Sept Théorèmes de Géométrie Algébrique

Arthur Garnier

1^{er} septembre 2017

Théorème 1. (Grothendieck)

La dimension cohomologique d'un espace noethérien est au plus égale à sa dimension combinatoire.

Plus précisément, soit X un espace topologique noethérien, de dimension $n \geq 0$. Alors, pour tout faisceau abélien \mathcal{F} sur X, on a

$$\forall i > n, \ H^i(X, \mathcal{F}) = 0.$$

Démonstration. Nous allons procéder par réductions successives des différents cas possibles. Tout d'abord, on rappelle que si $Y \subset X$ est un fermé et si $U := X \setminus Y$, en notant les injections $j: Y \hookrightarrow X$ et $i: U \hookrightarrow X$, ainsi que $\mathcal{F}_Y := j_*(\mathcal{F}_{|Y})$ et $\mathcal{F}_U := i_!(\mathcal{F}_{|U})$, on a une suite exacte courte de faisceaux

$$0 \longrightarrow \mathcal{F}_U \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}_Y \longrightarrow 0. \tag{1}$$

On raisonne par récurrence sur $n = \dim X$.

Tout d'abord, on peut supposer X irréductible. En effet, si X est réductible, considérons Y une de ses composantes irréductibles (Y est fermé) et soit $U := X \setminus Y$. Pour un faisceau abélien \mathcal{F} sur X, la suite exacte courte (1) donne une suite exacte longue en cohomologie

$$\cdots \longrightarrow H^{i-1}(X, \mathcal{F}_Y) \longrightarrow H^i(X, \mathcal{F}_U) \longrightarrow H^i(X, \mathcal{F}) \longrightarrow H^i(X, \mathcal{F}_Y) \stackrel{\delta}{\longrightarrow} H^{i+1}(X, \mathcal{F}_U) \longrightarrow \cdots$$

et il suffit alors de montrer que

$$H^i(X, \mathcal{F}_U) = 0 = H^i(X, \mathcal{F}_Y), \ \forall i > n.$$

Mais, comme Y est un fermé irréductible, on a

$$H^{i}(X, \mathcal{F}_{Y}) = H^{i}(X, j_{*}(\mathcal{F}_{|Y})) = H^{i}(Y, \mathcal{F}_{|Y}) = 0.$$

Montrons ensuite qu'en notant temporairement $U \stackrel{k}{\hookrightarrow} \overline{U} \stackrel{i}{\hookrightarrow} X$ et $j := i \circ k$, on a

$$i_*k_!\mathcal{F}_{|U}\simeq j_!\mathcal{F}_{|U}\stackrel{\mathrm{def}}{=}\mathcal{F}_U.$$

Posons $\mathcal{G} := \mathcal{F}_{|U}$. Alors, $\mathcal{F}_U = j_! \mathcal{G} = \mathcal{H}^+$. Pour un ouvert $V \subseteq U$, soit le morphisme naturel $\widetilde{\eta}_V : \mathcal{G}(V) \to \Gamma(V, k_! \mathcal{G})$. Ceci induit un diagramme commutatif

$$\begin{array}{c}
j_! \mathcal{G} \xrightarrow{\eta} i_* k_! \mathcal{G} \\
\downarrow^{\text{can.}} & \widetilde{\eta} \\
\mathcal{H} & \end{array}$$

Montrons que $\eta: \mathcal{F}_U \to i_*k_!\mathcal{G}$ est un isomorphisme en raisonnant sur les fibres. Soit donc $x \in X$. Si $x \notin \overline{U}$, alors $(j_!\mathcal{G})_x = 0 = (i_*k_!\mathcal{G})_x$ et η_x est trivialement un isomorphisme. De même, si $x \in \overline{U} \setminus U$, les fibres sont nulles. Si $x \in U$, on a $(j_!\mathcal{G})_x \simeq \mathcal{G}_x$ et $(i_*k_!\mathcal{G})_x \simeq (k_!\mathcal{G})_x \simeq \mathcal{G}_x$ et sous ces isomorphismes, η_x correspond à l'identité, donc η_x et un isomorphisme pour tout $x \in X$ et donc η est un isomorphisme de faisceaux. On en tire

$$H^{i}(X, \mathcal{F}_{U}) = H^{i}(X, i_{*}k_{!}\mathcal{F}_{|U}) \simeq H^{i}(\overline{U}, k_{!}\mathcal{F}_{|U}).$$

Or, \overline{U} possède une composante irréductible de moins que X et donc, quitte à faire une récurrence sur les nombre de composantes irréductibles, on peut supposer ce dernier groupe de

cohomologie nul, et on obtient alors le résultat pour X.

Supposons donc X irréductible et de dimension 0 dans un premier temps. Alors, la topologie sur X est grossière car sinon, X contiendrait un fermé propre et on aurait dim $X \ge 1$. On a donc une équivalence de catégories abéliennes

$$\begin{array}{ccc} \mathfrak{Ab}(X) & \to & \mathfrak{Ab} \\ \mathcal{F} & \mapsto & \Gamma(X,\mathcal{F}) \end{array}$$

et en particulier, $\Gamma(X,?)$ est exact et donc

$$H^{i}(X, \mathcal{F}) = 0, \ \forall i > 0, \ \forall \mathcal{F} \in \mathfrak{Ab}(X).$$

Supposons X irréductible de dimension $n \geq 1$ et supposons le résultat vrai pour les espaces de dimension < n. Soit aussi \mathcal{F} un faisceau abélien sur X. Posons $B := \bigcup_{U \subseteq X} \Gamma(U, \mathcal{F})$ et soit A l'ensemble des parties finies de B. Si $\alpha \in A$, on note \mathcal{F}_{α} le sous-faisceau de \mathcal{F} engendré par les sections dans α . Alors, A est un système codirect et on a

$$\mathcal{F} = \varinjlim_{\alpha \in A} \mathcal{F}_{\alpha}.$$

En effet, pour $\alpha \subseteq \beta$, posons $\iota_{\alpha,\beta} : \mathcal{F}_{\alpha} \hookrightarrow \mathcal{F}_{\beta}$ l'injection canonique et soit \mathcal{G} un faisceau, muni de morphismes $\varphi_{\alpha} : \mathcal{F}_{\alpha} \to \mathcal{G}$ vérifiant la condition de compatibilité de la limite inductive. Soient U un ouvert de X et soit $s \in \mathcal{F}(U)$. Si $s \in \alpha$, soit $\chi_U(s) := \varphi_{\alpha}(s)$. Ceci est bien défini car si $s \in \alpha \cap \beta$, on a $\iota_{\alpha \cap \beta,\beta}(s) = s = \iota_{\alpha \cap \beta,\alpha}(s)$, d'où $\varphi_{\alpha}(s) = \varphi_{\alpha \cap \beta}(s) = \varphi_{\beta}(s)$. Cela induit un morphisme de faisceaux $\chi : \mathcal{F} \to \mathcal{G}$ rendant commutatif le diagramme suivant, pour tout $\alpha \in A$,

$$\begin{array}{c}
\mathcal{F} \xrightarrow{\chi} \mathcal{G} \\
\downarrow \\
\mathcal{F}_{\alpha}
\end{array}$$

et χ dit être ainsi défini pour avoir la commutativité ci-dessus. Ainsi, \mathcal{F} possède la propriété universelle de la limite inductive et donc $\mathcal{F} \simeq \varinjlim \mathcal{F}_{\alpha}$. On a de plus, par exactitude du foncteur \varinjlim ,

$$H^{i}(X, \mathcal{F}) \simeq H^{i}(X, \varinjlim \mathcal{F}_{\alpha}) \simeq \varinjlim H^{i}(X, \mathcal{F}_{\alpha})$$

et il suffit donc de montrer que le résultat est vrai pour les faisceaux de type fini (engendrés par un nombre fini de sections). Ensuite, si $\mathcal{F} = \mathcal{F}_{\alpha}$ pour $\alpha \in A$, soit $\mu(\mathcal{F})$ le nombre minimal t de générateurs de \mathcal{F} . Si $t \geq 2$, on écrit $\mathcal{F} = \mathcal{F}_{\{s_1,\ldots,s_t\}}$ et soit $\mathcal{F}' := \mathcal{F}_{\{s_1\}}$. Alors, $\mathcal{F}'' := \mathcal{F}/\mathcal{F}'$ est engendré par les images de s_2,\ldots,s_t dans le quotient, donc $\mu(\mathcal{F}') = 1$, $\mu(\mathcal{F}'') \leq t - 1$ et la suite exacte longue de cohomologie associée à la suite exacte courte

