Fused Mackey functors

Serge Bouc

CNRS-LAMFA Université de Picardie

Antalya Algebra Days - Şirince - 24/05/2013

Serge Bouc (CNRS-LAMFA)

Mackey functors (Green)

Serge Bouc (CNRS-LAMFA)

2

A Mackey functor M for a finite group G

э

A Mackey functor M for a finite group G consists of the following data:
for H ≤ G, an abelian group M(H).

- for $H \leq G$, an abelian group M(H).
- for $H \leq K \leq G$, a restriction homomorphism $r_H^K : M(K) \to M(H)$

- for $H \leq G$, an abelian group M(H).
- for H ≤ K ≤ G, a restriction homomorphism r^K_H : M(K) → M(H) and a transfer (or induction) homomorphism t^K_K : M(H) → M(K).

- for $H \leq G$, an abelian group M(H).
- for H ≤ K ≤ G, a restriction homomorphism r^K_H : M(K) → M(H) and a transfer (or induction) homomorphism t^K_K : M(H) → M(K).
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H} : M(H) \rightarrow M({}^{g}H)$.

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for H ≤ K ≤ G, a restriction homomorphism r^K_H : M(K) → M(H) and a transfer (or induction) homomorphism t^K_K : M(H) → M(K).
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H}: M(H) \rightarrow M({}^{g}H)$.

These data are subject to transitivity conditions

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for $H \leq K \leq G$, a restriction homomorphism $r_H^K : M(K) \to M(H)$ and a transfer (or induction) homomorphism $t_K^K : M(H) \to M(K)$.
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H}: M(H) \rightarrow M({}^{g}H)$.

These data are subject to transitivity conditions (for example $N_G(H)$ acts on M(H), for any $H \leq G$)

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for H ≤ K ≤ G, a restriction homomorphism r^K_H : M(K) → M(H) and a transfer (or induction) homomorphism t^K_K : M(H) → M(K).
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H} : M(H) \rightarrow M({}^{g}H)$.

These data are subject to transitivity conditions, triviality conditions

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for H ≤ K ≤ G, a restriction homomorphism r^K_H : M(K) → M(H) and a transfer (or induction) homomorphism t^K_K : M(H) → M(K).
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H} : M(H) \rightarrow M({}^{g}H)$.

These data are subject to transitivity conditions, triviality conditions (for example H acts trivially on M(H), for any $H \leq G$)

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for $H \leq K \leq G$, a restriction homomorphism $r_H^K : M(K) \to M(H)$ and a transfer (or induction) homomorphism $t_K^K : M(H) \to M(K)$.
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H}: M(H) \rightarrow M({}^{g}H)$.

These data are subject to transitivity conditions, triviality conditions, and compatibility conditions

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for $H \leq K \leq G$, a restriction homomorphism $r_H^K : M(K) \to M(H)$ and a transfer (or induction) homomorphism $t_K^K : M(H) \to M(K)$.
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H} : M(H) \rightarrow M({}^{g}H)$.

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for H ≤ K ≤ G, a restriction homomorphism r^K_H : M(K) → M(H) and a transfer (or induction) homomorphism t^K_K : M(H) → M(K).
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H}: M(H) \rightarrow M({}^{g}H)$.

$$\forall K \overset{G}{\overset{L}{}} H, \quad r_{K}^{L} \circ t_{H}^{L} =$$

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for H ≤ K ≤ G, a restriction homomorphism r^K_H : M(K) → M(H) and a transfer (or induction) homomorphism t^K_K : M(H) → M(K).
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H}: M(H) \rightarrow M({}^{g}H)$.

$$\forall K \overset{G}{\swarrow} H, \quad r_{K}^{L} \circ t_{H}^{L} = \sum_{g \in [K \setminus L/H]}$$

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for H ≤ K ≤ G, a restriction homomorphism r^K_H : M(K) → M(H) and a transfer (or induction) homomorphism t^K_K : M(H) → M(K).
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H} : M(H) \rightarrow M({}^{g}H)$.

$$\forall K \overset{G}{\searrow} H, \quad r_{K}^{L} \circ t_{H}^{L} = \sum_{g \in [K \setminus L/H]} r_{K^{g} \cap H}^{H}$$

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for $H \leq K \leq G$, a restriction homomorphism $r_H^K : M(K) \to M(H)$ and a transfer (or induction) homomorphism $t_K^K : M(H) \to M(K)$.
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H}: M(H) \rightarrow M({}^{g}H)$.

$$\forall \ \mathsf{K} \overset{\mathsf{G}}{\underset{\mathsf{K}}{\overset{\mathsf{L}}{\sim}}} H , \quad \mathsf{r}_{\mathsf{K}}^{\mathsf{L}} \circ \mathsf{t}_{\mathsf{H}}^{\mathsf{L}} = \sum_{g \in [\mathsf{K} \setminus \mathsf{L}/\mathsf{H}]} \qquad \mathsf{c}_{g,\mathsf{K}^{g} \cap \mathsf{H}} \circ \mathsf{r}_{\mathsf{K}^{g} \cap \mathsf{H}}^{\mathsf{H}}$$

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for $H \leq K \leq G$, a restriction homomorphism $r_H^K : M(K) \to M(H)$ and a transfer (or induction) homomorphism $t_K^K : M(H) \to M(K)$.
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H}: M(H) \rightarrow M({}^{g}H)$.

$$\forall \ \mathsf{K} \overset{\mathsf{G}}{\underset{\mathsf{K}}{\overset{\mathsf{L}}{\sim}}} H \ , \quad \mathsf{r}_{\mathsf{K}}^{\mathsf{L}} \circ \mathsf{t}_{\mathsf{H}}^{\mathsf{L}} = \sum_{g \in [\mathsf{K} \setminus \mathsf{L}/\mathsf{H}]} \mathsf{t}_{\mathsf{K} \cap {}^{\mathsf{g}}\mathsf{H}}^{\mathsf{K}} \circ \mathsf{c}_{g,\mathsf{K}^{\mathsf{g}} \cap \mathsf{H}} \circ \mathsf{r}_{\mathsf{K}^{\mathsf{g}} \cap \mathsf{H}}^{\mathsf{H}} \ .$$

A Mackey functor M for a finite group G consists of the following data:

- for $H \leq G$, an abelian group M(H).
- for $H \leq K \leq G$, a restriction homomorphism $r_H^K : M(K) \to M(H)$ and a transfer (or induction) homomorphism $t_K^K : M(H) \to M(K)$.
- for $g \in G$ and $H \leq G$, a conjugation homomorphism $c_{g,H}: M(H) \rightarrow M({}^{g}H)$.

These data are subject to transitivity conditions, triviality conditions, and compatibility conditions

Mackey functors for G form an abelian category Mack(G).

Serge Bouc (CNRS-LAMFA)

2

A biset functor F

э

A biset functor *F* consists of the following data:

э

A biset functor *F* consists of the following data:

• for each finite group H, an abelian group F(H).

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

These data are subject to the following conditions:

• if $U \cong U'$ as (K, H)-bisets

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

These data are subject to the following conditions:

• if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- if $U = U_1 \sqcup U_2$ as (K, H)-bisets

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

These data are subject to the following conditions:

• if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').

3 if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- ② if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- **3** if V is a (K, H)-biset

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- 3 if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- **③** if V is a (K, H)-biset and U is an (H, G)-biset

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- 3 if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- 3 if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- 3 if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- 3 if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

A biset functor *F* consists of the following data:

- for each finite group H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- (a) if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- (a) if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of finite groups and any finite (K, H)-biset U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- (a) if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- (a) if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of those finite groups

- If $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- (a) if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of those finite groups and some finite (K, H)-bisets U

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- (a) if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of those finite groups and some finite (K, H)-bisets U, a group homomorphism F(U) : F(H) → F(K).

These data are subject to the following conditions:

• if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').

• if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.

(a) if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.

• if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of those finite groups and some finite (K, H)-bisets U, a group homomorphism F(U) : F(H) → F(K).

- if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').
- 3 if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of those finite groups and some finite (K, H)-bisets U, a group homomorphism F(U) : F(H) → F(K).

These data are subject to the following conditions:

• if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').

(a) if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.

- (a) if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

Example of "some":

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of those finite groups and some finite (K, H)-bisets U, a group homomorphism F(U) : F(H) → F(K).

These data are subject to the following conditions:

• if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').

- if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- ◎ if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.
- if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

Example of "some": *p*-groups, for a prime number *p*.

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of those finite groups and some finite (K, H)-bisets U, a group homomorphism F(U) : F(H) → F(K).

These data are subject to the following conditions:

• if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').

- if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- (a) if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.

• if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

Example of "some": *p*-groups, for a prime number *p*. **Example** of "some":

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of those finite groups and some finite (K, H)-bisets U, a group homomorphism F(U) : F(H) → F(K).

These data are subject to the following conditions:

• if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').

- if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- ◎ if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.

• if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

Example of "some": *p*-groups, for a prime number *p*. **Example** of "some": left-free bisets, or bi-free bisets.

A biset functor *F* consists of the following data:

- for some finite groups H, an abelian group F(H).
- for any pair (K, H) of those finite groups and some finite (K, H)-bisets U, a group homomorphism F(U) : F(H) → F(K).

These data are subject to the following conditions:

• if $U \cong U'$ as (K, H)-bisets, then F(U) = F(U').

- (a) if $U = U_1 \sqcup U_2$ as (K, H)-bisets, then $F(U) = F(U_1) + F(U_2)$.
- if V is a (K, H)-biset and U is an (H, G)-biset, then $F(V) \circ F(U) = F(V \circ U)$, where $V \circ U = V \times_H U$.

• if Id_H is the (H, H)-biset H, then $F(Id_H) = Id_{F(H)}$.

Example of "some": *p*-groups, for a prime number *p*. **Example** of "some": left-free bisets, or bi-free bisets. Biset functors defined over "some" groups with "some" bisets as morphisms form an abelian category $\mathcal{F}_{some,some}$.

