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1. PREREQUISITES AND NOTATIONS

1.1. Root data.

We start by briefly recalling what a root datum is and how one can associate a root datum
to any connected reductive complex algebraic group (and more specifically to any semisimple
compact Lie group). Standard references for what follows are [MT11] and [KJO05].

Definition 1.1.1. ([MT11, Definition 9.10])
A root datum is a quadruple (X, ®,Y,®") where

(RD1) the elements X andY are free abelian groups of finite rank, together with a perfect
pairing (-,-): Y x X — Z,

(RD2) the subsets ® C X and ®" C Y are (abstract) reduced root systems in Z® @z R and
7OV @7 R, respectively,

(RD3) there is a bijection ® — ®V (denoted by a — a ) such that (o, ) = 2 for every
a € d,

(RDJ) the reflections so of the root system ® and s,v of ®V are respectively given by

Vo € X, so(z) =2 —(a",z)

and
Yy €Y, sav(y) =y — () a’.
The Weyl group W of the root system ® (which is isomorphic to the Weyl group of ®V via
the map sq — Sqv ) is called the Weyl group of the root datum. Moreover, we say that the
root datum (X, ®,Y,®Y) is irreducible if the root system ® is.

From this, one can easily define a morphism of root data and the corresponding category
of root data.

For a root datum (X,®,Y,®"), we denote by V := Z® ®z R the ambient space and
V*:=Z®" ®zR (the notation is consistent since Z®" ®7 R may be identified with the dual
of Z® ®z R, via the pairing (-,-)). As usual, we denote by ®T C @ the set of positive roots
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(with respect to some linear order on V') and by IT C ®* the corresponding set of simple
roots. Recall that there are elements w, € V indexed by a € II such that

V8 e 1I, (ﬁv,wa):aa,ﬁ:{ 1 fa=p

0 otherwise
These elements form a basis of V and are called the fundamental weights of ®. Dually, we
can define the fundamental coweights @, € V* of ® by the property

\V/ﬁ S Hv (w(\x/vﬂ) = 504,6-

We also consider respectively

Q:=20=EZacCV and Q' :=273" = PZa" C V"
a€ll a€cll
the root lattice and the coroot lattice of ®. Further, we have the respective weight lattice
and coweight lattice:

P:=(Q)'={zreV;Vae®d, (a" 1) €L} =P Zwa CV and P¥:= @ Zw] cV*".
a€ll acll
Thus, the abelian group X is a W-lattice between ) and P:

QCXCP.

If we enumerate the simple roots II = {aq,...,a,} (with n = rk(X) = dim(V)) and if
C = ({a}, ;) <; j<p is the Cartan matrix of @, then we have

det(C) = [P: Q] = [P¥ : QY]

Remark 1.1.2. Note that to give a root datum (X,®,Y,®V) is the same as to give a
Euclidean root system ® together with a W -lattice X such that Q C X C P. Indeed, given
a root datum (X, ®,Y,®V), the following bilinear form

@)= 3 (a¥,z) (a”,y)
aced
certainly defines a W -invariant inner product on the ambient space V, makes ® into a
Euclidean root system and X is clearly a lattice in V. On the other hand, given a Fuclidean
root system and a W -lattice Q C A C P, the inner product yields a perfect pairing A x A —
Z and then (A, ®, AV, ®) is indeed a root datum.

The crucial interest of root data relies in the following theorem of Chevalley:

Theorem 1.1.3. (Chevalley classification theorem, [MT11} §9.2])

Let G be a connected reductive algebraic group over an algebraically closed field k and T be
a mazimal torus of G. Let ® be the root system associated to the pair (G,T) and denote
by ® = {a¥, a € ®} its dual root system. Let moreover X(T) := Hom (T,G,,) and
Y (T) := Hom (G,,, T be the character lattice and the cocharacter lattice of T', respectively.
Then, (X(T),®,Y(T),®") is a root datum.

Two semisimple linear algebraic groups are isomorphic if and only if their root data are
isomorphic. For each root datum, there is a semisimple algebraic group which realizes it.
Finally, the group is simple if and only if the associated root datum is irreducible.

This can also be adapted to the study of Lie groups. As usual, a small gothic letter
denotes the Lie algebra of the algebraic (or Lie) group denoted by the same letter, written
in capital standard font.

We let G be a semisimple connected algebraic group over C, B be a Borel subgroup of
G, K be a compact real form of G (i.e. K is a semisimple compact Lie group such that
g = t®g C). Then, the subgroup 7' := K N B is a maximal torus of K and the complexified
Lie algebra h := t ® C is a Cartan subalgebra of g.
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If ® denotes the root system of (£,t) (which is just the real form of the root system of
(Lieg,h)) and @ := {a", a € ®}, then ® C it* and we may take

X(T) :={d\ : t — iR, X\ € Hom (T,S")} c it*

the character lattice of T and similarly, Y(T) = X(T)" := {z € it ; VA € X(T), \(z) €
Z} C it is the cocharacter lattice of T and the pairing is of course given by

X(T) x Y(T) > (A, z) — \z) € Z.

Then (X (T),®,Y(T),®") is aroot datum. Note that we have isomorphisms W ~ Nk (T)/T ~
Ng(T®)/TC and the Killing form (-,-) on g restricts to the Killing form on £ and gives a
W-invariant inner product on V' = it*.

Notice finally that W acts naturally on T by conjugation by a representative in the nor-
malizer N (T'). This is well-defined since T is abelian. On the other hand, W acts on V,
V* and on the lattices X (T) and Y (7).

We have the following important result:

Lemma 1.1.4. ([KJ05, Lemma 1])
If x — €® denotes the usual (Lie theoretic) exponential map t — T, then the normalized
exponential map
exp : it — T
T — 62i7r;r

1s surjective and descends to an isomorphism of Lie groups
V*/Y(T) = T.
Furthermore, this isomorphism is W -equivariant.

We have the following important isomorphisms
(1) P/X(T)~m(K) and X(T)/Q ~ Z(K).
In particular, one has |m (K)| x |Z(K)| = [P : Q] = det(C).

Theorem 1.1.5. ([KJ05, Theorem 7])

The group K is determined (up to isomorphism) by its Lie algebra €, the mazimal toral
subalgebra t of € and by the lattice X(T') C it*, which can be any lattice L such that @ C
LCP.

The group corresponding to L = P is the simply-connected group and the one associated to
L = Q is the adjoint group.

The previous two results show that the initial problem of finding a W-equivariant cellular
structure on the torus T' may be reformulated as follows: given a root datum (X, ®,Y,®V),
with Weyl group W and ambient space V := Z® ®z R, find a W-equivariant cellular struc-
ture on the torus V*/Y.

In this context and, in view of the isomorphisms , the group P/X is called the funda-
mental group of the root datum. Notice that this yields a combinatorial way of defining the
fundamental group of any connected reductive algebraic group.

