1. □

From this, we deduce the main result of this section:

Theorem 2.3.5. If K is only supposed to be compact, let WY := t(Y )⋊W (where Y = Y (T )
is the cocharacter lattice) and consider the subgroup

ΩY = {ϕ ∈WY ; ϕ(A0) = A0} ≤ Ω

and choose a representative for each coset in Ω/ΩY . Define

FY :=
⋃

[ω]∈Ω/ΩY

ω · FP∨ ,

where FP∨ is the fundamental domain for Ω in A0 given in Proposition 2.2.3. Then FY is
a polytopal complex and is a fundamental domain for the action of WY ≃Wa ⋊ ΩY on V ∗.

We still have to investigate the question of the injectivity of the exponential map on FY .
This is done in the following proposition:

Proposition 2.3.6. The hypothesis of the Lemma 1.2.1 is fulfilled under the ones of the
Theorem 2.3.5. In other words, one has

FY ∩ (Y \ {0}+ FY ) = ∅.

Proof. Let λ, λ′ ∈ FY and suppose by contradiction that 0 ̸= µ := λ− λ′ ∈ Y . In particular
we have µ ∈ P∨ and since λ, λ′ ∈ A0, we have ⟨µ, α⟩ ∈ {−1, 0, 1} for every α ∈ Φ. Without
loss of generality, as ΩY acts on Y , we may assume that the trivial coset in Ω/ΩY is
represented by 1 ∈ Ω.

First, suppose that µ /∈ A0. Since ⟨µ, α0⟩ ≤ 1, we may choose i ∈ I such that ⟨µ, αi⟩ = −1.
Then, we have 1 ≥ ⟨λ′, αi⟩ = ⟨λ, αi⟩ + 1 ≥ 1 so ⟨λ′, αi⟩ = 1 and thus ⟨λ′, αk⟩ = 0 for k ̸= i
since λ′ ∈ A0 and therefore λ′ = ϖ∨

i .
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Now, if there is some j such that ⟨µ, αj⟩ ≠ 0, then ⟨µ, αj⟩ = 1 and similarly as above, we

get ⟨λ, αj⟩ = 1 and λ = ϖ∨
j . Notice that j ∈ J because λ ∈ A0.

Claim : For every h ∈ J and every ω ∈ Ω, we have ω = ωh as soon as ϖ∨
h ∈ ωFP∨ .

Indeed, it suffices to show that ω−1(ϖ∨
h ) = 0. Suppose otherwise, then there exists ℓ ∈ J

such that ω−1(ϖ∨
h ) = ϖ∨

ℓ and this would be in FP∨ , a contradiction since ⟨ϖ∨
ℓ , α0 + αℓ⟩ = 2

and ℓ ∈ J .
This proves that if λ = ϖ∨

j ∈ ωFP∨ for some ω, then ω = ωj and similarly for λ′. Since
FY is the union of the ωFP∨ for ω describing a set of coset representatives modulo ΩY , and
since λ − λ′ = ϖ∨

j − ϖ∨
i ∈ Y , we must have ωiΩY = ωjΩY by the Lemma 2.3.2 and thus

λ = λ′, a contradiction.
Hence, if µ /∈ A0, then for all k ̸= i, we have ⟨µ, αk⟩ = 0, so µ = −ϖ∨

i ∈ Y and
λ′ = λ+ϖ∨

i . Henceforth, λ
′ = ϖ∨

i ∈ Y and the only ω ∈ Ω such that ϖ∨
i ∈ ωFP∨ is ω = ωi

by the claim and this is in ΩY by the Lemma 2.3.2. By definition of FY and since the trivial
coset in Ω/ΩY is represented by 1, this implies that ϖ∨

i ∈ Y ∩ FP∨ ⊂ P∨ ∩ FP∨ = {0} by
the Lemma 2.2.10, a contradiction again.