Serge Bouc (CNRS-LAMFA)

2

Fix a finite group G.

2

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U

э

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

 $\forall (k,h) \in K \times H, \ ku = uh \Rightarrow$

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

 $\forall (k,h) \in K \times H, ku = uh \Rightarrow k = {}^{g}h.$

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group.

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

• Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$.

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

• Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

• Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$, so U is a conjugation (K, H)-biset. In particular:

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

- Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$, so U is a conjugation (K, H)-biset. In particular:
 - when $K \leq H$, the (K, H)-biset H is denoted by $\operatorname{Res}_{K}^{H}$.

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K, H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

- Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$, so U is a conjugation (K, H)-biset. In particular:
 - when K ≤ H, the (K, H)-biset H is denoted by Res^H_K.
 when H ≤ K, the (K, H)-biset K is denoted by Ind^K_H.

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K, H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

- Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$, so U is a conjugation (K, H)-biset. In particular:
 - when K ≤ H, the (K, H)-biset H is denoted by Res^H_K.
 when H ≤ K, the (K, H)-biset K is denoted by Ind^K_H.

 - when $K = {}^{g}H$, for $g \in G$, the (K, H)-biset gH is denoted by $Cnj_{g,H}$.

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

 $\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

- Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$, so U is a conjugation (K, H)-biset. In particular:
 - when $K \leq H$, the (K, H)-biset H is denoted by $\operatorname{Res}_{K}^{H}$.
 - when $H \leq K$, the (K, H)-biset K is denoted by Ind_{H}^{K} .
 - when $K = {}^{g}H$, for $g \in G$, the (K, H)-biset gH is denoted by $Cnj_{g,H}$.
- When $L, K, H \leq G$, if V is a conjugation (L, K)-biset

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

 $\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

- Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$, so U is a conjugation (K, H)-biset. In particular:
 - when $K \leq H$, the (K, H)-biset H is denoted by $\operatorname{Res}_{K}^{H}$.
 - when $H \leq K$, the (K, H)-biset K is denoted by Ind_{H}^{k} .
 - when $K = {}^{g}H$, for $g \in G$, the (K, H)-biset gH is denoted by $Cnj_{g,H}$.
- When L, K, H ≤ G, if V is a conjugation (L, K)-biset and U is a conjugation (K, H)-biset

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

 $\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

- Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$, so U is a conjugation (K, H)-biset. In particular:
 - when $K \leq H$, the (K, H)-biset H is denoted by $\operatorname{Res}_{K}^{H}$.
 - when $H \leq K$, the (K, H)-biset K is denoted by Ind_{H}^{K} .
 - when $K = {}^{g}H$, for $g \in G$, the (K, H)-biset gH is denoted by $Cnj_{g,H}$.
- When L, K, H ≤ G, if V is a conjugation (L, K)-biset and U is a conjugation (K, H)-biset, then V ×_H U is a conjugation (L, H)-biset.

4 / 22

・ロト ・得ト ・ヨト ・ヨト

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

 $\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

- Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$, so U is a conjugation (K, H)-biset. In particular:
 - when $K \leq H$, the (K, H)-biset H is denoted by $\operatorname{Res}_{K}^{H}$.
 - when $H \leq K$, the (K, H)-biset K is denoted by Ind_{H}^{K} .
 - when $K = {}^{g}H$, for $g \in G$, the (K, H)-biset gH is denoted by $Cnj_{g,H}$.
- When L, K, H ≤ G, if V is a conjugation (L, K)-biset and U is a conjugation (K, H)-biset, then V ×_H U is a conjugation (L, H)-biset.
- for $K, H \leq G$, any conjugation (K, H)-biset

4 / 22

イロト イポト イヨト イヨト 二日

Fix a finite group G. When $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

 $\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$

Let $Conj_{K,H}^{G}$ denote the full subcategory of (K, H)-bisets consisting of conjugation (K, H)-bisets, and $\mathcal{B}_{K,H}^{G}$ its Grothendieck (Burnside) group. **Examples:**

- Let U be a sub-(K, H)-biset of ${}_{K}G_{H}$. Then $ku = uh \Leftrightarrow k = {}^{u}h$, for $u \in U$, so U is a conjugation (K, H)-biset. In particular:
 - when $K \leq H$, the (K, H)-biset H is denoted by $\operatorname{Res}_{K}^{H}$.
 - when $H \leq K$, the (K, H)-biset K is denoted by Ind_{H}^{K} .
 - when $K = {}^{g}H$, for $g \in G$, the (K, H)-biset gH is denoted by $Cnj_{g,H}$.
- When L, K, H ≤ G, if V is a conjugation (L, K)-biset and U is a conjugation (K, H)-biset, then V ×_H U is a conjugation (L, H)-biset.
- for K, H ≤ G, any conjugation (K, H)-biset is isomorphic to a disjoint union of conjugation bisets of the form Ind^K_{gA} ∘ Cnj_{g,A} ∘ Res^H_A.

4 / 22

Mackey functors and biset functors

Serge Bouc (CNRS-LAMFA)

э

Mackey functors and biset functors

Fix a finite group G. Then:

Mackey functors and biset functors

Fix a finite group G. Then:

• let "some" denote the subgroups of *G*.
Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Fix a finite group G. Then:

- let "some" denote the subgroups of *G*.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

• for any $H \leq G$, set $M_F(H) = F(H)$.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

• for any $H \leq G$, set $M_F(H) = F(H)$.

• for
$$H \leq K \leq G$$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

If or any H ≤ G, set M_F(H) = F(H).
If or H ≤ K ≤ G, define

$$\begin{cases}
r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\
t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K).
\end{cases}$$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

If or any $H \leq G$, set $M_F(H) = F(H)$.
If or $H \leq K \leq G$, define $\begin{cases} r_H^K = F(\operatorname{Res}_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(\operatorname{Ind}_H^K) : M_F(H) \to M_F(K). \\ \bullet \text{ for } H \leq G \text{ and } g \in G \end{cases}$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.

Then M_F is a Mackey functor for G.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \leq K \leq G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$
 - for $H \leq G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \rightarrow M_F({}^gH)$.

Then M_F is a Mackey functor for G.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \leq K \leq G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$
 - for $H \leq G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \rightarrow M_F({}^gH)$.

Then M_F is a Mackey functor for G.

$$\forall K \bigvee_{L} H, \quad K G_{H} = \bigsqcup_{g \in [K \setminus L/H]} KgH$$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \leq K \leq G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$
 - for $H \leq G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \rightarrow M_F({}^gH)$.

Then M_F is a Mackey functor for G.

$$\forall K \overset{G}{\underset{L}{\checkmark}} H, \quad {}_{K}G_{H} \cong \bigsqcup_{g \in [K \setminus L/H]}$$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \leq K \leq G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$
 - for $H \leq G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \rightarrow M_F({}^gH)$.

Then M_F is a Mackey functor for G. In particular, the Mackey formula follows from

$$\forall K \overset{G}{\searrow} H, \quad {}_{K}G_{H} \cong \bigsqcup_{g \in [K \setminus L/H]}$$

$$Res^{H}_{K^{g}\cap H}$$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \leq K \leq G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$
- for $H \leq G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \rightarrow M_F({}^gH)$. Then M_F is a Mackey functor for G.

$$\forall K \overset{G}{\stackrel{L}{\longrightarrow}} H, \quad {}_{K}G_{H} \cong \bigsqcup_{g \in [K \setminus L/H]}$$

$$Cnj_{g,K^{g}\cap H} \circ Res^{H}_{K^{g}\cap H}$$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \leq K \leq G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$

• for $H \leq G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F({}^gH)$. Then M_F is a Mackey functor for G.

$$\forall K \overset{G}{\searrow} H, \quad {}_{K}G_{H} \cong \bigsqcup_{g \in [K \setminus L/H]} Ind_{K \cap {}^{g}H}^{K} \circ Cnj_{g,K^{g} \cap H} \circ Res_{K^{g} \cap H}^{H}.$$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \leq K \leq G$, define $\begin{cases} r_{H}^{K} = F(Res_{H}^{K}) : M_{F}(K) \rightarrow M_{F}(H), \\ t_{H}^{K} = F(Ind_{H}^{K}) : M_{F}(H) \rightarrow M_{F}(K). \end{cases}$
 - for $H \leq G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \rightarrow M_F({}^gH)$.

Then M_F is a Mackey functor for G.

Question:

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \le K \le G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$ • for $H \le G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F(^gH).$

Then M_F is a Mackey functor for G.

Question: Let M be a Mackey functor for G.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.

Then M_F is a Mackey functor for G.

Question: Let *M* be a Mackey functor for *G*. Is there a biset functor *F* such that $M \cong M_F$?

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \le K \le G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$ • for $H \le G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F(^gH).$

Then M_F is a Mackey functor for G.

Question: Let M be a Mackey functor for G. Is there a biset functor F such that $M \cong M_F$? **Answer:** No in general.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \le K \le G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$ • for $H \le G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F(^gH).$

Then M_F is a Mackey functor for G.

Question: Let M be a Mackey functor for G. Is there a biset functor F such that $M \cong M_F$? **Answer:** No in general. If $g \in C_G(H)$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \le K \le G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$ • for $H \le G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F({}^gH).$

Then M_F is a Mackey functor for G.

Question: Let M be a Mackey functor for G. Is there a biset functor F such that $M \cong M_F$? **Answer:** No in general. If $g \in C_G(H)$, then $gH \cong H$ as (H, H)-biset

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \le K \le G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$ • for $H \le G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F({}^gH).$

Then M_F is a Mackey functor for G.

Question: Let M be a Mackey functor for G. Is there a biset functor F such that $M \cong M_F$? **Answer:** No in general. If $g \in C_G(H)$, then $gH \cong H$ as (H, H)-biset, hence $Cnj_{g,H} \cong Cnj_{1,H} \cong Id_H$.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \le K \le G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$ • for $H \le G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F(^gH).$

Then M_F is a Mackey functor for G.