Therefore, we shall fix the following notations:

Notation. Throughout the paper we fiz, once and for all, an irreducible root datum (X, ®,Y, ®V),
with ambient space V = Z® @ R, simple roots I C ®*, Weyl group W = (sn, « € II), fun-
damental (co)weights (wa)aen and (w!)aecm, (co)root lattices Q@ and QY and (co)weight
lattices P and PV, just as in the beginning of this section. Moreover, we consider the natu-

ral projection (which is W -equivariant):

pr: V"= VY
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1.2. Reduction to fundamental domains of (extended) affine Weyl groups.

For a vector v is some vector space, we denote by t, the affine endomorphism of the
vector space defined by the translation by the vector v. Since X is a W-lattice that stands
between () and P, we may consider the intermediate affine Weyl group

Wx = t(X) x W.

It is a subgroup of the group Aff(V') of affine transformations of the space V. In the same
way, we may consider the group Wy := t(Y) x W of Aff(V*) and we have a canonical
isomorphism Wx ~ Wy, induced by the pairing (-, -).

In the sequel, by a fundamental domain for the action of a (discrete) group G on a
topological space Z, we mean a closed connected subspace F C X such that:

x For 1 # g € G the subset F N gF has empty interior.
* The translates of F cover the whole space: Z = J,cq 9F.

Lemma 1.2.1. If F' is a fundamental domain for the action of Wy on V*, then the subset
F :=pr(F) of V*/Y is a fundamental domain for the induced action of the Weyl group W.
Moreover, if FN (Y \ {0}) + F) =0, then the restricted map

pr:F — F
1s @ homeomorphism.

Proof. The fact that the W-translates of F do cover is obvious. Now let 1 # w € W and

let us prove that F NwF has no interior. Since the map pr is onto, it suffices to show that
_1 . . . *

pr —(F NwF) has empty interior in V*. We compute

pr Y (FNwF)=pr YF)npr HwF)=(F+Y)N (wF+Y)

= <U tm(F)> N U twF) | = | te(FNnty_o(wF)).
€Y yey z,yey

But since W is finite, we have W N t(Y) = 1 and because w # 1, we have w ¢ t(Y). As

F' is a fundamental domain for Wy, given each y € Y, the closed set F' N t,wF' has empty

interior in V* and well as ty,(F N ty—,(wF')). Since Y is countable, the conclusion follows

from Baire’s theorem. The second statement is a straightforward verification. U

Remark 1.2.2. Of course, the previous result is auto-dual, i.e. it still holds if we replace
VibyV*andY by X.

1.3. The affine Weyl group.

Standard references for what follows are [Bou02|, [Hum92|.

The affine Weyl group is an infinite extension of the Weyl group W that contains more
information about the root system ® than W but still has some of the good properties of
W; namely it is still a Coxeter group. One can use the affine Weyl group to determine the
subsystems of ® and to compute the order of W. What follows is quite classical and may
be found for example in [Kan01], [Hum92] and [Bou02].

First, recall that the root system ® admits a highest root. That is, there exists a unique
root ag € ® such that a < o for every o € ®. For this, see [Hum72, §10.4, Lemma A] or
[Kan01}, §11.2]. Notice that some authors use the notation a for the highest root, but the
we rather choose o for notational purposes.

Given o € ® and k € Z, define the following hyperplane of V*:

Hop={ eV"; (\a) =k}
We also consider the orthogonal reflection s, ; with respect to this hyperplane:
Sak 1= Sa + ktav : A= X — (A, @) — k)a”,
with tov(A) == XA +aV.
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Definition 1.3.1. ([Kan01, §11.1])
Define the affine root system by ®, := ® x Z, the positive affine roots by &} := {(a,n) €
P, ; n>00rn=0, a € P} and the negative affine roots by ¢, := @, \ .
IfII = {ou,...,an} and if ag € ® is the highest root of ®, then we consider the (affine)
reflections

V1<i<mn, sj:=85q0 and Sp:= Sq,1-
Then, the affine Weyl group is the subgroup of affine transformations Aff(V*) generated by
these reflections:

Wa = (50,81---,5n) -

Theorem 1.3.2. ([Kan0O1, §11.3])
We have the following isomorphism
W, ~ QY x W.
Furthermore, if m;; denotes the order of s;sj in W, (for 0 < 4,5 < n), then we have a
presentation
Wa - <807517 <oy Sn | (SZ‘SJ')mi’j = 17 V’L,]> .

In particular, Wy is a Coxeter group.

Similarly to the finite case, one defines the length of an element of W, as follows:

Yw € Wa, l(w) = |®; Nwd]|.
In this context, we have the important notion of an alcove.

Definition 1.3.3. ([Kan01, §11.5])
An alcove is a connected component of the complementary of the reflecting hyperplanes, i.e.
a connected component of the set

V*\ LJ ILLk

a€dt
keZ

Among these, we consider the fundamental alcove:
Ao:={ eV*; Vaecd™ 0< (\a)<1}
={AeV"; Vaell, (\,a)>0 and (\, o) < 1}

A subset of the boundary of Ay of the form Ay N Ha or OAgN Hy 1, for some o € T, is
called a wall of Ay.

Remark 1.3.4. If we decompose the highest Toot g € T in the basis 11 as
ap = Z NaQ,
a€ll

then, it is shown in [Bou02, V, §2.2, Corollaire] that the closure Aq is the conver polytope

given by
Ao:conv<{0}u{a} )
Na ) gen

The importance of the fundamental alcove relies on the following result:

Theorem 1.3.5. ([Hum92, §4.5 and §4.8])
The closure Ag of the fundamental alcove is a fundamental domain for W, on V*. Moreover,
the group Wy acts simply transitively on open alcoves.
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Note the analogy with the notion of a chamber. Recall that a chamber is a connected
component of V*\ | aco+ Hapo. A fundamental domain for the action of W on V* is given

by the closure Cy of the fundamental Weyl chamber Cqy defined by

Co={\eV*; Vacll, <A,a)>0}:{2)\awa; Aa>0}.

acll
This can be found in [Kan01} §5.2].

2. FUNDAMENTAL DOMAIN FOR THE ACTION OF W ON V*/Y

2.1. The simply-connected case.
The main result of this section is the following one:

Proposition 2.1.1. Assume that the irreducible root datum (X, ®,Y, ®V) is simply-connected
(that is, X = P is the weight lattice). Then the set pr(Ag) is a fundamental domain for
the action of W on V*/Y . Moreover the map restricted projection yields a homeomorphism
pr(Ag) =~ Ag.

In particular, the decomposition

weWw
is a W-equivariant triangulation of the torus group V*/Y.

Only the second part of the last statement deserves a proof. First, we need a small
technical lemma:

Lemma 2.1.2. The following holds
VAN € Ay, JweW 5 wd—)) € A.

Proof. Let p:= X — ). Since, A\, \' € Ay, we have —1 < (u, ) < 1 for a € ®T and this still
holds for any root a € ® because ®~ = —®*. Thus, by W-invariance of the pairing (-, -),
we get
Vae ®, Yvw e W, —1 < (w(p),a) <1

and in particular, we have also (w(u), ag) € [—1, 1].