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

montre que, quitte à effectuer une récurrence sur le nombre minimal de sections engendrant \mathcal{F} , on peut supposer que \mathcal{F} est engendré par une seule section $s \in \mathcal{F}(U)$ pour un certain ouvert U de X. On a alors un épimorphisme $\mathbb{Z}_U \to \mathcal{F}$. En effet, on a $\mathbb{Z}_U = (\mathbb{Z}_U^-)^+$, où $\mathbb{Z}_U^-(V) = \mathbb{Z}(V)$ si $V \subseteq U$ et $\mathbb{Z}_U^-(V) = 0$ autrement. On considère alors $\chi(V) : \mathbb{Z}_U \to \mathcal{F}^- \to \mathcal{F} = \mathcal{F}_{\{s\}}$, défini par $\chi_V = 0$ si V n'est pas inclus dans U et si $V \subset U$, avec $\sigma \in \mathbb{Z}_U^-(V) = \mathbb{Z}(V) = \mathbb{Z}(V) = \mathbb{Z}(V)$ est connexe), alors $\chi_V(\sigma) := \sigma s_{|V|} \in \mathcal{F}^-(V)$ et ceci induit bien un morphisme $\overline{\chi} : \mathbb{Z}_U \to \mathcal{F}$. Il

est clair que $\overline{\chi}_x$ est surjectif pour tout $x \in X$, donc $\overline{\chi}$ est surjectif et si $\mathcal{R} := \ker \overline{\chi}$, on a une suite exacte courte de faisceaux abéliens

$$0 \longrightarrow \mathcal{R} \longrightarrow \mathbb{Z}_U \longrightarrow \mathcal{F} \longrightarrow 0$$

et par la suite exacte longue de cohomologie, il suffit de montrer que

$$H^i(X, \mathcal{R}) = 0 = H^i(X, \mathbb{Z}_U), \ \forall i > n.$$

Soient donc $U \subseteq X$ un ouvert et \mathcal{R} un sous-faisceau de \mathbb{Z}_U . On va montrer la double égalité ci-dessus. Si $\mathcal{R} = 0$, voir l'étape suivante. Sinon, $\Gamma(V_0, \mathcal{R}) \neq 0$ pour un certain ouvert $V_0 \subseteq U$. Le monomorphisme $\mathcal{R}_{|U} \hookrightarrow \mathbb{Z}_{U|U} \simeq \mathbb{Z}_{|U}$ permet d'identifier $\mathcal{R}_{|U}$ avec un sous-faisceau \mathcal{J} de $\mathbb{Z}_{|U}$. Considérons

$$d:=\min\{k\in\mathbb{N}^*\ ;\ \exists W\subseteq U\ ;\ k\in\Gamma(W,\mathcal{J})\}=\min_{W\subset U}(\Gamma(W,\mathcal{J})\cap\mathbb{N}^*)$$

et soit $V \subseteq U$ un ouvert tel que $d \in \Gamma(V, \mathcal{J})$. d correspond à l'élément $m \in \Gamma(V, \mathcal{R}) = \Gamma(V, \mathcal{R}_{|U})$ et soit $\mathbb{Z}_V \xrightarrow{\varphi} \mathcal{R}$ le monomorphisme défini par

$$W \subseteq V \Rightarrow \begin{array}{ccc} \mathbb{Z}_{V}^{-}(W) = \mathbb{Z} & \to & \mathcal{R}(W) \\ 1 & \mapsto & m_{|W|} \end{array}$$

et considérons le monomorphisme induit $\widetilde{\varphi}: \mathbb{Z}_{V|V} \hookrightarrow \mathcal{R}_{|V}$. Soit $x \in V$ et considérons

$$\widetilde{\varphi}_x$$
: $(\mathbb{Z}_{|V})_x \hookrightarrow (\mathcal{R}_{|V})_x = \mathcal{R}_x$

$$1 \mapsto m_x$$

Soit $s_x \in \mathcal{R}_x$, que l'on écrit $s_x = [\mathcal{R}(W), s]$, avec $s \in \mathcal{R}(W)$ et $x \in W \subset V \subset U$. À s correspond $\delta \in \Gamma(W, \mathcal{J})$. On écrit la division euclidienne $\delta = qd + r$ avec r < d. Si $r \neq 0$, alors $r \in \Gamma(W, \mathcal{J})$ et ceci contredirait la minimalité de d. Donc r = 0 et donc $s_x = \widetilde{\varphi}_x(q)$ et donc $\widetilde{\varphi}_x$ est un isomorphisme pour tout $x \in V$ et donc $\widetilde{\varphi}: \mathbb{Z}_{V|V} \to \mathcal{R}_{|V}$ est un isomorphisme. Ainsi, on a trouvé un ouvert $V \subseteq U$ et un monomorphisme $\mathbb{Z}_V \to \mathcal{R}$ induisant un isomorphisme sur V. Si V = X, on est ramené à l'étape suivante. Sinon, on a une suite exacte courte

$$0 \longrightarrow \mathbb{Z}_V \xrightarrow{\varphi} \mathcal{R} \longrightarrow \mathcal{R} /_{\mathbb{Z}_V} \longrightarrow 0$$
.

Soient $Z := X \setminus V$ et $\mathcal{G} := \mathcal{R} /_{\mathbb{Z}_V}$, ainsi que l'injection $\iota : Z \hookrightarrow X$. Alors, Z est un fermé propre de X, donc dim Z < n et donc le résultat est vrai pour Z. Comme $\mathcal{G}_{|V} = 0$, on a un isomorphisme canonique $\mathcal{G} \simeq \mathcal{G}_Z$ et il vient alors

$$H^i(X,\mathcal{G}) \simeq H^i(X,\mathcal{G}_Z) = H^i(X,\iota_*\iota^{-1}\mathcal{G}) \simeq H^i(Z,\iota^{-1}\mathcal{G}) = H^i(Z,\mathcal{G}_{|Z})$$

et en utilisant l'étape suivante et la suite exacte longue de cohomologie, on obtient le résultat : $H^i(X, \mathcal{R}) = 0$.

On est alors ramené à prouver le résultat suivant : Si $U \subseteq X$ est un ouvert, alors $H^i(X, \mathbb{Z}_U) = 0$ pour $i > n = \dim X$. Si $U = \emptyset$, ceci est évident. Sinon, soit le fermé propre $Y := X \setminus U$. On a une suite exacte courte

$$0 \longrightarrow \mathbb{Z}_U \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}_Y \longrightarrow 0.$$

Si U est propre, alors Y est un fermé propre non vide de X et donc $\dim Y < n$ et on a le résultat pour Y, d'où

$$H^i(X, \mathbb{Z}_Y) = H^i(X, i_* \mathbb{Z}_{|Y}) = H^i(Y, \mathbb{Z}_{|Y}) = 0, \ \forall i \ge n$$

et par la suite exacte longue de cohomologie, il suffit de montrer que $H^i(X,\mathbb{Z})=0$ pour i>n. On est aussi ramené à ce cas si U=X puisque dans ce cas $\mathbb{Z}=\mathbb{Z}_U$. Mais on a le résultat, puisque par irréductibilité de X, le faisceau constant \mathbb{Z} sur X est flasque et ceci achève la démonstration.

Théorème 2. (Suite spectrale de Leray)

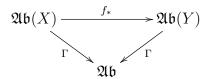
Soit $f: X \to Y$ une application continue entre espaces topologiques. Alors, pour tout faisceau abélien \mathcal{F} sur X, on a une suite spectrale cohomologique de premier quadrant convergente

$$E_2^{p,q} = H^p(Y, R^q f_* \mathcal{F}) \Longrightarrow H^{p+q}(X, \mathcal{F}).$$

Démonstration. Les catégories abéliennes $\mathfrak{Ab}(X)$ et $\mathfrak{Ab}(Y)$ possèdent assez d'objets injectifs. Ensuite, si $\mathcal{J} \in \mathfrak{Ab}(X)$ est un faisceau injectif, alors \mathcal{J} est flasque, donc $f_*\mathcal{J}$ est aussi flasque. Ainsi, le foncteur $f_* : \mathfrak{Ab}(X) \to \mathfrak{Ab}(Y)$ envoie les injectifs sur des flasques, donc sur des $\Gamma(Y,?)$ -acycliques. De plus, les foncteurs $\Gamma(X,?)$ et $\Gamma(Y,?)$ sont exacts à gauche et comme, pour tout faisceau abélien \mathcal{H} sur X, on a

$$\Gamma(Y, f_*(\mathcal{H})) = \Gamma(f^{-1}(Y), \mathcal{H}) = \Gamma(X, \mathcal{H}),$$

le diagramme suivant commute



On peut alors appliquer le théorème de la suite spectrale de Grothendieck pour obtenir

$$E_2^{p,q} = R^p \Gamma(Y,?)(R^q f_*(\mathcal{F})) = H^p(Y,R^q f_*\mathcal{F})) \Longrightarrow R^{p+q} \Gamma(X,?)(\mathcal{F}) = H^{p+q}(X,\mathcal{F}).$$

<u>Corollaire</u> 1. Si $f: X \to Y$ est continue entre espaces topologiques et si \mathcal{F} est un faisceau abélien sur X, alors on a une suite exacte courte à cinq termes

$$0 \longrightarrow H^1(Y, f_*\mathcal{F}) \longrightarrow H^1(X, \mathcal{F}) \longrightarrow \Gamma(Y, R^1 f_*\mathcal{F}) \stackrel{d}{\longrightarrow} H^2(Y, f_*\mathcal{F}) \longrightarrow H^2(X, \mathcal{F}) .$$

Théorème 3. (Serre)

Soit \mathcal{F} un faisceau algébrique quasi-cohérent sur un schéma affine X. Alors, on a

$$\forall i > 0, \ H^i(X, \mathcal{F}) = 0.$$

Autrement dit : Sur un schéma affine, tout faisceau algébrique quasi-cohérent est acyclique.