Question: Let M be a Mackey functor for G. Is there a biset functor F such that $M \cong M_F$? **Answer:** No in general. If $g \in C_G(H)$, then $gH \cong H$ as (H, H)-biset, hence $Cnj_{g,H} \cong Cnj_{1,H} \cong Id_H$. Hence $c_{g,H} = Id_{M_F(H)}$

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \le K \le G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$ • for $H \le G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F({}^gH). \end{cases}$

Then M_F is a Mackey functor for G.

Question: Let M be a Mackey functor for G. Is there a biset functor F such that $M \cong M_F$? **Answer:** No in general. If $g \in C_G(H)$, then $gH \cong H$ as (H, H)-biset, hence $Cnj_{g,H} \cong Cnj_{1,H} \cong Id_H$. Hence $c_{g,H} = Id_{M_F(H)}$, and $C_G(H)$ acts trivially on $M_F(H)$, for any $H \leq G$.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \le K \le G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$ • for $H \le G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F({}^gH). \end{cases}$

Then M_F is a Mackey functor for G.

Question: Let M be a Mackey functor for G. Is there a biset functor F such that $M \cong M_F$? **Answer:** No in general. If $g \in C_G(H)$, then $gH \cong H$ as (H, H)-biset, hence $Cnj_{g,H} \cong Cnj_{1,H} \cong Id_H$. Hence $c_{g,H} = Id_{M_F(H)}$, and $C_G(H)$ acts trivially on $M_F(H)$, for any $H \leq G$.

Fix a finite group G. Then:

- let "some" denote the subgroups of G.
- let "some" denote conjugation (K, H)-bisets, for $K, H \leq G$.

Set $\mathcal{F}_{G} = \mathcal{F}_{some,some}$. If $F \in \mathcal{F}_{G}$:

- for any $H \leq G$, set $M_F(H) = F(H)$.
- for $H \le K \le G$, define $\begin{cases} r_H^K = F(Res_H^K) : M_F(K) \to M_F(H), \\ t_H^K = F(Ind_H^K) : M_F(H) \to M_F(K). \end{cases}$ • for $H \le G$ and $g \in G$, define $c_{g,H} = F(Cnj_{g,H}) : M_F(H) \to M_F({}^gH). \end{cases}$

Then M_F is a Mackey functor for G.

Question: Let M be a Mackey functor for G. Is there a biset functor F such that $M \cong M_F$? **Answer:** No in general. If $g \in C_G(H)$, then $gH \cong H$ as (H, H)-biset, hence $Cnj_{g,H} \cong Cnj_{1,H} \cong Id_H$. Hence $c_{g,H} = Id_{M_F(H)}$, and $C_G(H)$ acts trivially on $M_F(H)$, for any $H \leq G$.

Conjugation invariant Mackey functors

Serge Bouc (CNRS-LAMFA)

э

Let G be a finite group.

Let G be a finite group. A Mackey functor M for G is said to be conjugation invariant

Let G be a finite group. A Mackey functor M for G is said to be conjugation invariant if $C_G(H)$ acts trivially on M(H), for any $H \leq G$.

Let G be a finite group. A Mackey functor M for G is said to be conjugation invariant if $C_G(H)$ acts trivially on M(H), for any $H \leq G$.

Let $Mack^{c}(G)$ denote the subcategory of Mack(G) consisting of conjugation invariant Mackey functors.

Let G be a finite group. A Mackey functor M for G is said to be conjugation invariant if $C_G(H)$ acts trivially on M(H), for any $H \leq G$.

Let $Mack^{c}(G)$ denote the subcategory of Mack(G) consisting of conjugation invariant Mackey functors.

Recall that \mathcal{F}_G denotes the category of biset functors defined on subgroups of G, with conjugation (K, H)-bisets as morphisms.

Let G be a finite group. A Mackey functor M for G is said to be conjugation invariant if $C_G(H)$ acts trivially on M(H), for any $H \leq G$.

Let $Mack^{c}(G)$ denote the subcategory of Mack(G) consisting of conjugation invariant Mackey functors. Recall that \mathcal{F}_{G} denotes the category of biset functors defined on

subgroups of G, with conjugation (K, H)-bisets as morphisms.

Theorem (Hambleton-Taylor-Williams 2010)

The functor $F \mapsto M_F$ is an equivalence of categories $\mathcal{F}_G \to Mack^c(G)$.

イロト 不得下 イヨト イヨト

Mackey functors revisited (Dress)

æ
Let G be a finite group.

3

Let G be a finite group. Let G-set denote the category of finite G-sets.

Let *G* be a finite group. Let *G*-set denote the category of finite *G*-sets. Let \mathbb{Z} -**Mod** denote the category of abelian groups.

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, i.e.

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, i.e.

• M^* is a contravariant functor G-set $\rightarrow \mathbb{Z}$ -Mod.

7 / 22

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, i.e.

- M^* is a contravariant functor G-set $\rightarrow \mathbb{Z}$ -Mod.
- M_* is a covariant functor G-set $\rightarrow \mathbb{Z}$ -Mod.

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, i.e.

- M^* is a contravariant functor G-set $\rightarrow \mathbb{Z}$ -Mod.
- M_* is a covariant functor G-set $\rightarrow \mathbb{Z}$ -Mod.
- $M^*(X) = M_*(X)$ for any finite G-set X.

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, such that

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, such that

() for any finite G-sets X and Y, the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, such that

() for any finite G-sets X and Y, the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$

are inverse to each other

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, such that

() for any finite G-sets X and Y, the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$

are inverse to each other, where $X \subseteq \stackrel{i_X}{\longrightarrow} X \sqcup Y \stackrel{i_Y}{\longleftarrow} Y$.

7 / 22

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, such that

• for any finite *G*-sets *X* and *Y*, the maps $M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$ are inverse to each other, where $X \subseteq \overset{i_X}{\longrightarrow} X \sqcup Y \xleftarrow{i_Y} Y$.

2 if $b \downarrow \qquad \downarrow^c$ is a cartesian (i.e. pullback) square of finite *G*-sets $Z \xrightarrow[d]{d} T$

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, such that

I for any finite G-sets X and Y, the maps
$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$
are inverse to each other, where X ⊂ ^{i_X}, X ⊔ Y ⊂ ^{i_Y} ⊃Y

2 if $\begin{array}{c} X \xrightarrow{a} Y \\ \downarrow c \\ Z \xrightarrow{a} T \end{array}$ is a cartesian (i.e. pullback) square of finite *G*-sets, then $\begin{array}{c} X \xrightarrow{a} Y \\ \downarrow c \\ Z \xrightarrow{a} T \end{array}$

$$M^*(d) \circ M_*(c) = M_*(b) \circ M^*(a).$$

Definition (Dress)

A Mackey functor M for G is a bivariant functor (M^*, M_*) from G-set to \mathbb{Z} -Mod, such that

I for any finite G-sets X and Y, the maps
$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$
are inverse to each other, where X ⊂ ^{i_X}, X ⊔ Y ⊂ ^{i_Y} ⊃Y

2 if $\begin{array}{c} X \xrightarrow{a} Y \\ \downarrow c \\ Z \xrightarrow{a} T \end{array}$ is a cartesian (i.e. pullback) square of finite *G*-sets, then $\begin{array}{c} X \xrightarrow{a} Y \\ \downarrow c \\ Z \xrightarrow{a} T \end{array}$

$$M^*(d) \circ M_*(c) = M_*(b) \circ M^*(a).$$

Mackey functors revisited (Lindner)

Serge Bouc (CNRS-LAMFA)

3

Let S_G denote the following category (of spans of *G*-sets):

Let S_G denote the following category:

• the objects of S_G are the finite *G*-sets.

- the objects of S_G are the finite G-sets.
- $Hom_{\mathcal{S}_{G}}(X, Y) = \mathcal{B}(_{G}(Y \times X))$ for finite G-sets X and Y

- the objects of \mathcal{S}_G are the finite *G*-sets.
- $Hom_{S_G}(X, Y) = \mathcal{B}(_G(Y \times X))$ for finite *G*-sets *X* and *Y*, where $\mathcal{B}(_G(Y \times X))$ is the Grothendieck group (Burnside group) of the category *G*-set_{$\downarrow Y \times X$}.

- the objects of \mathcal{S}_G are the finite *G*-sets.
- $Hom_{S_G}(X, Y) = \mathcal{B}(_G(Y \times X))$ for finite *G*-sets *X* and *Y*, where $\mathcal{B}(_G(Y \times X))$ is the Grothendieck group (Burnside group) of the category *G*-set_{$\downarrow Y \times X$}.
- composition is induced by pullback

- the objects of \mathcal{S}_G are the finite *G*-sets.
- $Hom_{S_G}(X, Y) = \mathcal{B}(_G(Y \times X))$ for finite *G*-sets *X* and *Y*, where $\mathcal{B}(_G(Y \times X))$ is the Grothendieck group (Burnside group) of the category *G*-set_{$\downarrow Y \times X$}.
- composition is induced by pullback, from

- the objects of \mathcal{S}_G are the finite *G*-sets.
- $Hom_{S_G}(X, Y) = \mathcal{B}(_G(Y \times X))$ for finite *G*-sets *X* and *Y*, where $\mathcal{B}(_G(Y \times X))$ is the Grothendieck group (Burnside group) of the category *G*-set_{$\downarrow Y \times X$}.
- composition is induced by pullback, from

Let S_G denote the following category:

- the objects of \mathcal{S}_G are the finite *G*-sets.
- $Hom_{S_G}(X, Y) = \mathcal{B}(_G(Y \times X))$ for finite *G*-sets *X* and *Y*, where $\mathcal{B}(_G(Y \times X))$ is the Grothendieck group (Burnside group) of the category *G*-set_{$\downarrow Y \times X$}.
- composition is induced by pullback, from

Then a Mackey functor for G

Let S_G denote the following category:

- the objects of \mathcal{S}_G are the finite *G*-sets.
- $Hom_{S_G}(X, Y) = \mathcal{B}(_G(Y \times X))$ for finite *G*-sets *X* and *Y*, where $\mathcal{B}(_G(Y \times X))$ is the Grothendieck group (Burnside group) of the category *G*-set_{$\downarrow Y \times X$}.
- composition is induced by pullback, from

8 / 22

Biset functors revisited

Serge Bouc (CNRS-LAMFA)

æ

• the objects of C_G are the subgroups of G.