Now, as the closure Cy of the fundamental Weyl chamber is a fundamental domain for
the action of W on V*, there is some w € W such that w(u) € Cyp. But we have seen that
—1 < {w(p), ) < 1 and thus w(u) € Ay. O

Remark 2.1.3. The proof above shows in particular that an element w € W such that
w(A—=X) € Ay has length {(w) = [{a € T ; (A, a) < (N, a)}|. Moreover, since the longest
element wy € W is characterized by wo(®+) = &, we have — Ay = woAp.

Proof of proposition [2.1.1. In view of the second part of the Lemma [I.2.1] we have to
prove that for A\, \' € Ag, we have A = X as soon as A — X' € QV. Using the Lemma [2.1.2]
we find w € W such that w(\ — X) € Ag. Since W acts on QV, we are left to prove that
Ao N QY ={0}.

Next, recall that the Weyl chamber Cp is a union of alcoves (see [Hum92} §4.3]) and since
W acts simply transitively on the set of chambers, for every alcove A there is a unique
w € W such that wA C Cy. Hence, if 0 € A, then 0 € wA and therefore wA = Ay (see
[Bou02, VI, §2.2, Proposition 4]). We have shown that for any alcove A such that 0 € A,
there exists w € W such that A = w(Ay).

Finally, let ¢ € Ao N QY. Then t_,(Ap) is an alcove containing 0 is its closure. The
above discussion ensures the existence of w € W such that t_; A9 = wAy and since W, acts
simply transitively on the set of alcoves (cf [Kan01, §11.5, Proposition B]), this implies that
tqw = 1 and since t(QY)NW =1, we get t; = 1 so ¢ = 0. O

We arrive to the main result of this section, which summarizes the discussion above:

6
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Theorem 2.1.4. Let K be a simply-connected simple compact Lie group, T' < K a mazimal
torus, W := Ng (1) /T its Weyl group, Ao C it the (dual) fundamental alcove and exp : it —
T, x — e*™ the normalized exponential map. Then Agy is an r-simpler (with r = dim(T))
and its image exp(Ag) C T is a fundamental domain for W, homeomorphic to Ay.

In particular, the decomposition

T= H w - exp(Ap)

18 a W-equivariant triangulation of the torus T .

2.2. The adjoint case.

We are looking for a fundamental domain for the action of the extended affine Weyl group
T/IZ :=t(PY)x W on V* in the case where Y = PV is the coweight lattice. Things get trickier
in this case, mostly because 1/1/7a is no longer a reflection group (except in type B, as we
shall see).

After the study of this question, the author realized that the main result of this section
(Corollary below) was known since 1984 and is due to Komrakov and Premet [KP84].
However, this paper turns out to be rather hard to find on the Internet and is written in
Russian. For the sake of self-containment and as our work is independent of the one of
Komrakov-Premet, we give a full proof of this. Our method is quite close to the one used
in [KP84]. Moreover, we describe the fundamental domain as a convex hull, which is a new
result, as far as the author knows. -

The group W, acts on alcoves (transitively since W, <IW, does) but not simply-transitively.
We introduce the stabilizer

Q:={peWa: ¢-Ay= Ao}
and we see that we have a decomposition I/I//\a ~ W, x Q. In particular, one has
Q~ Wo/Wa~PV/QY ~ P/Q.

Thus, €2 is a finite abelian group. The following table details the fundamental groups of the
irreducible root systems:

’ Type \ Q~P/Q ‘
A, (n>1) | Z/(n+1)Z
B, (n>2) 7)27
Cpn (n>3) 7./27
Doy, (n>2) | Z)2Z D 7/27

D2n+1 (TL Z 2) Z/4Z
Eg 7./37
Ey 7)27
Eg 1
Fy 1
G 1

TABLE 1. Fundamental groups of irreducible root systems

The description of €2 given in [Bou02, VI, §2.3] will be useful. First, to simplify the notations,
we denote by r := rk(®) = dim(V') the rank of ® and we index the simple roots by I :=
{1,...,r}, that is

II = {Oq,...,ar}.
Given the highest root oy = Y., njcy of @, recall that a weight w; is called minuscule if
n; = 1 and that minuscule weights form a set of representatives of the classes in P/Q (see
[Bou02, Chapter VI, Exercise 24]). Dually, we have the same notion and result for minuscule

coweights. Let
J:={iel;n; =1}



ARTHUR GARNIER

Proposition-Definition 2.2.1. (|Bou02, VI, §2.3, Proposition 6])
Let og = Zie[ n;a; be the highest root of ® and wg € W be the longest element. Fori € I,
denote by W; < W the Weyl group of the subsystem of ® generated by {c; ; j # i} C IL
Forie J, let wé € W; be the longest element of W; and w; := wéwo.
Then the element toywi € W, is in Q and the map

J — O\ {1}

T = wi = tvw;
s a bijection.
Remark 2.2.2. Note that, with the preceding notations, w} and wo have order 2 and w;l =
wow) sends @, to —Ag. Indeed, denoting by ®; := ® NZ {11\ {a;}) the subsystem of ®
generated by the simple roots other than o, for j # i we have wh € W(®;) and

<w(i)wzy7aj> = <wzvvw6aj> = O>
because who; € ®;. Since wiw, € PV and W stabilizes the set
{AeV*; Vaed, —1<(\a) <1},

we have that <wéw;/,ai> is an integer between —1 and 1. Of course, it is not 0 and if it is
—1, then we have whoy; = —ay, so wh(Il) C ®~ and thus wh = wo, a contradiction. Hence,

iV _ V —1_v _ iV _ Vo A e -
we have wiw,” = w; and thus w; " w, = wowyw, = wow,; € —Ag since woo; € P~

We shall prove the following result:
Proposition 2.2.3. The subset of Ay defined by
Fpv:={Ae€Ay; Vied (\a +ay) <1}
s a fundamental domain for the action of Q on Ay.

This will be done step-by-step. Once and for all, we fix the notation

T
Qo = § n;Qy
i=1

for the highest root of ®. First, we have to obtain more information about how 2 acts on
Ap and how its Weyl part acts on roots. The fact that 2 is formed of affine isomorphisms
will considerably constrain these actions.

Lemma 2.2.4. The subgroup Q < W, acts on the set {0} U {Zlv} ; and on the subset
v J)ae
{0} U{w) }je

Proof. Let w € Q. Since wAg = Ay and 1/1/7a < Aff(V*), we also have wAy = Ag. But Ay
is a convex polytope with vertices {0} U {w; /n;}icr (see [Bou02, VI, §2.2]) and since w is
affine, it sends any vertex of Ay to another one. Hence, €2 indeed acts on the first set.
Now, we have to see why a minuscule coweight w;-/ is sent by w € € to 0 or a minuscule
coweight. We just have seen that, if it is non-zero, then there is some 7 such that w(wjv) =
@, /n;. Using the description given in the Proposition for ), we can write w = wy =
teywy for some k € J. Note that if ¢ € {j,k}, then n; = 1 and thus w(w)) is indeed a
minuscule coweight, so we may assume that ¢ # j, k. Let i/ € I and consider the simple
v v

reflection s; : A = A — (A, a) a7, We immediately see that sy (w)) = @) — dy jo) and by

induction, we conclude that there are integers )\f, € Z such that

T
wi(w)) = @) — Z Aoy

=1
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Hence, we compute

w;/ def .