Démonstration. Posons $R := \Gamma(X, \mathcal{O}_X)$ et $\mathcal{U} := \{D(f), f \in R\}$. On peut écrire $\mathcal{F} = \widetilde{M}$ pour un R-module M et soit $i : D(f) \hookrightarrow X$ l'inclusion. Pour $f, g \in R$, on a $(R_f)_g \simeq R_{fg}$ donc $(M_f)_g \simeq M_{fg}$ et si $D(g) \subseteq X$, il vient

$$\Gamma(D(g), D(f), \mathcal{F}) = \Gamma(D(g) \cap D(f), \mathcal{F}_{|D(f)}) = \Gamma(D(fg), \mathcal{F}) = M_{fg} = (M_f)_g$$

d'où

$$_{D(f)}\mathcal{F}\simeq\widetilde{M_f}=\Gamma(X,\mathcal{F})_f,$$

où M_f est considéré comme un R-module. Ainsi, $D(f)\mathcal{F} \simeq \Gamma(X,\mathcal{F})_f$ est quasi-cohérent. Par récurrence, on peut supposer que $H^i(X,\mathcal{F}) = 0$ pour tout 0 < i < n et tout faisceau algébrique quasi-cohérent \mathcal{F} sur X. Or, on a vu que $D(f)\mathcal{F}$ est quasi-cohérent, pour tout $D(f) \in \mathcal{U}$ et donc, pour 0 < i < n, il vient

$$H^{i}(D(f), \mathcal{F}_{|D(f)}) = H^{i}(X, i_{*}(\mathcal{F}_{|D(f)})) = H^{i}(X, j_{(f)}\mathcal{F}) = 0.$$

Maintenant, X est quasi-compact. En effet, si on a un recouvrement ouvert $X = \bigcup_{i \in I} U_i$, soit $V_i := X \setminus U_i = V(I_i)$ avec I_i un idéal de R et on a alors $\emptyset = \bigcap_i V(I_i) = V(\sum_i I_i)$. Si $\sum_i I_i$ était propre, il existerait un idéal maximal \mathfrak{m} de R contenant $\sum_i I_i$. Comme V(I) est l'ensemble des idéaux premiers de R contenant I, on a $\mathfrak{m} \in V(\mathfrak{m}) \neq \emptyset$ mais comme $\sum_i I_i \subseteq \mathfrak{m}$, on doit avoir $V(\mathfrak{m}) \subset V(\sum_i I_i) = \emptyset$ et ceci est absurde. Ainsi, on a $\sum_i I_i = R$ et il existe donc une partie finie $J \subset I$, des éléments $a_j \in R$ et $f_j \in I_j$ tels que $1 = \sum_{j \in J} a_j f_j$ et donc $X = \bigcup_{i \in J} U_i$ et X est bien quasi-compact.

Soit $\alpha \in H^n(X, \mathcal{F})$. On peut choisir un sous-recouvrement ouvert $\mathcal{V} \subset \mathcal{U}$ tel que l'image de α dans $H^n(X, \mathcal{V})$ soit nulle, pour tout $V \in \mathcal{V}$. Or, comme X est quasi-compact, on peut supposer que $\mathcal{V} = \{V_1, \ldots, V_p\}$ est fini, avec $V_i \in \mathcal{U}$. L'image de α dans $H^n(X, V_i, \mathcal{F})$ est nulle pour tout 1 < i < p et donc l'image de α dans

$$\bigoplus_{1 \leq i \leq p} H^n(X, V_i \mathcal{F}) \simeq H^n \left(X, \bigoplus_{1 \leq i \leq p} V_i \mathcal{F} \right)$$

est nulle. Ainsi, la suite exacte longue de cohomologie associée à la suite exacte courte de faisceaux quasi-cohérents

$$0 \longrightarrow \mathcal{F} \longrightarrow \bigoplus_{j \mid V_j} \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow 0$$

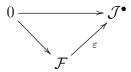
montre que $\alpha \in \delta(H^{n-1}(X,\mathcal{G}))$. Si n > 1, l'hypothèse de récurrence montre que $H^{n-1}(X,\mathcal{G}) = 0$. Si n = 1, on sait que le foncteur $\Gamma(X, -)$ est exact sur les faisceaux quasi-cohérents, donc $\delta = 0$ et dans tous les cas, on a $\alpha = 0$. Ceci montre que $H^n(X, \mathcal{F}) = 0$ et achève la démonstration.

Théorème 4. (Leray)

Soient X un espace topologique, \mathcal{F} un faisceau abélien sur X et $\mathcal{U} = (U_i)_{i \in I}$ un recouvrement de X par des ouverts dont toutes les intersections finies sont acycliques. Alors, on a

$$\check{H}^{\bullet}(\mathcal{U},\mathcal{F}) \simeq H^{\bullet}(X,\mathcal{F}).$$

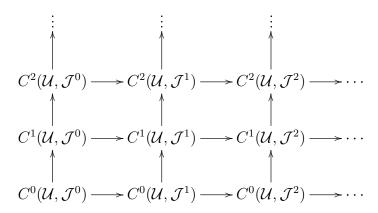
Démonstration. Choisissons



une résolution injective de \mathcal{F} dans $\mathfrak{Ab}(X)$. On considère le bicomplexe de premier quadrant (ainsi que ses suites spectrales)

$$C^{p,q} = {}^{II}E_0^{p,q} := \prod_{|\sigma| = q+1} \mathcal{J}^p(U_{\sigma}) = \prod_{i_0 < \dots < i_q} \mathcal{J}^p(U_{i_0} \cap \dots \cap U_{i_q}) = C^q(\mathcal{U}, \mathcal{J}^p),$$

que l'on peut visualiser par



Pour $\sigma\subset I$ avec $|\sigma|<\infty,$ on a que $\mathcal{J}^i_{|U_\sigma}$ est flasque (si $i\geq 0$) et comme on a

$$H^i(U_\sigma, \mathcal{F}_{|U_\sigma}) = 0, \ \forall i > 0,$$

la suite exacte longue du foncteur dérivé montre que la suite

$$0 \longrightarrow \mathcal{F}(U_{\sigma}) \longrightarrow \mathcal{J}^{0}(U_{\sigma}) \longrightarrow \mathcal{J}^{1}(U_{\sigma}) \longrightarrow \cdots$$

est exacte. Ainsi, la suite spectrale $\binom{II}{r}E_r^{p,q}_{r\geq 0}$ (filtration par lignes) s'effondre en première page et donne

$$^{II}E_1^{p,q} = H_h^p(^{II}E_0^{\bullet,q}) = \begin{cases} C^q(\mathcal{U}, \mathcal{F}) & \text{si } p = 0\\ 0 & \text{sinon} \end{cases}$$

et les différentielles verticales $d_1^{0,q}: E_1^{0,q} \to E_1^{0,q+1}$ sont (au signe près) celles de $C^{\bullet}(\mathcal{U}, \mathcal{F})$, d'où

$${}^{II}E_2^{p,q} = H_v^q H_h^p(C^{\bullet,\bullet}) = \left\{ \begin{array}{cc} H^q(C^{\bullet}(\mathcal{U},\mathcal{F})) & \text{si } p = 0 \\ 0 & \text{sinon} \end{array} \right. = \delta_{p,0} \check{H}^q(\mathcal{U},\mathcal{F}).$$

Ensuite, comme \mathcal{J}^p est flasque, on a

$$^{I}E_{1}^{p,q} = H_{h}^{p}\left(^{I}E_{0}^{p,q}\right) = \begin{cases} H^{p}(\Gamma(X,\mathcal{J}^{\bullet})) & \text{si } q = 0\\ 0 & \text{sinon} \end{cases} = \delta_{q,0}H^{p}(X,\mathcal{F}).$$

Or, comme le bicomplexe $(C^{\bullet,\bullet})$ est de premier quadrant, on a les convergences

$$^{I}E_{2}^{p,q} \Longrightarrow H^{p+q}(\operatorname{Tot}(C)) \text{ et } ^{II}E_{2}^{p,q} \Longrightarrow H^{p+q}(\operatorname{Tot}(C))$$

et par effondrement en première page, il vient finalement $(n = p + q \ge 0)$

$$\check{H}^n(\mathcal{U}, \mathcal{F}) = {}^{II}E_2^{0,n} = H^n(\text{Tot}(C)) = {}^{I}E_2^{n,0} = H^n(X, \mathcal{F}).$$

<u>Corollaire</u> 2. Soient X une variété algébrique séparée, \mathcal{U} un recouvrement ouvert affine de X et \mathcal{F} un faisceau algébrique quasi-cohérent sur X. Alors, on a des isomorphismes

$$\forall i \geq 0, \quad \check{H}^i(\mathcal{U}, \mathcal{F}) \xrightarrow{\simeq} H^i(X, \mathcal{F}) .$$

 $D\acute{e}monstration$. Comme X est séparée, les intersections finies d'ouverts dans \mathcal{U} est un ouvert affine et par le Théorème d'acyclicité de Serre, comme \mathcal{F} est quasi-cohérent, les hypothèses du Théorème de Leray sont satisfaites et son application donne le résultat.