- the objects of C_G are the subgroups of G.
- if $H, K \leq G$, then $Hom_{\mathcal{C}_G}(H, K)$ is the Grothendieck group $\mathcal{B}_{K, H}^G$

Let \mathcal{C}_{G} denote the following category:

- the objects of C_G are the subgroups of G.
- if H, K ≤ G, then Hom_{C_G}(H, K) is the Grothendieck group B^G_{K,H} of the category Conj^G_{K,H}.

- the objects of C_G are the subgroups of G.
- if H, K ≤ G, then Hom_{C_G}(H, K) is the Grothendieck group B^G_{K,H} of the category Conj^G_{K,H}.
- composition in \mathcal{C}_{G} is induced by the composition of bisets.

- the objects of C_G are the subgroups of G.
- if H, K ≤ G, then Hom_{C_G}(H, K) is the Grothendieck group B^G_{K,H} of the category Conj^G_{K,H}.
- composition in $\mathcal{C}_{\mathcal{G}}$ is induced by the composition of bisets.
- the identity morphism of $H \leq G$ is the (H, H)-biset H.

- the objects of C_G are the subgroups of G.
- if H, K ≤ G, then Hom_{C_G}(H, K) is the Grothendieck group B^G_{K,H} of the category Conj^G_{K,H}.
- composition in \mathcal{C}_{G} is induced by the composition of bisets.
- the identity morphism of $H \leq G$ is the (H, H)-biset H.

Then the category \mathcal{F}_G is equivalent to the category of additive functors from \mathcal{C}_G to \mathbb{Z} -**Mod**.

Serge Bouc (CNRS-LAMFA)

æ

Conjugation bisets revisited

Recall that when $H, K \leq G$, a conjugation (K, H)-biset U

Recall that when $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$

Recall that when $H, K \leq G$, a conjugation (K, H)-biset U is a biset such that for each $u \in U$, there exists $g = g_u \in G$ such that

$$\forall (k,h) \in K \times H, ku = uh \Rightarrow k = {}^{g}h.$$
$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Equivalently

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Equivalently U is a (K, H)-biset such that there exists a morphism of (K, H)-bisets $U \rightarrow {}_{K}G_{H}$

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Equivalently U is a (K, H)-biset such that there exists a morphism of (K, H)-bisets $U \rightarrow {}_{K}G_{H}$:

 \rightarrow if U is a conjugation (K, H)-biset, then for each $u \in [K \setminus U/H]$, choose g_u as above

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Equivalently U is a (K, H)-biset such that there exists a morphism of (K, H)-bisets $U \rightarrow {}_{K}G_{H}$:

 \rightarrow if U is a conjugation (K, H)-biset, then for each $u \in [K \setminus U/H]$, choose g_u as above, and define a map $\alpha : U \rightarrow G$ by $\alpha(kuh) = kg_uh$, for $u \in [K \setminus U/H]$, $k \in K$, $h \in H$.

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Equivalently U is a (K, H)-biset such that there exists a morphism of (K, H)-bisets $U \rightarrow {}_{K}G_{H}$:

 \rightarrow if U is a conjugation (K, H)-biset, then for each $u \in [K \setminus U/H]$, choose g_u as above, and define a map $\alpha : U \rightarrow G$ by $\alpha(kuh) = kg_uh$, for $u \in [K \setminus U/H]$, $k \in K$, $h \in H$.

 $\overleftarrow{\leftarrow} \text{ if } \beta: U \to G \text{ is a map of } (K, H) \text{-bisets}$

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Equivalently U is a (K, H)-biset such that there exists a morphism of (K, H)-bisets $U \rightarrow {}_{K}G_{H}$:

 \rightarrow if U is a conjugation (K, H)-biset, then for each $u \in [K \setminus U/H]$, choose g_u as above, and define a map $\alpha : U \rightarrow G$ by $\alpha(kuh) = kg_uh$, for $u \in [K \setminus U/H]$, $k \in K$, $h \in H$.

 $\begin{tabular}{ll} \hline \leftarrow & \text{if } \beta: U \to G \text{ is a map of } (K,H) \text{-bisets, then for any } u \in U \end{tabular}$

 $\forall (k,h) \in K \times H, ku = uh$

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Equivalently U is a (K, H)-biset such that there exists a morphism of (K, H)-bisets $U \rightarrow {}_{K}G_{H}$:

 \rightarrow if U is a conjugation (K, H)-biset, then for each $u \in [K \setminus U/H]$, choose g_u as above, and define a map $\alpha : U \rightarrow G$ by $\alpha(kuh) = kg_uh$, for $u \in [K \setminus U/H]$, $k \in K$, $h \in H$.

 $\begin{tabular}{ll} \hline \leftarrow & \text{if } \beta: U \to G \text{ is a map of } (K,H) \text{-bisets, then for any } u \in U \end{tabular}$

 $\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k\beta(u) = \beta(u)h$

$$\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k = {}^{g}h.$$

Equivalently U is a (K, H)-biset such that there exists a morphism of (K, H)-bisets $U \rightarrow {}_{K}G_{H}$:

 \rightarrow if U is a conjugation (K, H)-biset, then for each $u \in [K \setminus U/H]$, choose g_u as above, and define a map $\alpha : U \rightarrow G$ by $\alpha(kuh) = kg_uh$, for $u \in [K \setminus U/H]$, $k \in K$, $h \in H$.

 \leftarrow if $\beta: U \rightarrow G$ is a map of (K, H)-bisets, then for any $u \in U$

 $\forall (k,h) \in K \times H, \ ku = uh \Rightarrow k\beta(u) = \beta(u)h \Rightarrow k = {}^{g}h, \text{ for } g = \beta(u).$

3

Serge Bouc (CNRS-LAMFA)

Let $K, H \leq G$.

2

<ロ> (日) (日) (日) (日) (日)

$$\begin{pmatrix} U\\ \downarrow^{\alpha}\\ {}_{\mathsf{K}}\mathsf{G}_{\mathsf{H}} \end{pmatrix} \in (\mathsf{K},\mathsf{H})\text{-}\mathsf{biset}_{\downarrow_{\mathsf{K}}\mathsf{G}_{\mathsf{H}}}$$

æ

$$\begin{pmatrix} U\\ \downarrow^{\alpha}\\ {}_{K}G_{H} \end{pmatrix} \in (K,H)\text{-biset}_{\downarrow_{K}G_{H}} \mapsto U \in Conj_{K,H}^{G}$$

æ

$$\begin{pmatrix} U \\ \downarrow^{\alpha} \\ {}_{\mathsf{K}}\mathsf{G}_{\mathsf{H}} \end{pmatrix} \in (\mathsf{K},\mathsf{H})\text{-}\mathsf{biset}_{\downarrow_{\mathsf{K}}\mathsf{G}_{\mathsf{H}}} \mapsto U \in \mathit{Conj}_{\mathsf{K},\mathsf{H}}^{\mathsf{G}}$$

which induces a surjective group homomorphism

$$\mathcal{B}({}_{K}G_{H}) \longrightarrow \mathcal{B}^{G}_{K,H}.$$

3

$$\begin{pmatrix} U \\ \downarrow^{\alpha} \\ {}_{\mathsf{K}}\mathsf{G}_{\mathsf{H}} \end{pmatrix} \in (\mathsf{K},\mathsf{H})\text{-}\mathsf{biset}_{\downarrow_{\mathsf{K}}\mathsf{G}_{\mathsf{H}}} \mapsto U \in \mathit{Conj}_{\mathsf{K},\mathsf{H}}^{\mathsf{G}}$$

which induces a surjective group homomorphism

$$\mathcal{B}({}_{K}G_{H}) \longrightarrow \mathcal{B}^{G}_{K,H}.$$

This is compatible with the composition

$$\begin{pmatrix} U\\ \downarrow^{\alpha}\\ {}_{\mathsf{K}}\mathsf{G}_{\mathsf{H}} \end{pmatrix} \in (\mathsf{K},\mathsf{H})\text{-}\mathsf{biset}_{\downarrow_{\mathsf{K}}\mathsf{G}_{\mathsf{H}}} \mapsto U \in \mathit{Conj}_{\mathsf{K},\mathsf{H}}^{\mathsf{G}}$$

which induces a surjective group homomorphism

$$\mathcal{B}(_{K}G_{H}) \longrightarrow \mathcal{B}^{G}_{K,H}$$

This is compatible with the composition, if

$$\begin{pmatrix} V\\ \downarrow^{\beta}\\ {}_{L}G_{K} \end{pmatrix} \circ \begin{pmatrix} U\\ \downarrow^{\alpha}\\ {}_{K}G_{H} \end{pmatrix} =$$

$$\begin{pmatrix} U \\ \downarrow^{\alpha} \\ {}_{\mathsf{K}}\mathsf{G}_{\mathsf{H}} \end{pmatrix} \in (\mathsf{K},\mathsf{H})\text{-}\mathsf{biset}_{\downarrow_{\mathsf{K}}\mathsf{G}_{\mathsf{H}}} \mapsto U \in \mathit{Conj}_{\mathsf{K},\mathsf{H}}^{\mathsf{G}}$$

which induces a surjective group homomorphism

$$\mathcal{B}(_{K}G_{H}) \longrightarrow \mathcal{B}^{G}_{K,H}.$$

This is compatible with the composition, if

$$\begin{pmatrix} V \\ \downarrow^{\beta} \\ {}_{L}G_{K} \end{pmatrix} \circ \begin{pmatrix} U \\ \downarrow^{\alpha} \\ {}_{K}G_{H} \end{pmatrix} = \begin{pmatrix} V \times_{K} U \\ \downarrow^{\beta \times_{K}\alpha} \\ G \times_{K} G \\ \downarrow^{\mu} \\ G \end{pmatrix}$$

Serge Bouc (CNRS-LAMFA)

-

2

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

э

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ .

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X = \Gamma \times_{\Lambda} X$

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$.

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set_{$\downarrow X$} and Γ -set_{$\downarrow Y$} are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

In particular if $X = \operatorname{Res}_{\Lambda}^{\Gamma} Z$ for some finite Γ -set Z

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

In particular if $X = Res_{\Lambda}^{\Gamma} Z$ for some finite Γ -set Z, then

 $\mathcal{B}(\Lambda(\operatorname{\mathit{Res}}^{\Gamma}_{\Lambda}Z))\cong$

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

In particular if $X = \operatorname{Res}_{\Lambda}^{\Gamma} Z$ for some finite Γ -set Z, then

 $\mathcal{B}\big({}_{\Lambda}(\mathit{Res}^{\Gamma}_{\Lambda}Z)\big)\cong\mathcal{B}\big({}_{\Gamma}(\mathit{Ind}^{\Gamma}_{\Lambda}\mathit{Res}^{\Gamma}_{\Lambda}Z)\big)\cong$

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

In particular if $X = \operatorname{Res}_{\Lambda}^{\Gamma} Z$ for some finite Γ -set Z, then

$$\mathcal{B}({}_{\Lambda}(\operatorname{\mathit{Res}}_{\Lambda}^{\Gamma}Z))\cong \mathcal{B}({}_{\Gamma}(\operatorname{\mathit{Ind}}_{\Lambda}^{\Gamma}\operatorname{\mathit{Res}}_{\Lambda}^{\Gamma}Z))\cong \mathcal{B}({}_{\Gamma}((\Gamma/\Lambda)\times Z)).$$

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

In particular if $X = Res_{\Lambda}^{\Gamma} Z$ for some finite Γ -set Z, then

$$\mathcal{B}(\Lambda(\operatorname{\mathsf{Res}}^{\Gamma}_{\Lambda}Z))\cong\mathcal{B}(\Gamma(\operatorname{\mathsf{Ind}}^{\Gamma}_{\Lambda}\operatorname{\mathsf{Res}}^{\Gamma}_{\Lambda}Z))\cong\mathcal{B}(\Gamma((\Gamma/\Lambda)\times Z)).$$

For $\Gamma = G \times G^{\mathrm{op}}$

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

In particular if $X = Res_{\Lambda}^{\Gamma} Z$ for some finite Γ -set Z, then

$$\mathcal{B}(\Lambda(\operatorname{\mathsf{Res}}^{\Gamma}_{\Lambda}Z))\cong \mathcal{B}(\Gamma(\operatorname{\mathsf{Ind}}^{\Gamma}_{\Lambda}\operatorname{\mathsf{Res}}^{\Gamma}_{\Lambda}Z))\cong \mathcal{B}(\Gamma((\Gamma/\Lambda)\times Z)).$$

For $\Gamma = G \times G^{\mathrm{op}}$, $\Lambda = K \times H^{\mathrm{op}}$

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

In particular if $X = Res_{\Lambda}^{\Gamma} Z$ for some finite Γ -set Z, then

$$\mathcal{B}(_{\Lambda}(\operatorname{\mathsf{Res}}_{\Lambda}^{\Gamma}Z))\cong \mathcal{B}(_{\Gamma}(\operatorname{\mathsf{Ind}}_{\Lambda}^{\Gamma}\operatorname{\mathsf{Res}}_{\Lambda}^{\Gamma}Z))\cong \mathcal{B}(_{\Gamma}((\Gamma/\Lambda)\times Z)).$$

For $\Gamma = G \times G^{\mathrm{op}}$, $\Lambda = K \times H^{\mathrm{op}}$, and $Z = {}_{G}G_{G}$

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

In particular if $X = Res_{\Lambda}^{\Gamma} Z$ for some finite Γ -set Z, then

$$\mathcal{B}(_{\Lambda}(\operatorname{\mathsf{Res}}_{\Lambda}^{\Gamma}Z))\cong \mathcal{B}(_{\Gamma}(\operatorname{\mathsf{Ind}}_{\Lambda}^{\Gamma}\operatorname{\mathsf{Res}}_{\Lambda}^{\Gamma}Z))\cong \mathcal{B}(_{\Gamma}((\Gamma/\Lambda)\times Z)).$$

For $\Gamma = G \times G^{\mathrm{op}}$, $\Lambda = K \times H^{\mathrm{op}}$, and $Z = {}_{G}G_{G}$, this gives

$$\mathcal{B}({}_{\mathcal{K}}G_{\mathcal{H}})\cong$$

Moreover ${}_{K}G_{H}$ is the restriction to (K, H) of the (G, G)-biset G.

Lemma

Let Γ be a finite group, and Λ be a subgroup of Γ . Let X be a finite Λ -set, and let $Y = Ind_{\Lambda}^{\Gamma}X$. Then the categories Λ -set $_{\downarrow X}$ and Γ -set $_{\downarrow Y}$ are equivalent, and in particular

 $\mathcal{B}(_{\Gamma}Y)\cong \mathcal{B}(_{\Lambda}X).$

In particular if $X = Res_{\Lambda}^{\Gamma} Z$ for some finite Γ -set Z, then

$$\mathcal{B}(_{\Lambda}(\operatorname{\mathit{Res}}_{\Lambda}^{\Gamma}Z))\cong \mathcal{B}(_{\Gamma}(\operatorname{\mathit{Ind}}_{\Lambda}^{\Gamma}\operatorname{\mathit{Res}}_{\Lambda}^{\Gamma}Z))\cong \mathcal{B}(_{\Gamma}((\Gamma/\Lambda)\times Z)).$$

For $\Gamma = G \times G^{\mathrm{op}}$, $\Lambda = K \times H^{\mathrm{op}}$, and $Z = {}_{G}G_{G}$, this gives

$$\mathcal{B}({}_{\mathcal{K}}\mathcal{G}_{\mathcal{H}})\cong \mathcal{B}\Big({}_{\mathcal{G}}\big((\mathcal{G}/\mathcal{K})\times\mathcal{G}\times(\mathcal{G}/\mathcal{H})\big)_{\mathcal{G}}\Big).$$

Additive completion

Serge Bouc (CNRS-LAMFA)

2

Additive completion

More generally, one can then consider the following category Σ_G :

Additive completion

More generally, one can then consider the following category Σ_G : • the objects of Σ_G are the finite G-sets.
- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset $(u(y, g, x)v = (uy, ugv, v^{-1}x)$, for $u, v, g \in G, y \in Y$ and $x \in X$)

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X, Y) = \mathcal{B}(_G(Y \times G \times X)_G).$

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X, Y) = \mathcal{B}(_G(Y \times G \times X)_G)$.
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow b \\ Y & G & X \end{pmatrix} =$$

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X, Y) = \mathcal{B}(_G(Y \times G \times X)_G)$.
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow & e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow & b \\ Y & G & X \end{pmatrix} = \begin{pmatrix} (S \times_{e,a} R)/G \\ u & w \downarrow & v \\ Z & G & X \end{pmatrix}$$

More generally, one can then consider the following category Σ_G :

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X, Y) = \mathcal{B}(_G(Y \times G \times X)_G)$.
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow & e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow & b \\ Y & G & X \end{pmatrix} = \begin{pmatrix} (S \times_{e,a} R)/G \\ u & w \downarrow & v \\ Z & G & X \end{pmatrix}$$

where $(S \times_{e,a} R) = \{(s, r) \in S \times R \mid e(s) = a(r)\}$

More generally, one can then consider the following category Σ_G :

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X, Y) = \mathcal{B}(_G(Y \times G \times X)_G)$.
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow & e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow & b \\ Y & G & X \end{pmatrix} = \begin{pmatrix} (S \times_{e,a} R)/G \\ u & w \downarrow & v \\ Z & G & X \end{pmatrix}$$

where $(S \times_{e,a} R) = \{(s, r) \in S \times R \mid e(s) = a(r)\}$, with right *G*-action defined by $(s, r)g = (sg, g^{-1}r)$, for $g \in G$

13 / 22

More generally, one can then consider the following category Σ_G :

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X, Y) = \mathcal{B}(_G(Y \times G \times X)_G)$.
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow & e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow & b \\ Y & G & X \end{pmatrix} = \begin{pmatrix} (S \times_{e,a} R)/G \\ u & w \downarrow & v \\ Z & G & X \end{pmatrix}$$

where u((s,r)G) = d(s), v((s,r)G) = b(r), w((s,r)G) = f(s)c(r).

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X, Y) = \mathcal{B}(_G(Y \times G \times X)_G)$.
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow & e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow & b \\ Y & G & X \end{pmatrix} = \begin{pmatrix} (S \times_{e,a} R)/G \\ u & w \downarrow & v \\ Z & G & X \end{pmatrix}$$

- the objects of Σ_G are the finite G-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow & e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow & b \\ Y & G & X \end{pmatrix} = \begin{pmatrix} (S \times_{e,a} R)/G \\ u & w \downarrow & v \\ Z & G & X \end{pmatrix}$$

More generally, one can then consider the following category Σ_G :

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X, Y) = \mathcal{B}(_G(Y \times G \times X)_G)$.
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow b \\ Y & G & X \end{pmatrix} = \begin{pmatrix} (S \times_{e,a} R)/G \\ u & w \downarrow v \\ Z & G & X \end{pmatrix}$$

• the identity morphism of the G-set X is

$$\begin{pmatrix} G \times X \\ \downarrow & \downarrow & \downarrow \\ X & G & X \end{pmatrix},$$

where
$$s(g, x)t = (sgt, t^{-1}x)$$
, for $s, t, g \in G$ and $x \in X$

Serge Bouc (CNRS-LAMFA)

13 / 22

More generally, one can then consider the following category Σ_G :

- the objects of Σ_G are the finite *G*-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X, Y) = \mathcal{B}(_G(Y \times G \times X)_G)$.
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow b \\ Y & G & X \end{pmatrix} = \begin{pmatrix} (S \times_{e,a} R)/G \\ u & w \downarrow v \\ Z & G & X \end{pmatrix}$$

• the identity morphism of the G-set X is

$$\begin{pmatrix} G \times X \\ i & j \\ X & G & X \end{pmatrix},$$

where
$$i(g, x) = gx$$
, $j(g, x) = x$, $k(g, x) = g$

13 / 22

- the objects of Σ_G are the finite G-sets.
- if X and Y are finite G-sets, then $Y \times G \times X$ is a (G, G)-biset, and $Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$
- the composition in Σ_G is induced by

$$\begin{pmatrix} S \\ d \not f \downarrow e \\ Z & G & Y \end{pmatrix} \circ \begin{pmatrix} R \\ a \not c \downarrow b \\ Y & G & X \end{pmatrix} = \begin{pmatrix} (S \times_{e,a} R)/G \\ u & w \downarrow v \\ Z & G & X \end{pmatrix}$$

Serge Bouc (CNRS-LAMFA)

2

Recall that C_G is the category of subgroups of G, where $Hom_{C_G}(H, K) = \mathcal{B}_{K, H}^G$.