. (5}

nz = wi(@)) = wp(w)) + @y = w] + oy — g Ao
7

ir=1
Taking the pairing of this equation against «; yields

1

LY ) =~ G

1 i i
where C' = (Cy ;) € M, (Z) is the Cartan matrix. Thus, the sum above is an integer, which
implies that n; = 1. O
Now, we outline the way an element w; € W acts on roots.

Lemma 2.2.5. Let v € J and consider the corresponding element w; = toywi € Q. Then
the element w; ' € W takes I1\ {a;} into II and ; to the lowest root —ay, that is

{ w; LI\ {as}) C 1T

w; () = —ag
Moreover, if j # i, then Noytg, = 1 in other words, the numbers of occurrences of oj and
of wi_l(aj) in g are the same. In fact, we have

v v

—w, I
aj = wi(ag) & = w; .
n; ng

Finally, if j € I is such that wi(w)) = 0, then w; Hap) = —a;.

Proof. First, we prove that w; '(IT \ {a;}) € TI. Consider o; € TI with j # 4. If we have

\
w) = w;(0) = %, then n; = 1 and ¢ = j, which is excluded. Thus, by the Lemma [2.2.4,

1

v v
there is some k € I such that w; (Z—:) = w—J We compute

g

Vo1 o\ @y _ @ v _ N
(%) <wk,wi ozj> =ng { w; —nk L0y ) =Ny P w o) = ot
J J

Now, let £ # k. If w; (ﬂ) = 0, then we have

Ny
(@ i ag) = —ny (@}, 05) =0,
v v
otherwise, there is some ¢’ # j such that w; (Z—‘) =22 and we compute similarly
Y Tyr
v
voo—1 We
wy,w; i) =ng{w; | — |,a;)=0.
< l ) J> €< ¢ < ne ) J>
In any case, we have
(%) Ve £k, (@), w; a;) =0

Hence, equations 1} ans 1} imply that ® > w;laj = Z—’;ak, thus n; = ny and w;laj =
ay € II. This proves the first and third statements at once.

We have to see why w;ap = —a;. First, since n; = 1, the vector w,’ is a vertex of Ao,
hence the vector w; '@ is a vertex of —Ay, that is, w; *w) belongs to the set {0}u{wy /n;}.

%
Vo

; -1_v ; ; -1 Viim
Since w; w,;" # 0, there is some j such that w;, ‘@, = w; /n;j, so we have

(1) (@), wiag) = (w; @), ap) = —1.
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Now, let j # i. Here again, we have w;(0) = @ # w—], so there exists k such that

s S

Nk

=V oV Y
(1) <],wia0> = <wi <k> +w;/,wia0> = <k,a0> -1=0.
n; ng N

Now, we have w;ag € ® and the equation ensures that for j # i, we have <w;/, wia0> =

0, so there is € {£1} such that w;ag = pa;. But if 4 = 1, then w; o = ap € T and
using the first statement, we obtain w;" 1(H) C &7, thus w; = 1, a contradiction.
To prove the last statement, we compute

v v
wj (w—’“> = % We compute, using the equation ( ,

() w; o) = (winy ) = — (Y 20) = 1.

If k # j, then there exists £ such that w; (Tk> — 2L and we have

ne

These two equations together show that w; log = —aj, as required. O

Lemma 2.2.6. For w; = twivwi € Q and a simple root oy, € II, the root w;ay is simple
except in the case where wi(w)) = 0, in which case it is the lowest root.

Proof. We compute

1

wi = w Moy = w M ywiwy = b i@ Wi = oW wi

(2
Since © acts on {0} U {w)/ng}, there exists ko € J such that wy = w; 1(0) and the
conclusion follows from the first two statements of the Lemma 2.2.5 O

Recall that the extended Dynkin diagram of the root system @ is its Dynkin diagram to
which we add a new vertex corresponding to —ag, which is linked to the other vertices in
the same way as for the classical Dynkin diagram.

The Lemmae and show that the Weyl part of any element of {2 permutes the
vertices of the extended diagram and since the pairing is W-invariant, it also preserves the
edges of the diagram. Hence we obtain the following result:

Corollary 2.2.7. The group Q acts on the extended Dynkin diagram D giving rise to a

normal inclusion € < Aut(D). Moreover, the factor group Aut(D )/Q is isomorphic to the

automorphism group Aut(D) < Aut(ﬁ) of the finite Dynkin diagram D of ® (see Table .
In other words, there is a semi-direct product decomposition

Aut(D) ~ Q x Aut(D).

Proof of Proposition[2.2.3. By definition of a fundamental domain, we have to prove that
the set
F:={ e Ay; Vield (\Nay+a;) <1}
satisfies the following conditions:

a) the set F'is closed in Ay and connected,
b) for 1 # w € Q, the set F NwF has empty interior in Ay,
c) the union of the Q-translates of F' cover Ay, that is Ay = (J,,cqwF.

To prove a), we just have to notice that the closure of F' in V* is an intersection of closed
half-spaces, so it is a convex polytope. Thus, the set F', being the intersection of this closure
and Ay, is closed and convex.

Let w € Q\ {1}. For A € F, writing w = w; = tyw;, we calculate

(wi(N), a0 + ay) = <wi)\ + @, a0+ ai> =2+ <)\,wi_1a0 + wi_lai> )

10
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but, by the Lemma we have w; 10@ = —agp and there is some k € J such that
w;lag = —ay, € II. Since A € F', we have
(wi(A), a0 + ) =2+ <)\,w;1a0 + w;1a¢> =2—(\ag+ag) >1.
—_——
<1
This proves that, if A € F, then (w;(\),ap + ;) > 1. Thus, if A € F and w;(\) € F, then
(wi(A), ap + a;) = 1. Therefore, we have
FNw'FCAN{NeV™; (wi(\),a0 +ag) = 1},

and the later subset has empty interior in 4g, concluding the proof of b).
Finally, to prove c), let A € Ag. We have to find some w € €2 such that A € wF. Choose
1 € J such that
(N a5) = max (A, aj) .

If (\,ap+ ;) <1, then A € F and w = 1 is the desired element. Otherwise, pick j such
that w;(ww}) # 0. We have
v v

<wi_1()\),040 +Oéj> = <wi_1()\ — w; ),Oé(] —|—Oéj> = <)\ — wzy,’indo +w¢o<j> = <)\ —w;, o — ai>,

where w;a; = ay, € II for some k; which is ensured to exist by the Lemma Ifi =k,
then this is zero. Otherwise, we get

(Wit \sa0+aj) = (A =@ —a;) =1+ (N ap —aq) < 1.
<0

Hence, for every j such that w@-(wjv) # 0, we have <w;1()\),a0 + a;) < 1. Now, let j such
that w;(ww)) = 0. Then, by the Lemma we have w;a; = —a and thus

<w;1()\),oz0 + ozj> = <)\ — @, wiag + wiaj> = <wzv — A\ a9+ ozi> =2—(\ay+ ;) < 1.