Théorème 5. (Serre)

Soient X une variété algébrique projective et \mathcal{F} un faisceau cohérent sur X. Alors,

- 1. Pour tout $i \geq 0$, $H^i(X, \mathcal{F})$ est un espace vectoriel de dimension finie.
- 2. Il existe $n_0 = n_0(\mathcal{F}) \in \mathbb{Z}$ tel que

$$\forall d \geq n_0, \ \forall i > 0, \ H^i(X, \mathcal{F}(d)) = 0.$$

 $D\acute{e}monstration$. On supposer X plongée dans $\mathbb{P}^n = \mathbb{P}^n(k)$ via $i: X \hookrightarrow \mathbb{P}^n$ (X est alors fermée dans \mathbb{P}^n). On a alors

$$\forall i > 0, \ H^i(X, \mathcal{F}) \simeq H^i(\mathbb{P}^n, i_*\mathcal{F})$$

et on peut alors supposer que $X = \mathbb{P}^n$. En outre, les faisceaux $\mathcal{O}_{\mathbb{P}^n}(d)$ vérifient bien les deux assertions du théorème ci-dessus.

Posons $S := k[X_0, \ldots, X_n]$. On sait que $\mathcal{F} = \widetilde{M}$ où M est un S-module gradué de type fini. Si les générateurs x_1, \ldots, x_r de M sont homogènes de degrés respectifs n_1, \ldots, n_r , on a une surjection naturelle

$$\pi: L := \bigoplus_{i=1}^{r} S(-n_i) \twoheadrightarrow M$$

qui, au $i^{\text{ème}}$ vecteur de base de L, associe x_i . Considérons $N := \ker \pi$. Comme S est noethérien, N est un S-module gradué de type fini et en passant aux faisceaux, on a la suite exacte courte de faisceaux cohérents

$$0 \longrightarrow \mathcal{N} \longrightarrow \mathcal{L} \longrightarrow \mathcal{F} \longrightarrow 0$$
,

où on a noté

$$\mathcal{L} := \bigoplus_{1 < i < r} \mathcal{O}_{\mathbb{P}^n}(-n_i).$$

De plus, \mathcal{L} est un faisceau dont la cohomologie vérifie le résultat.

Montrons 1) par récurrence descendante sur i. Si $i \geq n+1$, par le Corollaire 2 et le Théorème de Grothendieck, on a $H^i\mathcal{F} = 0$ car \mathcal{F} est (quasi-)cohérent et \mathbb{P}^n séparée. Supposons le résultat vrai pour i+1 et tout faisceau cohérent et passons à i. On a la suite exacte courte

$$\cdots \longrightarrow H^{i-1}\mathcal{F} \longrightarrow H^{i}\mathcal{N} \longrightarrow H^{i}\mathcal{L} \xrightarrow{f} H^{i}\mathcal{F} \xrightarrow{g} H^{i+1}\mathcal{N} \longrightarrow \cdots$$

et donc

$$h^{i}\mathcal{F} = \dim_{k}(H^{i}\mathcal{F}) = \operatorname{rg}(f) + \operatorname{rg}(g) \leq \dim_{k}(H^{i}\mathcal{L}) + \dim_{k}(H^{i+1}\mathcal{N}) = h^{i}\mathcal{L} + h^{i+1}\mathcal{N}$$

et on a $h^i\mathcal{L} < \infty$, ainsi que $h^{i+1}\mathcal{N} < \infty$ par hypothèse de récurrence. Donc $h^i\mathcal{F} < \infty$ et on a le premier point.

Pour 2), on procède aussi par récurrence descendante sur i, en établissant les proptiétés

$$\forall i \geq 1, \ (P_i) : \forall \mathcal{F} \in \mathfrak{Coh}(\mathbb{P}^n), \ \exists n_0 \in \mathbb{N} \ ; \ \forall p \geq i, \ \forall d \geq n_0, \ h^p \mathcal{F}(d) = 0.$$

Il est clair que (P_{n+1}) est vraie par le Théorème de Grothendieck. Soit donc $1 \leq i \leq n$, supposons (P_{i+1}) vraie et montrons (P_i) . Soient \mathcal{F} cohérent et soient \mathcal{L} et \mathcal{N} comme cidessus. Il existe d_0 tel que si $d \geq d_0$ et $p \geq i+1$, on ait $h^p(\mathcal{N}(d)) = h^p(\mathcal{F}(d)) = 0$, par hypothèse de récurrence (on prend $d_0 \geq \max(d_{\mathcal{N}}, d_{\mathcal{F}})$). On pose alors

$$n_0 := \max(d_0, n_1 - n, \dots, n_r - n).$$

Pour $d \geq n_0$, on a la suite exacte longue

$$\cdots \longrightarrow H^i \mathcal{L}(d) \longrightarrow H^i \mathcal{F}(d) \longrightarrow H^{i+1} \mathcal{N}(d) \longrightarrow \cdots$$

Comme $d-n_j \geq -n$, on a $h^i \mathcal{L}(d) = 0$ et comme $d \geq d_0$, on a $h^{i+1} \mathcal{N}(d) = 0$, d'où $h^i \mathcal{F}(d) = 0$ et ceci montre que (P_i) est vraie. La véracité de (P_1) termine alors la démonstration. \square

Théorème 6. (Bézout)

 $Si\ F,G\in k[X,Y,T]$ sont deux polynômes homogènes, sans facteur commun et de degrés respectifs s et t, alors on a

$$\sum_{x \in \mathbb{P}^2} \mu_x(F, G) = \sum_{x \in V_p(F) \cap V_p(G)} \mu_x(F, G) = st.$$

Démonstration. On rappelle qu'on a une structure de schéma fini sur l'intersection $Z = V_p(F,G) = V(F_{\flat},G_{\flat}) \subset k^2$ et qu'on a $\mu_x(F,G) = 0$ si $x \in \mathbb{P}^2 \setminus Z$ et, si $x \in Z$,

$$\mu_x(F,G) \stackrel{\text{def}}{=} \mu_x(F_{\flat},G_{\flat}) = \dim_k \left(\mathcal{O}_{k^2,x} / (F_{\flat},G_{\flat}) \right) = \dim \left(\mathcal{O}_{\mathbb{P}^2,x} / (F,G)_x \right),$$

donc

$$\begin{split} \sum_{x \in \mathbb{P}^2} \mu_x(F, G) &= \sum_{x \in Z} \mu_x(F, G) = \sum_{x \in Z} \dim \left(\mathcal{O}_{k^2, x} \Big/ (F_{\flat}, G_{\flat}) \right) \\ &= \dim \left(\prod_{x \in Z} \mathcal{O}_{k^2, x} \Big/ (F_{\flat} G_{\flat}) \right) \stackrel{\text{def}}{=} \dim \Gamma(Z, \mathcal{O}_Z). \end{split}$$

Ensuite, pour un faisceau algébrique sur une variété algébrique X, on pose

$$\forall i \geq 0, \ h^i \mathcal{F} = h^i(X, \mathcal{F}) := \dim_k(H^i(X, \mathcal{F}))$$

et par le Théorème de Serre, si X est projective et \mathcal{F} cohérent, on a $h^i\mathcal{F} < \infty$. Il s'agit alors de montrer que

$$h^0 \mathcal{O}_Z = st.$$

On a deux suites exactes courtes

$$0 \longrightarrow \mathcal{J}_Z \longrightarrow \mathcal{O}_{\mathbb{P}^2} \longrightarrow \mathcal{O}_Z \longrightarrow 0$$

et

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^2}(-s-t) \longrightarrow \mathcal{O}_{\mathbb{P}^2}(-s) \oplus \mathcal{O}_{\mathbb{P}^2}(-t) \longrightarrow \mathcal{J}_Z \longrightarrow 0.$$

On obtient donc les deux suites exactes longues de cohomologie

$$\cdots \longrightarrow H^{i-1}(\mathcal{O}_Z) \longrightarrow H^i(\mathcal{J}_Z) \longrightarrow H^i(\mathcal{O}_{\mathbb{P}^2}) \longrightarrow H^i(\mathcal{O}_Z) \longrightarrow H^{i+1}(\mathcal{J}_Z) \longrightarrow \cdots$$

$$\cdots \longrightarrow H^{i}(\mathcal{O}_{\mathbb{P}^{2}}(-s-t)) \longrightarrow H^{i}(\mathcal{O}_{\mathbb{P}^{2}}(-s)) \oplus H^{i}(\mathcal{O}_{\mathbb{P}^{2}}(-t)) \longrightarrow H^{i}(\mathcal{J}_{Z}) \longrightarrow \cdots$$