3

Recall that C_G is the category of subgroups of G, where $Hom_{C_G}(H, K) = \mathcal{B}_{K,H}^G$. The additive completion of C_G is equivalent to the quotient $\underline{\Sigma}_G$ of Σ_G obtained by identifying morphisms $f, g \in Hom_{\Sigma_G}(X, Y)$ Recall that C_G is the category of subgroups of G, where $Hom_{C_G}(H, K) = \mathcal{B}_{K,H}^G$. The additive completion of C_G is equivalent to the quotient $\underline{\Sigma}_G$ of Σ_G obtained by identifying morphisms $f, g \in Hom_{\Sigma_G}(X, Y)$ such that f - g is in the kernel of the map $\phi : \mathcal{B}(_G(Y \times G \times X)_G) \to \mathcal{B}(_G(Y \times X)_G)$ Recall that C_G is the category of subgroups of G, where $Hom_{C_G}(H, K) = \mathcal{B}_{K,H}^G$. The additive completion of C_G is equivalent to the quotient $\sum_G of \Sigma_G$ obtained by identifying morphisms $f, g \in Hom_{\Sigma_G}(X, Y)$ such that f - g is in the kernel of the map $\phi : \mathcal{B}(_G(Y \times G \times X)_G) \to \mathcal{B}(_G(Y \times X)_G)$ induced by the map

$$\begin{pmatrix} R \\ A & b \\ A & c \\ Y & G & X \end{pmatrix} \mapsto \begin{pmatrix} R \\ A & b \\ F & X \end{pmatrix}$$

Recall that C_G is the category of subgroups of G, where $Hom_{C_G}(H, K) = \mathcal{B}_{K,H}^G$. The additive completion of C_G is equivalent to the quotient $\underline{\Sigma}_G$ of Σ_G obtained by identifying morphisms $f, g \in Hom_{\Sigma_G}(X, Y)$ such that f - g is in the kernel of the map $\phi : \mathcal{B}(G(Y \times G \times X)_G) \to \mathcal{B}(G(Y \times X)_G)$ induced by the map

$$\begin{pmatrix} R \\ \downarrow & \downarrow & \downarrow \\ Y & G & X \end{pmatrix} \mapsto \begin{pmatrix} R \\ \downarrow & \downarrow & \downarrow \\ Y & X \end{pmatrix}$$

It follows that the category \mathcal{F}_G is equivalent to the category of additive functors $\underline{\Sigma}_G \to \mathbb{Z}$ -**Mod**.

Σ_G revisited

Serge Bouc (CNRS-LAMFA)

イロト イヨト イヨト イヨト

2

3

$$Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

э

$$Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

Now $G = Ind_{\Delta(G)}^{G \times G^{\mathrm{op}}} \bullet$

3

$$\mathit{Hom}_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

Now $G = \mathit{Ind}_{\Delta(G)}^{G \times G^{\mathrm{op}}} \bullet$, where $\Delta(G) = \{(g,g^{-1}) \mid g \in G\}$

æ

$$Hom_{\Sigma_{G}}(X,Y) = \mathcal{B}(_{G}(Y \times G \times X)_{G}).$$

Now $G = Ind_{\Delta(G)}^{G \times G^{op}} \bullet$, thus $Y \times G \times X \cong Ind_{\Delta(G)}^{G \times G^{op}}(Y \times X).$

э

$$Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

Now $G = Ind_{\Delta(G)}^{G \times G^{op}} \bullet$, thus $Y \times G \times X \cong Ind_{\Delta(G)}^{G \times G^{op}}(Y \times X)$. Hence $\mathcal{B}(_{G}(Y \times G \times X)_{G}) \cong \mathcal{B}(_{G}(Y \times X))$.

$$Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

Now $G = Ind_{\Delta(G)}^{G \times G^{op}} \bullet$, thus $Y \times G \times X \cong Ind_{\Delta(G)}^{G \times G^{op}}(Y \times X)$. Hence $\mathcal{B}(_G(Y \times G \times X)_G) \cong \mathcal{B}(_G(Y \times X))$. Keeping track of the composition in Σ_G

$$Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

Now $G = Ind_{\Delta(G)}^{G \times G^{op}} \bullet$, thus $Y \times G \times X \cong Ind_{\Delta(G)}^{G \times G^{op}}(Y \times X)$. Hence $\mathcal{B}(_G(Y \times G \times X)_G) \cong \mathcal{B}(_G(Y \times X))$. Keeping track of the composition in Σ_G shows that Σ_G is equivalent to the category \mathcal{S}_G of Lindner

$$Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

Now $G = Ind_{\Delta(G)}^{G \times G^{op}} \bullet$, thus $Y \times G \times X \cong Ind_{\Delta(G)}^{G \times G^{op}}(Y \times X)$. Hence $\mathcal{B}(_{G}(Y \times G \times X)_{G}) \cong \mathcal{B}(_{G}(Y \times X))$. Keeping track of the composition in Σ_{G} shows that Σ_{G} is equivalent to the category \mathcal{S}_{G} of Lindner, hence the additive functors from Σ_{G} to \mathbb{Z} -**Mod** are the Mackey functors for G.

$$Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

Now $G = Ind_{\Delta(G)}^{G \times G^{op}} \bullet$, thus $Y \times G \times X \cong Ind_{\Delta(G)}^{G \times G^{op}}(Y \times X)$. Hence $\mathcal{B}(_G(Y \times G \times X)_G) \cong \mathcal{B}(_G(Y \times X))$. Keeping track of the composition in Σ_G shows that Σ_G is equivalent to the category \mathcal{S}_G of Lindner, hence the additive functors from Σ_G to \mathbb{Z} -**Mod** are the Mackey functors for G. To describe Σ_G in those terms

$$Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

Now $G = Ind_{\Delta(G)}^{G \times G^{op}} \bullet$, thus $Y \times G \times X \cong Ind_{\Delta(G)}^{G \times G^{op}}(Y \times X)$. Hence $\mathcal{B}(_G(Y \times G \times X)_G) \cong \mathcal{B}(_G(Y \times X))$. Keeping track of the composition in Σ_G shows that Σ_G is equivalent to the category \mathcal{S}_G of Lindner, hence the additive functors from Σ_G to \mathbb{Z} -**Mod** are the Mackey functors for G. To describe $\underline{\Sigma}_G$ in those terms, it remains to see which morphisms in \mathcal{S}_G vanish in Σ_G .

$$Hom_{\Sigma_G}(X,Y) = \mathcal{B}(_G(Y \times G \times X)_G).$$

Now $G = Ind_{\Delta(G)}^{G \times G^{op}} \bullet$, thus $Y \times G \times X \cong Ind_{\Delta(G)}^{G \times G^{op}}(Y \times X)$. Hence $\mathcal{B}(_G(Y \times G \times X)_G) \cong \mathcal{B}(_G(Y \times X))$. Keeping track of the composition in Σ_G shows that Σ_G is equivalent to the category \mathcal{S}_G of Lindner, hence the additive functors from Σ_G to \mathbb{Z} -**Mod** are the Mackey functors for G. To describe $\underline{\Sigma}_G$ in those terms, it remains to see which morphisms in \mathcal{S}_G vanish in Σ_G .

The morphism
$$f = \begin{pmatrix} b \swarrow Z & \\ Y & X \end{pmatrix} - \begin{pmatrix} b' \swarrow Z' & \\ Y & X \end{pmatrix}$$
 of \mathcal{S}_G is mapped

to the morphism

2

The morphism
$$f = \begin{pmatrix} b & Z \\ Y & X \end{pmatrix} - \begin{pmatrix} b' & Z' \\ Y & X \end{pmatrix}$$
 of \mathcal{S}_G is mapped
to the morphism $\begin{pmatrix} \beta & G \times Z \\ Y & G & X \end{pmatrix} - \begin{pmatrix} \beta' & G \times Z' \\ Y & G & X \end{pmatrix}$ of Σ_G

2

<ロ> (日) (日) (日) (日) (日)

The morphism
$$f = \begin{pmatrix} b & Z & a \\ Y & X \end{pmatrix} - \begin{pmatrix} b' & Z' & a' \\ Y & X \end{pmatrix}$$
 of \mathcal{S}_G is mapped
to the morphism $\begin{pmatrix} \beta & G \times Z & a \\ Y & G & X \end{pmatrix} - \begin{pmatrix} \beta' & G \times Z' & a' \\ Y & G & X \end{pmatrix}$ of Σ_G ,
where the (G, G) -action on $G \times Z$ is given by $s(g, z)t = (sgt, t^{-1}z)$ for
 $s, t, g \in G$ and $z \in Z$

2

<ロ> (日) (日) (日) (日) (日)

The morphism
$$f = \begin{pmatrix} b & Z \\ Y & X \end{pmatrix} - \begin{pmatrix} b' & Z' & a' \\ Y & X \end{pmatrix}$$
 of \mathcal{S}_G is mapped
to the morphism $\begin{pmatrix} \beta & G \times Z \\ Y & G & X \end{pmatrix} - \begin{pmatrix} \beta' & G \times Z' \\ Y & G & X \end{pmatrix}$ of Σ_G ,
where the (G, G) -action on $G \times Z$ is given by $s(g, z)t = (sgt, t^{-1}z)$ for
 $s, t, g \in G$ and $z \in Z$, and where $(\beta, \gamma, \alpha)(g, z) = (gb(z), g, a(z))$.