—_——
>1

Therefore, for every j € J we have <w;1()\),oz0 +a;) <1 and thus w;t(\) € F. O
Remark 2.2.8. The proof of ¢) above gives a concrete way to find, given A € Agy \ Fpv,
an element w; € Q such that A € w;Fpv. Namely, it is the element corresponding to the
minuscule coweight w, with index i such that (A, ;) = maxjey (A, aj).
Corollary 2.2.9. The convex polytope of V* defined by

Fpv:={ e Ay; Nap+a)<1, Vaell; n, =1}

={AeV*; Nay) <1, Vaell, (\,a) >0 and no=1 = (A ap+a) <1}

s a fundamental domain for the extended affine Weyl group V[//\a

Proof. This is obvious using the Proposition the fact that Ay is a fundamental domain
for W, and since W, = W, x Q. O

We can now investigate the injectivity condition. We have the following result:

Lemma 2.2.10. The hypothesis of the Lemma is fulfilled in the adjoint case. In other
words, one has
Fpv N (PY\ {0} + Fpv) = 0.

Proof. Let \, N € Fpv C Ag such that p := A — X € PY. We have to show that pu = 0.
First observe that —1 < (u, ) <1 for any root a € .

Suppose that u ¢ Ag. Since {u, ag) < 1, there must be some i such that —1 < (u, a;) < 0.
But (i, ;) € Z since we have assumed that u € PV, so we get (u, ;) = —1. Thus, we
compute 1 > (N, a;) = (A, ;) +1 > 1 and hence, (X, ;) = 1. Furthermore, we have

1> <)\/,O[0> = an <)\/,Oéj> =n; +Zn] <)\/,O£j> >ni>1 = <)\',a0> =n; =1
j it Y
11
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and thus, (X, ap + @;) = 2, a contradiction since \" € Fpv.
We have shown that u € Ag N PY. By [Bou02, VI, §2.2, Prop. 5], if 4 # 0, then

there is some k € J such that y = w). Since A € Fpv, we have 1 > (A, ap+ a) =
<)\’, ag + ozk> +2 > 2, which is absurd. O
—_———
>0
] Type \ Extended Dynkin diagram
A, o> o
1 ay =
Q
A, (n>2) S
g a2 o On—-1 Qp
5 ~ ®$:.:é0
By = (s o~ a1 S
aq
B, (n>3) ) a2
«a
Cp (n > 3) o~ a1 as n—1 > Qp
o1 (679
D,, (n>4) ) )
a Ap—1
a
Eg a2
o ° ° O
aq a3 (o7} Qs Qg
a
E I—o—o—@
® ° °
a 1 a3 a4 a5 as Qy
a
‘/—E\é I
® ® ° oo o o
o a7 Qs Q4 as (673 (%4 asg
— F—e—e—>9o @
Fy o Qap Qa7 Qg3 04
~ —e
Go ap Qg a

TABLE 2. Extended Dynkin diagrams of irreducible root systems.
The white dots stand for the roots corresponding to minuscule weights and
the crossed dots represent the lowest root a := —ay.

12
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Corollary 2.2.11. If K is an adjoint group, then exp(Fpv) is homeomorphic to the polytope
Fpv and is a fundamental domain for the action of W onT'. In particular, the decomposition

T= H w - exp(Fpv)
weW
is cellular, regular and W -equivariant.
The Lemmae [2.2.5] and [2.2.6] may be used to give a useful characterization of the element
w; = wywp from the Proposition 2.2.1}

Proposition 2.2.12. For any i € J, the element w; is the unique element w € W of
minimal length such that

w;/ S ’U)w()(Co),
where wy is the longest element of W.
Proof. Let w € W such that w™1 () € wy(Cy) = —Cp with £(w) minimal with respect to
this property. First, we prove that tovw € €, that is, w(Ag) + @) = Ap.
Sinvce Ay = conv({0}U {w}//nj}je[), it is sufficient to prove that for any j € I, we have
w (%) + @, € Ap. Recall that W acts on the set {\ € V*; Va € &, —1 < (\,a) < 1}.

This, together with the fact that —w™!(ww}’) € Cy, implies that —w=!(ww)) € Ay. Thus, we
have —w™!(w;’) € Ay N PV and so there is some k € J such that w™'(w)) = —w)/ (see
[Bou02, VI, §2.2, Proposition 5)).

Claim 1 : For j # i, we have w(w]) # @, .

Suppose the contrary, then
% v
w; w;
w_1< +YD>=J —YDZ

nj nj

4

and by the Lemma [2.1.2] there exists some v € W such that vw™! (:—] + wV> € Ay and
J

K3
thus Y
1> (vw™! <]+wiv>,vw_1(a0) :<]+wiv,ozo>:27
n; N’ n;

cd

a contradiction.
Claim 2 : For j # i, we have <wjv,w(ozk)> £ 0.

ndeed, for eac , we have (wsp) Y (w)!) = —sp(w)) = —w) € —Cy and because
Indeed, fi h k' # k h 1 Y M v C db

¢(w) is minimal, this implies that ¢(wsy) = ¢(w) + 1 and thus w(ay) € ®*. This yields

<w*1(w}/) ozk/> = <w}-/,w(ak/)> > 0 for each k' # k. If <w\/ w(ak)> =0, then w™! (@) €

N \/ Y
Co and so w™? ( ) € Ao N PY and we may choose k' # k in J such that w~! (?) = w).

Taking the pairing of this equation against w™!(a;) yields 1/n; € Z, i.e. n; = 1 and
w™!(w)) = w),. Now, the action of W on PY/Q" being trivial, we have that @) = @),
(mod Q) and because n; = nj = 1, this implies &' = j and thus w™'(w)) = @}. The
Claim 1 forbids this, so our assumption that < wy, (ak)> = (0 was wrong.

Claim 3 : We have w(ay) = —ap.
Indeed, we have seen that w(ay) € @ for k' # k and because w # 1, this yields w(ay) € .

Now, for j # i, we have

o e = () o)

and <w_1( ), ak> # 0 by the Claim 2, so —1 < ( ) k> < 0 and it is an integer,
so it equals —1 and thus

Vi # 1, <w s w(ag)) = —n;
13
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and we already have (@;, w(oy,)) = (w™ (@), ar) = =1 = —n;. This gives that w(ay) =
—ay, as claimed.
Let j € I. For j' # i, we compute

w) w)
(o5 o)~ (o () o)
nj nj

and this is non-negative because w!(a;;) € ®T. This holds because we must have £(w™1s;) =
{(sjw) = €(w) + 1 since (syw) (@) = w(w)') € —Cy and ¢(w) is minimal with respect

to this property. On the other hand, we have

wY wY
() reta)=re (o) )20
j 15

>-1

w! _
w (]> + wz\/ € Cp.

nj

This proves that

Moreover, using the Claim 3 we get

w w w
<w <]) +w;/,ao> =1+ <],w_1(ao)> =1- <j,o¢k> <1
y nj U

v R
and thus w (%) +w, € Ay, and toyw € Q as required.