La première suite en i=1 donne

$$0 \longrightarrow \Gamma(\mathbb{P}^2, \mathcal{J}_Z) \longrightarrow \Gamma(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}) \longrightarrow \Gamma(\mathbb{P}^2, \mathcal{O}_Z) \longrightarrow H^1(\mathbb{P}^2, \mathcal{J}_Z) \longrightarrow H^1(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}) \longrightarrow \cdots$$

Or, on sait que $h^1\mathcal{O}_{\mathbb{P}^2}(n)=0$ pour tout $n\in\mathbb{Z}$ et que $\Gamma(\mathbb{P}^2,\mathcal{O}_{\mathbb{P}^2})=k$ d'où la suite exacte

$$0 \longrightarrow \Gamma(\mathbb{P}^2, \mathcal{J}_Z) \longrightarrow k \longrightarrow \Gamma(\mathbb{P}^2, \mathcal{O}_Z) \longrightarrow H^1(\mathbb{P}^2, \mathcal{J}_Z) \longrightarrow 0.$$

De plus, on a

$$\Gamma(\mathbb{P}^2, \mathcal{J}_Z) \stackrel{\text{def}}{=} \Gamma(\mathbb{P}^2, i_* \mathcal{J}_Z) = \Gamma(Z, \mathcal{J}_Z) = \Gamma(Z, (\mathcal{O}_{\mathbb{P}^2})_{\mathbb{P}^2 \setminus Z}) = 0 \text{ car } \mathcal{O}_Z = (\mathcal{O}_{\mathbb{P}^2})_Z.$$

Au final, on obtient la suite exacte

$$0 \longrightarrow k \longrightarrow \Gamma(\mathbb{P}^2, \mathcal{O}_Z) \longrightarrow H^1(\mathbb{P}^2, \mathcal{J}_Z) \longrightarrow 0$$

et donc $1-h^0\mathcal{O}_Z+h^1\mathcal{J}_Z=0$, ce qui entraı̂ne

$$h^0 \mathcal{O}_Z = 1 + h^1 \mathcal{J}_Z.$$

Ensuite, Z est un espace noethérien de dimension 0, donc par le Théorème de Grothendieck, on a

$$h^1 \mathcal{O}_Z = h^2 \mathcal{O}_Z = 0$$

et par la première suite exacte longue en i=2, il vient

$$h^2 \mathcal{J}_Z = h^2 \mathcal{O}_{\mathbb{P}^2} = h^0 \mathcal{O}_{\mathbb{P}^2}(-3) = 0.$$

Par la seconde suite exacte longue en i=2, on obtient de plus (puisque $h^1\mathcal{O}_{\mathbb{P}^2}(-s)=h^1\mathcal{O}_{\mathbb{P}^2}(-t)=0$),

$$0 \longrightarrow H^1(\mathcal{J}_Z) \longrightarrow H^2(\mathcal{O}_{\mathbb{P}^2}(-s-t)) \longrightarrow H^2(\mathcal{O}_{\mathbb{P}^2}(-s)) \oplus H^2(\mathcal{O}_{\mathbb{P}^2}(-t)) \longrightarrow 0$$

et ceci implique

$$h^{1}\mathcal{J}_{Z} - h^{2}\mathcal{O}_{\mathbb{P}^{2}}(-s-t) + h^{2}\mathcal{O}_{\mathbb{P}^{2}}(-s) + h^{2}\mathcal{O}_{\mathbb{P}^{2}}(-t) = 0.$$

Par ailleurs, on a

$$\forall d \in \mathbb{Z}, \ h^2 \mathcal{O}_{\mathbb{P}^2}(d) = h^0 \mathcal{O}_{\mathbb{P}^2}(-d-2) = \binom{2-d-3}{2} = \binom{-d-1}{2}.$$

Finalement, on en tire

$$h^{1}\mathcal{J}_{Z} = {s+t-1 \choose 2} - {s-1 \choose 2} - {t-1 \choose 2} = st-1$$

et donc

$$\sum_{x \in \mathbb{P}^2} \mu_x(F, G) = h^0 \mathcal{O}_Z = 1 + h^1 \mathcal{J}_Z = st,$$

d'où le résultat.

Théorème 7. (Riemann-Roch)

Soient C une courbe projective lisse irréductible de genre g et D un diviseur sur C.

1. On a

$$\chi \mathcal{O}_C(D) \stackrel{\text{def}}{=} h^0 \mathcal{O}_C(D) - h^1 \mathcal{O}_C(D) = \deg D + 1 - g.$$

2. Il existe $N \in \mathbb{N}$ tel que, si $\deg(D) \geq N$, alors $h^1\mathcal{O}_C(D) = 0$ et donc

$$h^0 \mathcal{O}_C(D) = \deg(D) + 1 - g.$$

 $D\acute{e}monstration$. Pour 1), on décompose $D=D_1-D_2$ avec $D_i\geq 0$. On a alors une suite exacte courte

$$0 \longrightarrow \mathcal{O}_C(-D_2) \longrightarrow \mathcal{O}_C(D) \longrightarrow \mathcal{O}_{D_1} \longrightarrow 0$$

d'où $\chi \mathcal{O}_C(D) = \chi \mathcal{O}_C(-D_2) + \chi \mathcal{O}_{D_1}$. On a aussi une suite exacte courte

$$0 \longrightarrow \mathcal{O}_C(-D_2) \longrightarrow \mathcal{O}_C \longrightarrow \mathcal{O}_{D_2} \longrightarrow 0$$

qui donne $\chi \mathcal{O}_C(-D_2) = \chi \mathcal{O}_C - \chi \mathcal{O}_{D_2}$. Mais, par définition du genre, on a $\chi \mathcal{O}_C = 1 - g$ et pour le schéma fini D_i , on a avec le Théorème de Grothendieck :

$$\chi \mathcal{O}_{D_i} = h^0 \mathcal{O}_{D_i} = \deg(D_i)$$

et, en récapitulant, il vient

$$\chi \mathcal{O}_C(D) = \chi \mathcal{O}_C + \chi \mathcal{O}_{D_1} - \chi \mathcal{O}_{D_2} = 1 - g + \deg(D_1) - \deg(D_2) = \deg(D) + 1 - g.$$

Pour 2), on peut supposer qu'on a un plongement $C \hookrightarrow \mathbb{P}^r$ et si H est une section hyperplane de C, on désigne encore par H le diviseur hyperplan (défini dans le groupe de Picard de C). On a

$$\forall n \in \mathbb{Z}, \ h^1 \mathcal{O}_C(nH) = h^1 \mathcal{O}_C(n)$$

et ceci est nul pour tout $n \geq n_0$; ce dernier entier étant donné par le Théorème de Serre (qu'il est licite d'appliquer puisque \mathcal{O}_C est cohérent sur C). Soit donc D un diviseur. Par le premier point, on a

$$h^0 \mathcal{O}_C(D - n_0 H) \ge \chi \mathcal{O}_C(D - n_0 H) = \deg(D - n_0 H) + 1 - g$$

et cette quantité est strictement positive dès que $\deg(D) \geq N := n_0 \deg(H) + g$. De plus, si cette condition est remplie et si $f \in \Gamma(C, \mathcal{O}_C(D - n_0 H))$, avec $f \neq 0$, on a $D \geq n_0 H - \operatorname{div}(f)$, ou encore, $D = D_1 + (n_0 H - \operatorname{div} f)$, avec $D_1 \geq 0$. Ensuite, on a une suite exacte courte de faisceaux

$$0 \longrightarrow \mathcal{O}_C(n_0H - \operatorname{div} f) \longrightarrow \mathcal{O}_C(D) \longrightarrow \mathcal{O}_{D_1} \longrightarrow 0$$

et la suite exacte longue de cohomologie associée s'écrit (en degré 1)

$$\cdots \longrightarrow H^1\mathcal{O}_C(n_0H - \operatorname{div} f) \longrightarrow H^1\mathcal{O}_C(D) \longrightarrow H^1\mathcal{O}_{D_1} \longrightarrow 0$$

car $H^2\mathcal{O}_C(n_0H - \operatorname{div} f) = 0$ par le Théorème de Grothendieck. Comme $n_0H - \operatorname{div} f = n_0H \in \operatorname{Pic}(C)$, on a

$$\mathcal{O}_C(n_0H - \operatorname{div} f) \simeq \mathcal{O}_C(n_0H)$$

et donc

$$H^1\mathcal{O}_C(n_0H - \operatorname{div} f) \simeq H^1\mathcal{O}_C(n_0H) \simeq H^1\mathcal{O}_C(n_0) = 0,$$

par le Théorème de Serre. Enfin, comme D_1 est fini, on a aussi $h^1\mathcal{O}_{D_1}=0$ et il vient

$$h^1\mathcal{O}_C(D) = 0$$

et ceci achève la démonstration.