2

<ロ> (日) (日) (日) (日) (日)
The morphism
$$f = \begin{pmatrix} b & Z \\ Y & X \end{pmatrix} - \begin{pmatrix} b' & Z' \\ Y & X \end{pmatrix}$$
 of \mathcal{S}_{G} is mapped
to the morphism $\begin{pmatrix} \beta & G \times Z \\ Y & G & X \end{pmatrix} - \begin{pmatrix} \beta' & G \times Z' \\ Y & G & X \end{pmatrix}$ of Σ_{G} ,

This gives 0 in $\underline{\Sigma}_G$ if and only if there is an isomorphism

$$\theta: \begin{pmatrix} \beta & G \times Z \\ \gamma & & X \end{pmatrix} \to \begin{pmatrix} \beta' & G \times Z' \\ \gamma & & X \end{pmatrix}$$

of (G, G)-bisets over $Y \times X$.

Serge Bouc (CNRS-LAMFA)

2

<ロ> (日) (日) (日) (日) (日)

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b & Z \\ Y & \chi \end{pmatrix} - \begin{pmatrix} u * b & Z \\ Y & \chi \end{pmatrix} \\ \begin{pmatrix} Y & X \end{pmatrix}$$

문 > 문

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b & Z \\ * & \checkmark \\ Y & X \end{pmatrix} - \begin{pmatrix} u * b & Z \\ * & \checkmark \\ Y & X \end{pmatrix}$$

where $u: Z \rightarrow G^c$ is a morphism of *G*-sets

3. 3

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b Z \\ Y \\ Y \\ X \end{pmatrix} - \begin{pmatrix} u * b Z \\ Y \\ Y \\ Y \\ X \end{pmatrix}$$

where $u: Z \to G^c$ is a morphism of *G*-sets, where $G^c = G$ acted on by conjugation

3

Σ_G revisited

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b & Z \\ \swarrow & \checkmark \\ Y & X \end{pmatrix} - \begin{pmatrix} u * b & Z \\ \swarrow & \checkmark \\ Y & X \end{pmatrix}$$

where $u: Z \to G^c$ is a morphism of *G*-sets, where $G^c = G$ acted on by conjugation, and (u * b)(z) = u(z)b(z) for $z \in Z$.

3

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b Z \\ * X \\ Y & X \end{pmatrix} - \begin{pmatrix} u * b Z \\ * X \\ Y & X \end{pmatrix}$$

where $u: Z \to G^c$ is a morphism of G-sets, where $G^c = G$ acted on by conjugation, and (u * b)(z) = u(z)b(z) for $z \in Z$.

Theorem

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b Z \\ * X \\ Y & X \end{pmatrix} - \begin{pmatrix} u * b Z \\ * X \\ Y & X \end{pmatrix}$$

where $u: Z \to G^c$ is a morphism of G-sets, where $G^c = G$ acted on by conjugation, and (u * b)(z) = u(z)b(z) for $z \in Z$.

Theorem

Let \underline{S}_G be the quotient category of S_G

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b Z \\ * X \\ Y & X \end{pmatrix} - \begin{pmatrix} u * b Z \\ * X \\ Y & X \end{pmatrix}$$

where $u: Z \to G^c$ is a morphism of G-sets, where $G^c = G$ acted on by conjugation, and (u * b)(z) = u(z)b(z) for $z \in Z$.

Theorem

Let \underline{S}_G be the quotient category of S_G , defined for finite G-sets X and Y by

$${\it Hom}_{\underline{\mathcal{S}}_{\mathcal{G}}}(X,Y)=\mathcal{B}(_{\mathcal{G}}(Y imes X))/\mathcal{K}(Y,X),$$

17 / 22

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b Z \\ * X \\ Y & X \end{pmatrix} - \begin{pmatrix} u * b Z \\ * X \\ Y & X \end{pmatrix}$$

where $u: Z \to G^c$ is a morphism of G-sets, where $G^c = G$ acted on by conjugation, and (u * b)(z) = u(z)b(z) for $z \in Z$.

Theorem

Let \underline{S}_G be the quotient category of S_G , defined for finite G-sets X and Y by

$${\it Hom}_{\underline{\mathcal{S}}_{\mathcal{G}}}(X,Y)=\mathcal{B}(_{\mathcal{G}}(Y imes X))/\mathcal{K}(Y,X),$$

17 / 22

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b Z \\ * X \\ Y & X \end{pmatrix} - \begin{pmatrix} u * b Z \\ * X \\ Y & X \end{pmatrix}$$

where $u: Z \to G^c$ is a morphism of G-sets, where $G^c = G$ acted on by conjugation, and (u * b)(z) = u(z)b(z) for $z \in Z$.

Theorem

Let \underline{S}_G be the quotient category of S_G , defined for finite G-sets X and Y by

$$Hom_{\underline{\mathcal{S}}_{G}}(X,Y) = \mathcal{B}(_{G}(Y \times X))/K(Y,X),$$

where K(Y, X) is the subgroup generated by differences (*).

Equivalently f is equal to

$$(*) \qquad \begin{pmatrix} b Z \\ * X \\ Y & X \end{pmatrix} - \begin{pmatrix} u * b Z \\ * X \\ Y & X \end{pmatrix}$$

where $u: Z \to G^c$ is a morphism of G-sets, where $G^c = G$ acted on by conjugation, and (u * b)(z) = u(z)b(z) for $z \in Z$.

Theorem

Let \underline{S}_G be the quotient category of S_G , defined for finite G-sets X and Y by

$$Hom_{\underline{\mathcal{S}}_{\mathcal{G}}}(X,Y) = \mathcal{B}(_{\mathcal{G}}(Y \times X))/\mathcal{K}(Y,X),$$

where K(Y, X) is the subgroup generated by differences (*). Then \mathcal{F}_G is equivalent to the category of additive functors $\underline{\mathcal{S}}_G \to \mathbb{Z}$ -**Mod**.

Serge Bouc (CNRS-LAMFA)

э.

<ロ> (日) (日) (日) (日) (日)

Let Z be a G-set.

()

2

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$.

æ

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication $(u \cdot v)(z) = u(z)v(z)$, for $u, v \in \Gamma_G(Z)$ and $z \in Z$

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, e.g. $\Gamma_G(G/H) \cong C_G(H)$ for $H \leq G$

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Lemma

Let X, Y, Z be finite G-sets.

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Lemma

Let X, Y, Z be finite G-sets. Let $u : Z \to G^c$

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Lemma

Let X, Y, Z be finite G-sets. Let $u : Z \to G^c$, $v : Y \to G^c$

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Lemma

Let X, Y, Z be finite G-sets. Let $u : Z \to G^c$, $v : Y \to G^c$, $f : Z \to Y$

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Lemma

Let X, Y, Z be finite G-sets. Let $u : Z \to G^c$, $v : Y \to G^c$, $f : Z \to Y$ and $g : Y \to X$ be morphisms of G-sets.

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Lemma

Let X, Y, Z be finite G-sets. Let $u : Z \to G^c$, $v : Y \to G^c$, $f : Z \to Y$ and $g : Y \to X$ be morphisms of G-sets. Then

 $(v * g) \circ (u * f) =$

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Lemma

Let X, Y, Z be finite G-sets. Let $u : Z \to G^c$, $v : Y \to G^c$, $f : Z \to Y$ and $g : Y \to X$ be morphisms of G-sets. Then

$$(v * g) \circ (u * f) = (u \cdot (v \circ f)) * (g \circ f).$$

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Lemma

Let X, Y, Z be finite G-sets. Let $u : Z \to G^c$, $v : Y \to G^c$, $f : Z \to Y$ and $g : Y \to X$ be morphisms of G-sets. Then

$$(v * g) \circ (u * f) = (u \cdot (v \circ f)) * (g \circ f).$$

Definition

The category *G*-set of fused *G*-sets

Serge Bouc (CNRS-LAMFA)

18 / 22

Let Z be a G-set. Set $\Gamma_G(Z) = Hom_{G-set}(Z, G^c)$. Then $\Gamma_G(Z)$ is a group by pointwise multiplication, and for any G-set Y, this group acts on $Hom_{G-set}(Z, Y)$ by (u * f)(z) = u(z)f(z) for $u \in \Gamma_G(Z)$, $f \in Hom_{G-set}(Z, Y)$, and $z \in Z$.

Lemma

Let X, Y, Z be finite G-sets. Let $u : Z \to G^c$, $v : Y \to G^c$, $f : Z \to Y$ and $g : Y \to X$ be morphisms of G-sets. Then

$$(v * g) \circ (u * f) = (u \cdot (v \circ f)) * (g \circ f).$$

Definition

The category G-<u>set</u> of fused G-sets is the quotient category of G-set defined for finite G-sets X and Y by

$$Hom_{G-\underline{set}}(X, Y) = \Gamma_G(X) \setminus Hom_{G-\underline{set}}(X, Y).$$

Serge Bouc (CNRS-LAMFA)

Serge Bouc (CNRS-LAMFA)

2

• For a G-set Y, set
$$Y' = Y \times G^c$$
.

Serge Bouc (CNRS-LAMFA)

2

• For a G-set Y, set $Y' = Y \times G^c$. Then there is a morphism $p: Y' \to Y \times Y$ defined by p(y,g) = (y,gy), for $y \in Y$ and $g \in G$

• For a G-set Y, set $Y' = Y \times G^c$. Then there is a morphism $p: Y' \to Y \times Y$ defined by p(y,g) = (y,gy), for $y \in Y$ and $g \in G$, and a morphism $i: Y \to Y'$ defined by i(y) = (y, 1).