Now, since tpvw € ), the Lemmae |2.2.5| and |2.2.6| are valid for w and let v := wwi_l

where w; = fwéwo is the element from the Proposition 2.2.1[ By these Lemmae, we have
v(a;) = —w(o) = oy and, if j # i, we have v(cy;) € IT except in the case where v(a;) = —ap,

sow; ' (aj) = —w™ () = ay with k such that —w™!(w)) = @) = —w; ' (w}). In this case,

we have oj = w;(ag) = —ap, which is excluded. Hence we get v(II) C ®* and v = 1. O

Remark 2.2.13. The above characterization may also be used to generalize the construction
of the w;’s to PV. More precisely, for any X € PV, consider the element wy with minimal
length among those w € W such that X € wwo(CT)) and define uy = tywy € I/I//\a Note that
fori e J, we have w; = Ugy € Q. The assignment X — u)y results in a well-defined map

PY L W,
We finish this section by giving the vertices of the polytope Fpv.

Proposition 2.2.14. Let B, be the set of all isobarycenters of points in {0} U {w;/}jej
with a non-zero coefficient with respect to the origin. In other words,

1 Vv /
= —_— PR C
B, |J’|+1E w;; JCJ
jeJ’

@y Ay _ ,
={0}U P ; 1<EkE<|J| and ij€J, Yj.

Then the vertices of the polytope Fpv are given by

v
vert(Fpv) = B, U {w’ } .
iel\J

ng

In particular, if |J| > 1 (i.e. if ® is of type Aps1, Dy or Eg), then |vert(Fpv)| > r+1, so
the cellular decomposition from the Corollary|2.2.11] is no longer simplicial.

14
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Proof. Denote V := By, U{w;’ /ni}icpy. If J =0, then By, = {0} and the statement is just
the last corollary from [Bou02, VI, §2.2]. So we may assume that J is non-empty. Denote

Viel, Hi:={AeV"; (\,a;) =0} and Hp:={AeV"; (A, ) =1}.
We also introduce the following affine hyperplanes
vy e J, HJQ = eV, (Nag+a;) =1}

By construction, any facet of Fpv is of the form Fpv N H; for some 0 < i < r or Fpv N HJQ
for some j € J. Therefore, any face f of Fpv is of the form

f=Fpun | ()H:in () HY
i€ly JEJ;
for some subsets Iy C I and Jy C J such that |I¢| + |J¢| = codim r,, (f) = r — dim(f). In
particular

Vo € vert(Fpv), 31, €1, 3J, € J 5 |L|+|Jo| =7 and {v} =Fpv | () Hin () HY
1€1y Jj€Jy

It is straightforward to check that any point of V is in at least r hyperplanes among
{Hi,H? ;1el, jeJ}, soV Cvert(Fpv).

Conversely, let v € vert(Fpv) and take I, and J, as above.

Assume first that I, N J, # 0 and let k € I, N J,. As (v,a0+ i) = 1 and (v, ) = 0,
we get (v, ap) = 1. Since v € Fpv, this implies that (v, ;) =0 for any j € J, so J, = J. If
J =1, then v =0 € V. Otherwise, there is some ¢ € I\ J with (v, ay) > 0, so £ ¢ I,, and we
have

(= =rn( O mom) crn [ Qmo N ) =0

n
¢ o#icl jeJ icl, jeds

thus v = w)//ng € V. So if I, N J, is non-empty, then v € V.
Now, if I, N J, = () we have

1 vV 0
75 w] ¢ C FpvN ||Hzﬂ||H] = {v}
\J \ +1

v jeTy iel, jedy

and thusv:ﬁz w/ eV. O

j€Jv
Example 2.2.15. The following figures display the fundamental domain Fpv inside the

fundamental alcove, itself inside the fundamental chamber for the respective root data of
type Ao, By and Bs.

2.3. The general case.

We now have to see what happens if the W-lattice Y is such that Q¥ C Y C PV. To
simplify notations of this section, we identify a lattice L C V* with its translation group
t(L) C Aff(V*). We shall give a fundamental domain for the intermediate affine Weyl group
Wy :=t(Y) x W and prove that the quotient map is injective on it. It will be described as
a polytopal complex. In this paper, by a polytopal complex we mean a finite union of closed
convex polytopes, each one of which intersecting any other one along a common facet. For a
more general definition and treatment of polytopal complexes, we refer the reader to [Zie95,
Chapter 5, §5.1].

First, we shall identify Y with a subgroup of 2. In fact, there is a correspondence between
W-lattices Q¥ C A C P and the subgroups of Q. In order to state this correspondence
properly, we temporarily drop the letter Y and we work in the root system @ only.

15
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OéOZOé-i-B

FIGURE 1. The fundamental domain Fpv (in green) inside Ap (in blue) inside
the Weyl chamber Cy (in gray) in type As.
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FIGURE 2. The fundamental domain Fpv (in green) inside Ay (in blue) inside
the Weyl chamber Cy (in gray) in type By = Cs.

Proposition 2.3.1. Recall that V[/;a ~ W, x Q and denote by
T V[/Zjl —
the natural projection. Given a W-lattice Q¥ C A C PV, we define a subgroup Wy :=

AxW < W//\a Then we have a bijective correspondence

{A; QY CACPYisaW-lattice} & {H < Q}
A > Qp i=7m(Wy)
7 L (H)NPY = A(H) — H
Moreover, for a W-lattice Q¥ C A C PV, we have
[Q: Q] =[PV : A,

or, equivalently

Q| =[A: QY]
Finally, we have a decomposition

WA ~ Wa Dal QA.
Proof. First, we prove that the maps Q2 and A(e) are well-defined. It is clear that, given
a W-lattice A, the set Qp = (A X W) = {¢ € Wy ; ¢(Ag) = Aoy} is a subgroup of Q.

Conversely, le H < § be a subgroup. We have that A(H) = 7~ '(H)NPV is a subgroup of W,
16



FUNDAMENTAL DOMAINS FOR EXTENDED AFFINE WEYL GROUPS

'd0:a+2ﬁ+2’y:w2§
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FIGURE 3. The fundamental domain Fpv (in green) inside the fundamental
alcove Ay (in blue) in type Bs.

and since A(H) C PY, A(H) is countable, hence discrete. We readily have Q¥ C A(H) C PV,
which gives rk (A(H)) = rk (Q) = rk (®). Moreover, if z € A(H) and w € W, then we have
m(x) = 7(x-tow) = 7(tow- x) (recall that  is abelian) so wz € 7~ '(H) that is, wx € A(H)
and A(H) is indeed a W-lattice lying between QY and PV.