<u>Théorème</u> 8. (Grothendieck-Hirzebruch-Riemann-Roch)

Soit $f: X \to Y$ un morphisme projectif lisse entre variétés quasi-projectives lisses. Alors, pour tout $x \in K(X)$, on a

$$\operatorname{ch}(f_!(x)) = f_*(\operatorname{ch}(x)\operatorname{td}(\mathscr{T}_f)),$$

dans $A(Y) \otimes \mathbb{Q}$, où \mathscr{T}_f est le faisceau tangent relatif de f. Autrement dit, le diagramme suivant commute

$$K(X) \xrightarrow{f_!} K(Y)$$

$$\operatorname{td}(\mathscr{T}_f)\operatorname{ch}_X \downarrow \qquad \qquad \downarrow \operatorname{ch}_Y$$

$$\operatorname{Gr} K(X) \otimes \mathbb{Q} \xrightarrow{f_*} \operatorname{Gr} K(Y) \otimes \mathbb{Q}$$

<u>Bonus</u>: Suite spectrale liant cohomologie de Cech, cohomologie locale et foncteur dérivé

<u>Lemme</u> 1. Si $\mathcal{U} = (U_i)_{i \in I}$ est un recouvrement ouvert d'un espace topologique X et si \mathcal{I} est un préfaisceau abélien injectif sur X, alors on a

$$\forall n > 0, \ \check{H}^n(\mathcal{U}, \mathcal{I}) = 0.$$

 $D\acute{e}monstration$. On procède en plusieurs étapes. On va construire un complexe de chaînes $\mathcal{K}(\mathcal{U})_*$ de préfaisceaux représentant le foncteur de Cech $\check{C}^*(\mathcal{U}, -)$, puis on montrera que ce complexe est acyclique, puis on conclura grâce à l'exactitude de $\mathrm{Hom}(-, \mathcal{I})$ garantie par l'injectivité de \mathcal{I} . Dans la suite de cette preuve, pour un ouvert U, on notera $\mathbb{Z}^U := j_{p!}\mathbb{Z}_U$ (extension par zéro du préfaisceau constant \mathbb{Z}_U via $j: U \hookrightarrow X$) le préfaisceau

$$\mathbb{Z}^U: V \mapsto \left\{ \begin{array}{ll} \mathbb{Z} & \text{si } V \subset U \\ 0 & \text{sinon} \end{array} \right.$$

1. Pour $i_0 < \cdots < i_p \in I$ et $0 \le j \le p$, on considère le morphisme de préfaisceaux $\mathbb{Z}^{U_{i_0,\dots,i_p}} \to \mathbb{Z}^{U_{i_0,\dots,i_j,\dots,i_p}}$, donné par $(-1)^j$ fois le morphisme canonique. On obtient ainsi un complexe de chaînes de préfaisceaux

$$\mathcal{K}(\mathcal{U})_* : \cdots \longrightarrow \bigoplus_{i_0 < i_1} \mathbb{Z}^{U_{i_0,i_1}} \longrightarrow \bigoplus_{i_0} \mathbb{Z}^{U_{i_0}} \longrightarrow 0 \longrightarrow \cdots$$

De plus, ce complexe représente le foncteur $\check{C}^*(\mathcal{U},-)$.

En effet, si $U \subset X$ est ouvert et $\mathcal{F} \in \mathfrak{PAb}_X$, on a par adjonction, des isomorphismes naturels en \mathcal{F}

$$\operatorname{Hom}_{\mathfrak{PAb}_{X}}(\mathbb{Z}^{U}, \mathcal{F}) \simeq \operatorname{Hom}_{\mathfrak{PAb}_{X}}(j_{p!}\mathbb{Z}_{U}, \mathcal{F}) \simeq \operatorname{Hom}_{\mathfrak{PAb}_{U}}(\mathbb{Z}_{U}, j^{-1}\mathcal{F})$$
$$= \operatorname{Hom}_{\mathfrak{PAb}_{U}}(\mathbb{Z}_{U}, \mathcal{F}_{|U}) \simeq \mathcal{F}(U).$$

Ceci donne un isomorphisme naturel en \mathcal{F} :

$$\check{C}^p(\mathcal{U},\mathcal{F}) = \prod_{i_0 < \dots < i_1} \mathcal{F}(U_{i_0,\dots,i_p}) \simeq \prod_{i_0 < \dots < i_1} \operatorname{Hom}_{\mathfrak{PMb}_X}(\mathbb{Z}^{U_{i_0,\dots,i_p}},\mathcal{F})$$

$$\simeq \operatorname{Hom}_{\mathfrak{PMb}_X} \left(\bigoplus_{i_0 < \dots < i_1} \mathbb{Z}^{U_{i_0, \dots, i_p}}, \mathcal{F} \right) = \operatorname{Hom}_{\mathfrak{PMb}_X} (\mathcal{K}(\mathcal{U})_p, \mathcal{F}),$$

donc $\mathcal{K}(\mathcal{U})_p$ représente bien le foncteur $\mathcal{F} \mapsto \check{C}^p(\mathcal{U}, \mathcal{F})$. De plus, par le lemme de Yoneda, la différentielle de Cech $d: \check{C}^p(\mathcal{U}, \mathcal{F}) \to \check{C}^{p+1}(\mathcal{U}, \mathcal{F})$ induit une différentielle $\mathcal{K}(\mathcal{U})_{p+1} \to \mathcal{K}(\mathcal{U})_p$ et on obtient bien le complexe représentant désiré.

2. Posons $\mathbb{Z}_{\mathcal{U}} := \operatorname{im} \left(\bigoplus_{i} \mathbb{Z}^{U_i} \to \mathbb{Z}_X \right)$. Alors, on a

$$H_n(\mathcal{K}(\mathcal{U})_*) = \begin{cases} \mathbb{Z}_{\mathcal{U}} & \text{si } n = 0\\ 0 & \text{sinon} \end{cases}$$

En effet, considérons le complexe augmenté

$$\widetilde{\mathcal{K}}(\mathcal{U})_* : \cdots \longrightarrow \bigoplus_{i_0 < i_1} \mathbb{Z}^{U_{i_0, i_1}} \longrightarrow \bigoplus_{i_0} \mathbb{Z}^{U_{i_0}} \longrightarrow \mathbb{Z}_{\mathcal{U}} \longrightarrow 0 \longrightarrow \cdots$$

et montrons qu'il est acyclique. Puisque l'on travaille avec des préfaisceaux, le foncteur $\Gamma(W,-)$ est exact pour tout ouvert $W \subset X$ et il suffit donc de montrer que le complexe $\widetilde{\mathcal{K}}(\mathcal{U})_*(W)$ est acyclique. On va montrer qu'il est homotope à zéro. Soit $I_1 := \{i \in I : W \subset U_i\}$. Si $I_1 = \emptyset$, alors $\widetilde{\mathcal{K}}(\mathcal{U})_*(W) = 0$ et il n'y a rien à prouver. Sinon, on a

$$\forall p, \ \widetilde{\mathcal{K}}(\mathcal{U})_p(W) = \bigoplus_{\substack{i_0 < \dots < i_p \\ i_j \in I_1}} \mathbb{Z},$$

et la différentielle est donnée par

$$(ds)_{i_0,\dots,i_p} = \sum_{j=0}^{p+1} \sum_{\substack{i \in I_1 \\ i_{j-1} < i < i_j}} (-1)^j s_{i_0,\dots,i_{j-1},i,i_j,\dots,i_p}.$$

Fixons $k \in I_1$ et définissons $h : \widetilde{\mathcal{K}}(\mathcal{U})_p(W) \to \widetilde{\mathcal{K}}(\mathcal{U})_{p+1}(W)$ par

$$(hs)_{i_0,\dots,i_{p+1}} := \begin{cases} s_{i_1,\dots,i_{p+1}} & \text{si } i_0 = k \\ 0 & \text{sinon} \end{cases}$$

Si $i_0 = k$, on a

$$(dh + hd)(s)_{i_0,\dots,i_p} = d(hs)_{i_0,\dots,i_p} + h(ds)_{i_0,\dots,i_p}$$

$$= \sum_{j} \sum_{i_{j-1} < i < i_j} (-1)^j h(s)_{i_0,\dots,i_{j-1},i,i_j,\dots,i_p} + (ds)_{i_1,\dots,i_p}$$

$$= s_{i_0,\dots,i_p} + \sum_{j \neq 0} \sum_{i_{j-1} < i < i_j} (-1)^j s_{i_0,\dots,i_{j-1},i,i_j,\dots,i_p} + (ds)_{i_1,\dots,i_p} = s_{i_0,\dots,i_p}.$$

Et, si $i_0 \neq k$,

$$(dh + hd)(s)_{i_0,\dots,i_p} = d(hs)_{i_0,\dots,i_p} = \sum_{j} \sum_{i_{j-1} < i < i_j} (-1)^j h(s)_{i_0,\dots,i_{j-1},i,i_j,\dots,i_p} = s_{i_0,\dots,i_p}.$$

Dans les deux cas, on a (dh + hd)(s) = s soit dh + hd = id et le complexe $\mathcal{K}(\mathcal{U})_*(W)$ est bien homotope à zéro, donc acyclique.