The only remaining possibility is µ ∈ A0. But in this case µ ∈ Y ∩ A0 and µ = ϖ∨
i ∈ Y

for some i ∈ J . Therefore, we obtain as above ⟨λ, αi⟩ = ⟨λ′, αi⟩ + 1, so ⟨λ, αi⟩ = 1 and so
λ = ϖ∨

i ∈ Y , but we have seen this to be impossible. □

Corollary 2.3.7. If K is a compact connected Lie group and if Y := X(T )∨ is the cochar-
acter lattice of the chosen maximal torus T ≤ K, let FY be the fundamental domain from
the Theorem 2.3.5. Then exp(FY ) is homeomorphic to the polytopal complex FY and is a
fundamental domain for the action of W on T . In particular, the decomposition

T =
∐
w∈W

w · exp(FY )

is cellular, regular and W -equivariant.

There is another natural choice for the fundamental domain of WY in V ∗, which is a
convex polytope. Unfortunately, the projection map fails to be injective on this domain in
general (see Example 2.3.10), making it unsuitable for cell transport to the torus T via exp.

Proposition 2.3.8. Let

JY := {j ∈ J ; ϖ∨
j ∈ Y } = {j ∈ J ; ωj ∈ ΩY }

and define
F ′
Y := {λ ∈ A0 ; ∀j ∈ JY , ⟨λ, α0 + αj⟩ ≤ 1}.

Then F ′
Y is a convex polytope and is a fundamental domain for WY = t(Y )⋊W on V ∗.

Proof. We may proceed as in the adjoint case, replacing Ω by ΩY . It clearly suffices to show
that F ′

Y is a fundamental domain for ΩY in A0.

First, since F ′
Y is an intersection of closed half-spaces, it is a convex polytope in A0. In

particular, it is closed and connected.
If ωi ∈ ΩY and λ ∈ F ′

Y , then there exists j ∈ J such that ωi(ϖ
∨
j ) = 0 and we have j ∈ JY

since ΩY acts on Y ∩ A0. We have

⟨ωi(λ), α0 + αi⟩ = 2− ⟨λ, α0 + αj⟩
and

F ′
Y ∩ ω−1

i F ′
Y ⊂ A0 ∩ {µ ∈ V ∗ ; ⟨µ, α0 + αi⟩ = 1}

and thus F ′
Y ∩ ω−1

i F ′
Y has empty interior in A0

Let now λ ∈ A0 and choose i ∈ JY such that ⟨λ, αi⟩ = maxj∈JY ⟨λ, αj⟩. If ⟨λ, α0 + αi⟩ ≤ 1,
then λ ∈ F ′

Y . Otherwise, choose j ∈ JY such that ωi(ϖ
∨
j ) ̸= 0 and take some k ∈ J such

that ωi(ϖ
∨
j ) = ϖ∨

k . Then k ∈ JY because j ∈ JY and ωi ∈ ΩY by the Lemma 2.3.2. Hence〈
ω−1
i (λ), α0 + αj

〉
= 1 + ⟨λ, αk − αi⟩︸ ︷︷ ︸

≤0

≤ 1.
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Now, if j ∈ JY is such that ωi(ϖ
∨
j ) = 0, then wi(αj) = −α0 and〈

ω−1
i (λ), α0 + αj

〉
= 2− ⟨λ, α0 + αi⟩︸ ︷︷ ︸

>1

< 1

and thus ω−1
i (λ) ∈ F ′

Y , as required. □

Reproducing the proof of the Proposition 2.2.14 verbatim in this case yields the following
description of the vertices of F ′

Y :

Proposition 2.3.9. Define the following set of isobarycenters

BYm :=

 1

|J ′
Y |+ 1

∑
j∈J ′

Y

ϖ∨
j ; ∅ ⊆ J ′

Y ⊆ JY

 ,

where JY = {j ∈ J ; ϖ∨
j ∈ Y }. Then the vertices of the polytope F ′

Y are given by

vert(F ′
Y ) = BYm ∪

{
ϖ∨

i

ni

}
i∈I\JY

.