We have to prove that AoQe = id and Q,(e) = id. Take a W-lattice A between Q" and P
and let us show that A(Qx) = A. If x € A, then p € PY and by construction, m(t,) € m(A %
W) so p € n=L(x(Wa)) N PY % A(Q4). On the other hand, if p € 7=1(x(W,)) N PV, then
there are v € A and w € W such that 7 (t,) = 7(t,w), thatis, 1 = m(t,2wt—,) = m(t, (W)
Hence t,_(w € Wa, which means that v —w(u) € QY C A, but since v € A and A is a
W-lattice, we have pu € A.

Now, let H < Q be a subgroup and let us prove that Qx) = H. Let x € Qp) =
7(Wa())- There exist t,w € A(H) x W such that

Wa
W
z=7(t,w)=m(t,l- tow) = 7(t,) m(tow) = w(t
(u) (u ow) (u)(O) (u)
=1
and this is in H because p € A(H) = 7 }(H) N PV, so z € H. Now, if y € H, then

we have y = m(t,w) for some p € PV and w € W because 7 is onto, but the same
calculation as above shows that y = 7(t,w) = 7(t,), so u € PY N7 Y(H) = A(H) and thus
y € T(Wam)) = Qasr), as required.
Next, the fact that [PV : A]- [A: QY] = [PV : QY] = || ensures that the two equalities
are indeed equivalent. But since ker(m) = W, < W) we have
Qp = 7(Wa) =im (W) = Q) ~ Wa/ ker(my, ) = Wa/ker(r) = Wa/Wa ~ A/QV.
Finally, using the above equality we see that the short exact sequence

1 Wa Wa QA 1

17
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is exact. It splits since the short exact sequence

1 Wa W, ——Q 1
is split. O
We have a useful characterization of elements of 25, once A is known.

Lemma 2.3.2. Let A be a W-lattice between Q¥ and PV and consider w;,w; € Q. Then,
the following holds

a) We have w; € Qy if and only if @, € A.

b) The group Q2 acts on the set Ay N A.

c) We have wiQp = w;Qn if and only if @) — wjv €A.
Proof. a) This is obvious, we have

W €EQ & w; €W & @’ =wi(0) €A

b) If A € Ap N A, then in particular we have A € Ay N PY so by [Bou02, VI, §2.2,
Proposition 5] there is some k € J such that A = w)/ € A. Thus, if w; € Qp, we
have w;(A\) = wi(w)) = wi(w)) + @, € A because w, € A by a) and w;(w)) € A
since A is a W-lattice.

c¢) First, we compute

-1, _ N1 a1 — -1,
Wi wi = (twjvw]) by wi = wj by _oywi = tw;1(wiv_wjv)wj wj.

Thus, we have

w; € Q) t Tlw; € Q JH(w —w)) e [~ €A
i A = w__l(w.v—w;/)w‘ w; €3N & W; (wz wj) € < W @y €A
J 2

-1
Wi J J
|

J

Return to the case A = Y and recall the notations from the preceding subsection: I =
{1,...,r}, I ={cy, i € I}, a9 = > ;njoyy and J = {i € I ; n; = 1}. Recall also that the

polytope o
F:=Fpv={ € Ay; VjeJ (\ap+a;) <1}

given in Proposition is a fundamental domain for Q in Ay.
Proposition 2.3.3. The following holds
Vw € Q\ {1}, codimp(F NwF) = 1.
More precisely, for 1 # w € §Q, the polytopes F and wF intersect along their common facet
Fn{xeV*; (\ao+a;) =1}, where j € J is such that w(w)) = 0.

Proof. We can write w = w; for some ¢ € J. Observe that if w(wjv) = 0 then, using the
Lemmae and we compute for A € V*,
<w*1()\), Qo + ozj> = <wi_1)\ + w}/,ao + aj> =24+ (N, wiap + wij) =2 — (X, a0 + ) .
Hence, we have
(2) wi(w]) =0 = YA e V", (A ao+ o)) + (wi(A), ao + o) = 2.
This being said, let us prove that
Fn{x; MNay+a;) =1} = FNuwF.

Let A € F such that (A, a0+ ;) = 1. By , we have <w*1()\),oeo + aj> =1 and if k # j,
we have w;ay, = oy for some k' € J and we compute

(W), a0 + k) = (wi A+ @], a0 + o) =1+ (N o — o) = (A, ag + o) < 1.
Hence w=(\) € F and so A € FNwF.

18
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Conversely, if A € FNwkF, then by we get
1> Na+a;) =2 — <w_1()\),a0 +aj)>1

<1

hence (A, a9 + ;) = 1, as required. O
Corollary 2.3.4. To the W-lattice Y we associate the following subgroup Qy of Q from

Proposition [2:3.1):
y ={p € Wy ; ¢(Ap) = Ao} < Q.

Choose a representative w € § for each coset [w] € Q/Qy and define
Fy = U W - va.
[UJ]EQ/QY
Then Fy is a polytopal complex and is a fundamental domain for the action of Qy on Ag.

Proof. By the Proposition for every subset A C Q, the subset | J, 4 aF is a connected
closed polytopal complex.

The rest of this proof is very standard. Let k := [PY : Y] = [ : Qy], choose representa-
tives 1, ...,z € Q such that Q/Qy = {z;Qy, 1 < i < k} and define Fy := Ule z; Fpv.
Let A € Ay. Since Fpv is a fundamental domain for VI/ZM there is some w € ) such that
w™H(\) € Fpv and writing w = uz; for some 1 < i < k and some u € Qy, we obtain
uwI\ € x;Fpv C Fy. On the other hand, if u € Qy, then

Fy Nuly = U z; Fpv ﬁ’u,ijpv = UJIZ'(FP\/ ﬁx;lu:chpv).
1<i, i<k 2
If Fy NuFy has non-empty interior, then there are some 1 j such that FpvNuz;x; L Fpv has
non-empty interior. This implies that ux;z; " = 1, thus x;x leQysoi=jandu=1 0O

From this, we deduce the main result of this section:

Theorem 2.3.5. If K is only supposed to be compact, let Wy :=t(Y)xW (whereY =Y (T)
is the cocharacter lattice) and consider the subgroup
Qy ={o € Wy ;5 ¢(Ag) = Ao} <0
and choose a representative for each coset in /Qy. Define
Fy = U W - va,
[w]GQ/Qy

where Fpv is the fundamental domain for Q in Ay given in Proposition . Then Fy is
a polytopal complex and is a fundamental domain for the action of Wy ~ Wy x Qy on V*.

We still have to investigate the question of the injectivity of the exponential map on Fy-.
This is done in the following proposition:

Proposition 2.3.6. The hypothesis of the Lemma [1 is fulfilled under the ones of the
Theorem [2.3.5, In other words, one has

Fy N (Y \ {0} + Fy) = 0.

Proof. Let A\, X' € Fy and suppose by contradiction that 0 # pu := A — X € Y. In particular
we have u € PV and since \, ' € Ay, we have (u,a) € {—1,0,1} for every a € ®. Without
loss of generality, as Qy acts on Y, we may assume that the trivial coset in Q/Qy is
represented by 1 € €.