3. Comme \mathcal{I} est injectif, le foncteur $\operatorname{Hom}_{\mathfrak{PMb}_X}(-,\mathcal{I})$ est exact et on peut donc écrire

$$\forall n > 0, \ \check{H}^n(\mathcal{U}, \mathcal{I}) = H^n(\check{C}^*(\mathcal{U}, \mathcal{I}))$$
$$= H^n(\operatorname{Hom}_{\mathfrak{PMb}_X}(\mathcal{K}(\mathcal{U})_*, \mathcal{I})) = \operatorname{Hom}_{\mathfrak{PMb}_X}(H_n(\mathcal{K}(\mathcal{U})_*), \mathcal{I}) = 0,$$

d'où le résultat.

Théorème 9. (Suite spectrale de Cech)

Soient X un espace topologique, $\mathcal{U} = (U_i)_{i \in I}$ un recouvrement ouvert de X et \mathcal{F} un faisceau abélien sur X. En notant $\mathcal{H}^{\bullet}(X,\mathcal{F}) = \mathcal{H}^{\bullet}(\mathcal{F})$ le préfaisceau de cohomologie locale de \mathcal{F} , il existe une suite spectrale de premier quadrant aboutissant à la cohomologie de X à valeurs dans \mathcal{F} :

$$E_2^{p,q} = \check{H}^p(\mathcal{U}, \mathcal{H}^q(X, \mathcal{F})) \Longrightarrow H^{p+q}(X, \mathcal{F}).$$

 $D\acute{e}monstration$. Considérons la catégorie abélienne \mathfrak{Ab}_X (resp. \mathfrak{PAb}_X) des faisceaux (resp. préfaisceaux) abéliens sur X, ainsi que les foncteurs

$$\mathfrak{Ab}_X \xrightarrow{\subset F} \mathfrak{PAb}_X \xrightarrow{G} \mathfrak{Ab}$$

F étant le foncteur d'oubli et $G = \check{H}^0(\mathcal{U}, -)$. Remarquons que le composé $G \circ F$ est le foncteur $\Gamma(X, -)$ des sections globales, que les catégories \mathfrak{Ab}_X et \mathfrak{PAb}_X possèdent assez d'objets injectifs et que les foncteurs F et G sont exacts à gauche. Rappelons également que pour tout $p \geq 0$, le préfaisceau $\mathcal{H}^p(\mathcal{F})$ est défini par

$$\mathcal{H}^p(\mathcal{F}): U \mapsto H^p(U, \mathcal{F}) = H^p(U, \mathcal{F}_{|U}),$$

au sens des foncteurs dérivés. Soient $p \geq 0$ et \mathcal{F} un faisceau abélien sur X. Montrons que l'on a

$$R^p F = \mathcal{H}^p(X, -)$$
 et $R^p G = \check{H}^p(\mathcal{U}, -)$.

Soit donc $\mathcal{F} \stackrel{\varepsilon}{\to} \mathcal{J}^{\bullet}$ une résolution injective de \mathcal{F} dans \mathfrak{Ab}_X et soit $U \subset X$ un ouvert. On calcule

$$R^{p}F(\mathcal{F})(U) \stackrel{\text{def}}{=} H^{p}(F(\mathcal{J}^{\bullet}))(U) = H^{p}(\mathcal{J}^{\bullet}(U))$$
$$= H^{p}(\mathcal{J}^{\bullet}_{|U}(U)) = R^{p}(\Gamma(U, \mathcal{J}^{\bullet}_{|U})) = H^{p}(U, \mathcal{F}_{|U}) = \mathcal{H}^{p}(X, \mathcal{F})(U),$$

le passage de la première à la seconde ligne se faisant en remarquant que $\mathcal{F}_{|\mathcal{U}} \stackrel{\varepsilon_{|\mathcal{U}}}{\to} \mathcal{J}_{|\mathcal{U}}^{\bullet}$ est une résolution puisque le foncteur $\cdot_{|\mathcal{U}}$ est exact ; d'où le résultat pour F. Pour G, comme $R^{\bullet}G$ est un foncteur dérivé, c'est un ∂ -foncteur universel et en vertu de la proposition II, 2.2.1 du $[T\hat{o}hoku]$, il suffit de montrer que $\check{H}^{\bullet}(\mathcal{U}, -)$ est aussi un ∂ -foncteur universel. Tout d'abord, $\check{H}^{i}(\mathcal{U}, -)$ est effaçable pour tout i > 0. En effet, si \mathcal{G} est un préfaisceau abélien sur X, comme la catégorie \mathfrak{Ab} admet assez d'injectifs, si $x \in X$, on peut choisir un groupe abélien I_x et un monomorphisme $\mathcal{G}_x \hookrightarrow I_x$. En notant $\iota^x : \{x\} \hookrightarrow X$ l'inclusion, on pose $\mathcal{I} := \prod_{x \in X} \iota_*^x I_x$. Alors, \mathcal{I} est un faisceau abélien sur X et on a un monomorphisme de préfaisceaux $\mathcal{G} \hookrightarrow \mathcal{I}$. De plus, \mathcal{I} est injectif dans \mathfrak{Ab}_X car, pour tout faisceau abélien \mathcal{G} sur X, on a

$$\operatorname{Hom}_{\mathfrak{Ab}_{X}}(\mathcal{G},\mathcal{I}) = \prod_{x \in X} \operatorname{Hom}_{\mathfrak{Ab}_{X}}(\mathcal{G}, \iota_{*}^{x} I_{x}) \stackrel{\operatorname{adj.}}{=} \prod_{x \in X} \operatorname{Hom}_{\mathfrak{Ab}_{\{x\}}}((\iota^{x})^{-1} \mathcal{G}, I_{x}) = \prod_{x \in X} \operatorname{Hom}_{\mathfrak{Ab}}(\mathcal{G}_{x}, I_{x}),$$

donc le foncteur $\operatorname{Hom}_{\mathfrak{Ab}_X}(-,\mathcal{I})$ est exact, comme composé de foncteurs exacts. Ensuite, par la propriété universelle de la faisceautisation, il est aussi injectif dans \mathfrak{PAb}_X . Par le Lemme précédent, puisque \mathcal{I} est un préfaisceau injectif, on a $\check{H}^i(\mathcal{U},\mathcal{I})=0$ pour tout i>0. Ceci entraîne que $\check{H}^i(\mathcal{U},-)$ est effaçable. Il nous reste donc à montrer que $\check{H}^{\bullet}(\mathcal{U},-)$ est un foncteur cohomologique (i.e. un ∂ -foncteur exact défini pour tous les degrés). En fait, ceci résulte du fait que $\check{H}^{\bullet}(\mathcal{U},-)$ est défini sur les préfaisceaux. En effet, si on a une suite exacte courte de préfaisceaux

$$0 \longrightarrow \mathcal{G}' \longrightarrow \mathcal{G} \longrightarrow \mathcal{G}'' \longrightarrow 0,$$

alors, pour tout ouvert $U \subset X$, on a une suite exacte courte de groupes abéliens

$$0 \longrightarrow \mathcal{G}'(U) \longrightarrow \mathcal{G}(U) \longrightarrow \mathcal{G}''(U) \longrightarrow 0$$

et ceci nous donne donc des suites exactes courtes, pour tout p > 0,

$$0 \longrightarrow \prod_{i_0 < \dots < i_p} \mathcal{G}'(U_{i_0, \dots, i_p}) \longrightarrow \prod_{i_0 < \dots < i_p} \mathcal{G}(U_{i_0, \dots, i_p}) \longrightarrow \prod_{i_0 < \dots < i_p} \mathcal{G}''(U_{i_0, \dots, i_p}) \longrightarrow 0$$

et ceci nous donne donc une suite exacte courte au niveau des complexes de Cech

$$0 \longrightarrow \check{C}^{\bullet}(\mathcal{U}, \mathcal{G}') \longrightarrow \check{C}^{\bullet}(\mathcal{U}, \mathcal{G}) \longrightarrow \check{C}^{\bullet}(\mathcal{U}, \mathcal{G}'') \longrightarrow 0.$$

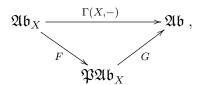
Cette suite nous donne donc une suite exacte longue fonctorielle en cohomologie de Cech

$$\cdots \longrightarrow \check{H}^{i-1}(\mathcal{U},\mathcal{G}'') \stackrel{\partial}{\longrightarrow} \check{H}^{i}(\mathcal{U},\mathcal{G}') \longrightarrow \check{H}^{i}(\mathcal{U},\mathcal{G}) \longrightarrow \check{H}^{i}(\mathcal{U},\mathcal{G}'') \stackrel{\partial}{\longrightarrow} \check{H}^{i+1}(\mathcal{U},\mathcal{G}') \longrightarrow \cdots$$

On en conclut que $\check{H}^{\bullet}(\mathcal{U}, -)$ est bien un ∂ -foncteur universel et comme $G = \check{H}^{0}(\mathcal{U}, -)$, on obtient bien l'égalité désirée. De plus, on a vu que F préserve les injectifs, et comme les injectifs sont flasques et que les flasques sont Cech-acycliques, F envoie les faisceaux injectifs sur des préfaisceaux G-acycliques. Par le théorème 2.4.1 de Grothendieck, on a une suite spectrale convergente de premier quadrant

$$E_2^{p,q} = R^p G(R^q F(\mathcal{F})) \Longrightarrow R^{p+q} GF(\mathcal{F}),$$

et, puisque le triangle suivant commute



les calculs menés ci-dessus montrent que le résultat découle d'une simple réécriture de la suite spectrale de Grothendieck. \Box

Corollaire 3. Sous les mêmes hypothèses, on a une suite exacte à cinq termes

$$0 \longrightarrow \check{H}^1(\mathcal{U}, \mathcal{F}) \longrightarrow H^1(X, \mathcal{F}) \longrightarrow \check{H}^0(\mathcal{U}, \mathcal{H}^1(X, \mathcal{F})) \longrightarrow \check{H}^2(\mathcal{U}, \mathcal{F}) \longrightarrow H^2(X, \mathcal{F}) \; .$$

Démonstration. Ceci est simplement la suite exacte à cinq termes

$$0 \longrightarrow E_2^{1,0} \longrightarrow H^1 \longrightarrow E_2^{0,1} \stackrel{d}{\longrightarrow} E_2^{2,0} \longrightarrow H^2$$

associée à la suite spectrale du Théorème 9.