Example 2.3.10. This fundamental domain F ′
Y has the bad taste of containing different

points that are congruent modulo Y .
For instance, let (X(T ),Φ, Y (T ),Φ∨) be the root datum of the Lie group SU4(C)/{±1},

with maximal torus being the the image in the quotient of the diagonal matrices of SU4. In
particular, Φ is of type A3. Denote the simple roots by Π := {α, β, γ} with extended Dynkin
diagram

α β γ

−α0

Let also ϖ∨
α , ϖ

∨
β and ϖ∨

γ be the corresponding fundamental weights. We have (see [Hum72,

§13.2, Table 1])

ϖα =
3α+ 2β + γ

4
, ϖβ =

2α+ 4β + 2γ

4
, ϖγ =

α+ 2β + 3γ

4
,

and every fundamental weight is minuscule since the highest root is α0 = α+ β + γ. In this
case, the cocharacter lattice Y = Y (T ) is given by

Y = Z
〈
α∨〉⊕ Z

〈
β∨〉⊕ Z

〈
α∨ + γ∨

2

〉
=: Z

〈
α∨〉⊕ Z

〈
β∨〉⊕ Z ⟨y⟩ .

We have

γ∨ = 2y − α∨ ∈ Y, ϖ∨
α =

α∨ + β∨ + y

2
/∈ Y, ϖ∨

γ =
β∨ − α∨ + 3y

2
/∈ Y

and hence Q∨ ⊊ Y ⊊ P∨. Furthermore, Y ∩ A0 = {ϖ∨
β } and

F ′
Y = {λ ∈ A0 ; ⟨λ, α0 + β⟩ ≤ 1} = {λ ∈ conv(0, ϖ∨

α , ϖ
∨
β , ϖ

∨
γ ) ; ⟨λ, α+ 2β + γ⟩ ≤ 1}.

So ϖ∨
α and ϖ∨

γ are distinct elements of F ′
Y and however,

ϖ∨
γ −ϖ∨

α = ϖ∨
β − α∨ − β∨ ∈ Y.

Note that, in this case we have

Ω = ⟨ωα⟩ = {1, tϖ∨
α
(sαsβsγ)︸ ︷︷ ︸
ωα

, tϖ∨
β
(sβsγsαsβ)︸ ︷︷ ︸

ωβ

, tϖ∨
γ
(sγsβsα)︸ ︷︷ ︸
ωγ

} ≃ Z/4Z

and
ΩY = ⟨ωβ⟩ = {1, ωβ} ≤ Ω and Ω/ΩY ≃ π1(SU4(C)/{±1}) ≃ Z/2Z.
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By the Proposition 2.3.1, we see that Y is the only W -lattice that stands strictly between Q∨

and P∨. Thus, the group SU4(C)/{±1} is the only non-adjoint and non-simply-connected
compact Lie group of type A3.

Note that in this case, we have indeed

FP∨ = conv

(
0,

ϖα

2
,
ϖβ

2
,
ϖγ

2
,
ϖα +ϖβ

3
,
ϖβ +ϖγ

3
,
ϖα +ϖγ

3
,
ϖα +ϖβ +ϖγ

4

)
.

α

β

γ

α+ β β + γ

α0

ϖα

ϖβ

ϖγ

Figure 4. The fundamental alcove A0 = conv(0, ϖα, ϖβ, ϖγ) in type A3.

ϖα

ϖβ

ϖγ

0

Figure 5. The fundamental domain FP∨ for Ω ≃ Z/4Z in A0.

ϖα

ϖβ

ϖγ

0

(a) A fundamental do-
main FY := FP∨ ∪ ωαFP∨

as in the Theorem 2.3.5.

ϖα

ϖβ

ϖγ

0

(b) The domain F ′
Y from the

Proposition 2.3.8.

ϖα

ϖβ

ϖγ

0

(c) Another choice for the
domain FY := FP∨ ∪ωγFP∨ .

Figure 6. Fundamental domains FY and F ′
Y inside A0 in type A3.
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