First, suppose that u ¢ Ag. Since (i, ag)
Then, we have 1 > (N, ;) = (), al> 1>
since \' € Ay and therefore ' = w)’.

< 1, we may choose i € I such that (u, ;) = —1.
1so (N,a;) =1 and thus (N, ax) =0 for k # i
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Now, if there is some j such that (i, o) # 0, then (i, ;) = 1 and similarly as above, we
get (A, o) =1 and A = w}/. Notice that j € J because \ € Aj.

Claim : For every h € J and every w € , we have w = wy, as soon as w,/ € wFpv.
Indeed, it suffices to show that wil(w,f) = 0. Suppose otherwise, then there exists £ € J
such that w™!(w)/) = @)’ and this would be in Fpv, a contradiction since (@), ap + ap) = 2
and £ € J.

This proves that if A = w}/ € wFpv for some w, then w = w; and similarly for X'. Since
Fy is the union of the wFpv for w describing a set of coset representatives modulo 2y, and
since A — \ = w}/ — w;/ € Y, we must have w;{dy = w;Qy by the Lemma and thus
A = ), a contradiction.

Hence, if p ¢ Ay, then for all k # i, we have (u,ap) = 0, so p = —w, € Y and
N = A+ w@,). Henceforth, N = @, € Y and the only w € Q such that @) € wFpv is w = w;
by the claim and this is in 2y by the Lemma By definition of Fy and since the trivial
coset in Q/Qy is represented by 1, this implies that @ € Y N Fpv C PY N Fpv = {0} by
the Lemma [2.2.10} a contradiction again.

The only remaining possibility is u € Ag. But in this case y € YN Ay and p = w) € Y
for some ¢ € J. Therefore, we obtain as above (A, ;) = (N, ;) + 1, so (A, ;) = 1 and so
A =@, €Y, but we have seen this to be impossible. O

Corollary 2.3.7. If K is a compact connected Lie group and if Y := X(T)V is the cochar-
acter lattice of the chosen mazximal torus T < K, let Fy be the fundamental domain from
the Theorem m Then exp(Fy) is homeomorphic to the polytopal complex Fy and is a
fundamental domain for the action of W on T. In particular, the decomposition

T= H w - exp(Fy)
weW

1s cellular, reqular and W -equivariant.

There is another natural choice for the fundamental domain of Wy in V*, which is a
convex polytope. Unfortunately, the projection map fails to be injective on this domain in
general (see Example[2.3.10), making it unsuitable for cell transport to the torus 7 via exp.

Proposition 2.3.8. Let
Jy={jeJ; wjeY}={jeJ; wje}
and define o
Fy:={ e Ay; VjeJy, N\ay+aj) <1}
Then Fy, is a convez polytope and is a fundamental domain for Wy = t(Y) x W on V*.

Proof. We may proceed as in the adjoint case, replacing €2 by Qy . It clearly suffices to show
that Iy, is a fundamental domain for Qy in Ay.

First, since Fy, is an intersection of closed half-spaces, it is a convex polytope in Ay. In
particular, it is closed and connected.
If w; € Qy and A € Fy,, then there exists j € J such that wi(wjv) = 0 and we have j € Jy

since Qy acts on Y N Ay. We have
<wi(>\), o + Oél'> =2 <)\, oo + Oéj>
and
Fynw 'F, c Agn{peV*; (uap+a;) =1}

and thus F}, Nw; '}, has empty interior in Ay

Let now A € Ag and choose i € Jy such that (A, ;) = maxjes, (A, ;). If (A, ap +a;) <1,
then A € Fy.. Otherwise, choose j € Jy such that wi(w}/) # 0 and take some k € J such
that wi(wjv) = w). Then k € Jy because j € Jy and w; € Qy by the Lemma [2.3.2] Hence

<wi_1()\),a0 + aj> =14+ N\ ak—a;) <1

<0
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Now, if j € Jy is such that w;(w}) = 0, then w;(a;) = —ag and
<wi_1(/\),040 +aj)=2—-(N\a+a;) <1
—_——
>1
and thus w; '(\) € FY, as required. O

Reproducing the proof of the Proposition verbatim in this case yields the following
description of the vertices of FY,:

Proposition 2.3.9. Define the following set of isobarycenters

where Jy ={j € J ; w}/ € Y'}. Then the vertices of the polytope Fy, are given by

v
vert(Fy,) = BY, U {wl} .
ng iel\Jy
Example 2.3.10. This fundamental domain Iy, has the bad taste of containing different
points that are congruent modulo Y .

For instance, let (X(T),®,Y(T),®") be the root datum of the Lie group SU4(C)/{%1},
with maximal torus being the the image in the quotient of the diagonal matrices of SUy. In
particular, ® is of type As. Denote the simple roots by 11 := {«, 8,7} with extended Dynkin
diagram

—ag
a B v

Let also @/, w\ﬁ/ and w¥ be the corresponding fundamental weights. We have (see (Hum'72,
§13.2, Table 1])

3a+20+7v 200+ 48 + 2y o+ 26+ 3y
Fam Ty o WEE Ty T

and every fundamental weight is minuscule since the highest root is ag = o+ S+ . In this
case, the cocharacter lattice Y =Y (T) is given by

% % o 44" v v
Y =Z{(a"YSZ(B >@Z<2> = Z{(a"YDL{B)DL(y).
We have
v v vV .V
WV —aV ey wg:%ﬁﬂ/gy’ w’\Y/ZW%y

and hence Q¥ CY G PV. Furthermore, Y N Ag = {wy} and

Fy={ e Ay; Nap+8) <1} = {)\EconV(O,w;/,w\B/,w,X) (A a+284) <1}

So @) and wX are distinct elements of Iy, and however,

w,\y/—w;/:wg—av—ﬁVEY.
Note that, in this case we have

Q= (wa) = {1,twg(sasf3sy),twg(s/gsysasm,th (sy585a)} ~ Z/AZ
— ~

Wa wg Wy

and
Qy = (wg) ={1,wg} <Q and Q/Qy ~ 7 (SULC)/{£1}) ~Z/27Z.
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By the Proposition we see that Y is the only W -lattice that stands strictly between QV
and PV. Thus, the group SU4(C)/{+£1} is the only non-adjoint and non-simply-connected
compact Lie group of type As.

Note that in this case, we have indeed

We W3 Wy Wa+ W WE+ Wy We+ Wy Wa+ Wa+ Wy
Fpv = Ze ZF .
PV conv ( ) 2 ) 2 ’ 2 ’ 3 ) 3 3 3 3 4

B+

FIGURE 4. The fundamental alcove Ay = conv(0, @y, @g, @) in type As.

We “
0
wp

FIGURE 5. The fundamental domain Fpv for Q ~ Z /47 in Ap.

Wy TWry
@, e e
Wa — v ’
0 (( 0
0

(A) A fundamental do- (B) The domain Fy, from the (¢) Another choice for the
main Fy := Fpv Uw,Fpv Proposition @ domain Fy := Fpv Uw,Fpv.
as in the Theorem

FIGURE 6. Fundamental domains Fy and F}, inside A in type As.
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