<u>Corollaire</u> 4. Soient X un espace topologique, $\mathcal{U} = (U_i)_{i \in I}$ un recouvrement ouvert de X et \mathcal{F} un faisceau abélien sur X. On suppose que \mathcal{F} est localement acyclique, sauf peut-être en degré 1. Alors, on a une suite exacte longue

$$\cdots \longrightarrow H^{n}(X,\mathcal{F}) \longrightarrow \check{H}^{n-1}(\mathcal{U},\mathcal{H}^{1}(\mathcal{F})) \longrightarrow \check{H}^{n+1}(\mathcal{U},\mathcal{F}) \longrightarrow H^{n+1}(X,\mathcal{F}) \longrightarrow \cdots$$

Démonstration. Ceci résulte du lemme des deux lignes, qu'il est licite d'appliquer puisque $\mathcal{H}^q(\mathcal{F}) = 0$ à moins que q = 0, 1. On obtient une suite exacte longue

$$\cdots \longrightarrow H^n \longrightarrow E_2^{n-1,1} \stackrel{d}{\longrightarrow} E_2^{n+1,0} \longrightarrow H^{n+1} \longrightarrow \cdots$$

qu'il suffit d'évaluer en les foncteurs qui nous intéressent pour obtenir la suite exacte longue voulue. \Box

Corollaire 5. (Théorème de Leray)

Soient X un espace topologique, \mathcal{F} un faisceau abélien sur X et $\mathcal{U} = (U_i)_{i \in I}$ un recouvrement de X par des ouverts dont toutes les intersections finies sont acycliques. Alors, on a

$$\check{H}^{\bullet}(\mathcal{U},\mathcal{F}) \xrightarrow{\sim} H^{\bullet}(X,\mathcal{F})$$
.

 $D\acute{e}monstration.$ L'hypothèse signifie que, si $i_0,\dots,i_p\in I$ et si $V:=U_{i_0,\dots,i_p},$ alors on a

$$\forall p > 0, \ H^p(V, \mathcal{F}_{|V}) = 0.$$

Ceci entraîne que $\mathcal{H}^p(\mathcal{F})(V) = 0$ et donc que le complexe de Cech du préfaisceau $\mathcal{H}^p(\mathcal{F})$ est nul, donc que l'on a

$$E_2^{p,q} = \check{H}^p(\mathcal{U}, \mathcal{H}^q(\mathcal{F})) = 0, \ \forall p \ge 0, \ \forall q \ne 0.$$

Ainsi, la suite spectrale de Cech s'effondre en seconde page et on en tire que

$$\forall n \geq 0, \ \check{H}^n(\mathcal{U}, \mathcal{F}) = \check{H}^n(\mathcal{U}, \mathcal{H}^0(\mathcal{F})) = E_2^{n,0} = E_{\infty}^{n,0} = H^n(X, \mathcal{F}).$$

Remarquons que l'on peut aussi dériver le résultat directement du Corollaire 4.

Corollaire 6. (Suite exacte longue de Mayer-Vietoris)

Soient X un espace topologique recouvert par deux de ses ouverts U, V et \mathcal{F} un faisceau abélien sur X. Alors, on a une suite exacte longue en cohomologie

$$\cdots \longrightarrow H^n(X,\mathcal{F}) \longrightarrow H^n(U,\mathcal{F}) \oplus H^n(V,\mathcal{F}) \longrightarrow H^n(U \cap V,\mathcal{F}) \stackrel{\delta}{\longrightarrow} H^{n+1}(X,\mathcal{F}) \longrightarrow \cdots$$

De plus, le résultat demeure si \mathcal{F} est un faisceau de modules sur un espace annelé (X, \mathcal{O}_X) et en particulier, si \mathcal{F} est un faisceau algébrique sur une variété algébrique ou un schéma.

Démonstration. On considère le recouvrement ouvert $\mathcal{U} = \{U, V\}$. Pour tout préfaisceau abélien \mathcal{G} sur X, on a

$$\forall p \geq 2, \ \check{C}^p(\mathcal{U}, \mathcal{G}) = 0 \Rightarrow \forall p \neq 0, 1, \ \check{H}^p(\mathcal{U}, \mathcal{G}) = 0,$$

d'où

$$\forall p \neq 0, 1, \ E_2^{p,q} = 0$$

donc, par le lemme des deux colonnes on obtient, pour tout $n \ge 1$, une suite exacte courte

$$0 \longrightarrow E_2^{1,n-1} \longrightarrow H^n \longrightarrow E_2^{0,n} \longrightarrow 0$$

qui se réécrit ici

$$0 \longrightarrow \check{H}^1(\mathcal{U}, \mathcal{H}^{n-1}(\mathcal{F})) \longrightarrow H^n(X, \mathcal{F}) \longrightarrow \check{H}^0(\mathcal{U}, \mathcal{H}^n(\mathcal{F})) \longrightarrow 0.$$

Remarquons que pour tout $k \geq 0$, on a

$$\check{C}^0(\mathcal{U},\mathcal{H}^k(\mathcal{F})) = \mathcal{H}^k(\mathcal{F})(U) \times \mathcal{H}^k(\mathcal{F})(V) = H^k(U,\mathcal{F}) \oplus H^k(V,\mathcal{F}),$$

et

$$\check{C}^1(\mathcal{U},\mathcal{H}^k(\mathcal{F})) = \mathcal{H}^k(\mathcal{F})(U \cap V) = H^k(U \cap V,\mathcal{F}).$$

Considérons alors α^n la différentielle de Cech :

$$\alpha^n : H^n(U, \mathcal{F}) \oplus H^n(V, \mathcal{F}) \rightarrow H^n(U \cap V, \mathcal{F})$$

 $(s,t) \mapsto s_{|U \cap V|} - t_{|U \cap V|}$

ainsi que le morphisme canonique $\beta^n = H^n(\beta)$, où

$$\beta$$
: $\Gamma(X, \mathcal{F}) \rightarrow \Gamma(U, \mathcal{F}) \oplus \Gamma(V, \mathcal{F})$
 $s \mapsto (s_{|U}, s_{|V})$

On calcule ensuite

$$\check{H}^{1}(\mathcal{U}, \mathcal{H}^{n-1}(\mathcal{F})) \stackrel{\text{def}}{=} \check{C}^{1}(\mathcal{U}, \mathcal{H}^{n-1}(\mathcal{F})) / \operatorname{im} (\check{C}^{0} \to \check{C}^{1})$$

$$= H^{n-1}(U \cap V, \mathcal{F}) / \operatorname{im} \alpha^{n-1} = \operatorname{coker} \alpha^{n-1},$$

ainsi que

$$\check{H}^0(\mathcal{U},\mathcal{H}^n(\mathcal{F})) = \ker(\check{C}^0(\mathcal{U},\mathcal{H}^n(\mathcal{F})) \to \check{C}^1(\mathcal{U},\mathcal{H}^n(\mathcal{F})) = \ker\alpha^n.$$

Donc, la suite exacte courte ci-dessus sécrit aussi

$$0 \longrightarrow \operatorname{coker} \alpha^{n-1} \longrightarrow H^n(X, \mathcal{F}) \longrightarrow \ker \alpha^n \longrightarrow 0.$$

On peut donc recoller ces suites exactes courtes pour obtenir une suite exacte longue

qui est bien la suite de Mayer-Vietoris.

<u>Corollaire</u> 7. Soient X un schéma recouvert par deux ouverts affines U, V et \mathcal{F} un faisceau algébrique quasi-cohérent sur X. Alors, pour tout n > 0, on a un isomorphisme

$$H^{n-1}(U \cap V, \mathcal{F}) \xrightarrow{\sim} H^n(X, \mathcal{F})$$
.

 $D\acute{e}monstration.$ Ceci est une conséquence directe du Corollaire 6 et du Théorème 3 de Serre.

22