For a G-set Y, set Y' = Y × G^c. Then there is a morphism p: Y' → Y × Y defined by p(y,g) = (y,gy), for y ∈ Y and g ∈ G, and a morphism i : Y → Y' defined by i(y) = (y, 1). The composition p ∘ i is the diagonal map Y → Y × Y.

For a G-set Y, set Y' = Y × G^c. Then there is a morphism p: Y' → Y × Y defined by p(y,g) = (y,gy), for y ∈ Y and g ∈ G, and a morphism i: Y → Y' defined by i(y) = (y, 1). The composition p ∘ i is the diagonal map Y → Y × Y. Two morphisms f,g: X → Y in G-set are identified in G-set

For a G-set Y, set Y' = Y × G^c. Then there is a morphism p: Y' → Y × Y defined by p(y,g) = (y,gy), for y ∈ Y and g ∈ G, and a morphism i: Y → Y' defined by i(y) = (y, 1). The composition p ∘ i is the diagonal map Y → Y × Y. Two morphisms f,g: X → Y in G-set are identified in G-set if and only if there exists φ: X → Y' such that the diagram

is commutative.

For a G-set Y, set Y^I = Y × G^c. Then there is a morphism p: Y^I → Y × Y defined by p(y,g) = (y,gy), for y ∈ Y and g ∈ G, and a morphism i: Y → Y^I defined by i(y) = (y, 1). The composition p ∘ i is the diagonal map Y → Y × Y. Two morphisms f,g: X → Y in G-set are identified in G-set if and only if there exists φ: X → Y^I such that the diagram

is commutative.

• Disjoint union of G-sets is a coproduct in G-set
Remarks on fused G-sets

For a G-set Y, set Y' = Y × G^c. Then there is a morphism p: Y' → Y × Y defined by p(y,g) = (y,gy), for y ∈ Y and g ∈ G, and a morphism i: Y → Y' defined by i(y) = (y, 1). The composition p ∘ i is the diagonal map Y → Y × Y. Two morphisms f,g: X → Y in G-set are identified in G-set if and only if there exists φ: X → Y' such that the diagram

is commutative.

• Disjoint union of *G*-sets is a coproduct in *G*-<u>set</u>: indeed for *G*-sets *X*, *Y*, and *Z*

 $Hom_{G-\underline{set}}(X \sqcup Y, Z) \cong \Gamma_G(X \sqcup Y) \setminus Hom_{G-\underline{set}}(X \sqcup Y, Z)$

Remarks on fused G-sets

For a G-set Y, set Y^I = Y × G^c. Then there is a morphism p: Y^I → Y × Y defined by p(y,g) = (y,gy), for y ∈ Y and g ∈ G, and a morphism i: Y → Y^I defined by i(y) = (y, 1). The composition p ∘ i is the diagonal map Y → Y × Y. Two morphisms f,g: X → Y in G-set are identified in G-set if and only if there exists φ: X → Y^I such that the diagram

is commutative.

• Disjoint union of *G*-sets is a coproduct in *G*-<u>set</u>: indeed for *G*-sets *X*, *Y*, and *Z*

$$\begin{array}{rcl} \textit{Hom}_{G-\underline{set}}(X \sqcup Y, Z) &\cong & \Gamma_G(X \sqcup Y) \setminus \textit{Hom}_{G-\underline{set}}(X \sqcup Y, Z) \\ &\cong \left(\Gamma_G(X) \times \Gamma_G(Y)\right) \, \setminus \, \left(\textit{Hom}_{G-\underline{set}}(X, Z) \times \textit{Hom}_{G-\underline{set}}(Y, Z)\right) \end{array}$$

19 / 22

Remarks on fused G-sets

For a G-set Y, set Y^I = Y × G^c. Then there is a morphism p: Y^I → Y × Y defined by p(y,g) = (y,gy), for y ∈ Y and g ∈ G, and a morphism i: Y → Y^I defined by i(y) = (y, 1). The composition p ∘ i is the diagonal map Y → Y × Y. Two morphisms f,g: X → Y in G-set are identified in G-set if and only if there exists φ: X → Y^I such that the diagram

is commutative.

• Disjoint union of *G*-sets is a coproduct in *G*-<u>set</u>: indeed for *G*-sets *X*, *Y*, and *Z*

$$\begin{array}{rcl} \operatorname{Hom}_{G\operatorname{-\underline{set}}}(X \sqcup Y, Z) &\cong & \Gamma_G(X \sqcup Y) \setminus \operatorname{Hom}_{G\operatorname{-\underline{set}}}(X \sqcup Y, Z) \\ &\cong \left(\Gamma_G(X) \times \Gamma_G(Y)\right) \, \setminus \, \left(\operatorname{Hom}_{G\operatorname{-\underline{set}}}(X, Z) \times \operatorname{Hom}_{G\operatorname{-\underline{set}}}(Y, Z)\right) \\ &\cong & \operatorname{Hom}_{G\operatorname{-\underline{set}}}(X, Z) \times \operatorname{Hom}_{G\operatorname{-\underline{set}}}(Y, Z). \end{array}$$

Serge Bouc (CNRS-LAMFA)

æ

Let $a \mapsto \underline{a}$ denote the quotient functor from *G*-set to *G*-set.

Serge Bouc (CNRS-LAMFA)

Fused Mackey functors

Antalya Algebra Days 2013 20 / 22

Let $a \mapsto \underline{a}$ denote the quotient functor from G-set to G-set.

Lemma

Let $\underline{a}: X \to Z$ and $\underline{b}: Y \to Z$ be morphisms in G-set.

Let $a \mapsto \underline{a}$ denote the quotient functor from *G*-set to *G*-set.

Lemma

Let $\underline{a}: X \to Z$ and $\underline{b}: Y \to Z$ be morphisms in G-set. Then the pullback $X \times_{a,b} Y = \{(x, y) \in X \times Y \mid a(x) = b(y)\}$ only depends on \underline{a} and \underline{b} , up to isomorphism in G-set.

Let $a \mapsto \underline{a}$ denote the quotient functor from *G*-set to *G*-set.

Lemma

Let $\underline{a}: X \to Z$ and $\underline{b}: Y \to Z$ be morphisms in G-set. Then the pullback $X \times_{a,b} Y = \{(x,y) \in X \times Y \mid a(x) = b(y)\}$ only depends on \underline{a} and \underline{b} , up to isomorphism in G-set. It will be denoted by $X \times_{a,b} Y$.

Let $a \mapsto \underline{a}$ denote the quotient functor from *G*-set to *G*-set.

Lemma

Let $\underline{a}: X \to Z$ and $\underline{b}: Y \to Z$ be morphisms in G-<u>set</u>. Then the pullback $X \times_{a,b} Y = \{(x,y) \in X \times Y \mid a(x) = b(y)\}$ only depends on \underline{a} and \underline{b} , up to isomorphism in G-<u>set</u>. It will be denoted by $X \times_{a,b} Y$.

Proposition

The square

is a weak pullback in G-set.

20 / 22

Let $a \mapsto \underline{a}$ denote the quotient functor from *G*-set to *G*-set.

Lemma

Let $\underline{a}: X \to Z$ and $\underline{b}: Y \to Z$ be morphisms in G-set. Then the pullback $X \times_{a,b} Y = \{(x,y) \in X \times Y \mid a(x) = b(y)\}$ only depends on \underline{a} and \underline{b} , up to isomorphism in G-set. It will be denoted by $X \times_{a,b} Y$.

Proposition

The square

is a weak pullback in G-set.

2 The category \underline{S}_{G} is the category of spans of fused G-sets.

()

20 / 22

Fused Mackey functors (à la Dress)

Serge Bouc (CNRS-LAMFA)

2

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

• for any finite G-sets X and Y, the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(\underline{i}_X), M^*(\underline{i}_Y))}_{\swarrow} M(X) \oplus M(Y)$$

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

• for any finite G-sets X and Y, the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$

are inverse to each other

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

• for any finite
$$G$$
-sets X and Y , the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(\underline{i}_X), M^*(\underline{i}_Y))}{\underbrace{(M_*(\underline{i}_X), M_*(\underline{i}_Y))}} M(X) \oplus M(Y)$$

are inverse to each other, where $X \subseteq \stackrel{i_X}{\longrightarrow} X \sqcup Y \stackrel{i_Y}{\longleftarrow} Y$.

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

1 for any finite *G*-sets *X* and *Y*, the maps

$$M(X \sqcup Y) \xleftarrow{(M^*(\underline{i}_X), M^*(\underline{i}_Y))}{(M_*(\underline{i}_X), M_*(\underline{i}_Y))} M(X) \oplus M(Y)$$
are inverse to each other, where $X \xleftarrow{i_X} X \sqcup Y \xleftarrow{i_Y} Y$.

$$X \stackrel{a}{\to} Y$$
2 if $\underline{b} \downarrow \qquad \downarrow \underline{c}$ is a weak pullback square in *G*-set
 $Z \stackrel{a}{\to} T$

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

1 for any finite *G*-sets *X* and *Y*, the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$
are inverse to each other, where $X \subset \stackrel{i_X}{\longrightarrow} X \sqcup Y < \stackrel{i_Y}{\longrightarrow} Y$.

$$X \xrightarrow{a} Y$$
2 if $\frac{b}{\forall} \quad \forall^{c}$ is a weak pullback square in *G*-set, then
 $Z \xrightarrow{a} T$

$$M^*(\underline{d}) \circ M_*(\underline{c}) = M_*(\underline{b}) \circ M^*(\underline{a}).$$

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

• for any finite *G*-sets *X* and *Y*, the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(\underline{i}_X), M^*(\underline{i}_Y))} M(X) \oplus M(Y)$$
are inverse to each other, where $X \subset \stackrel{i_X}{\longrightarrow} X \sqcup Y < \stackrel{i_Y}{\longrightarrow} Y$.

$$X \xrightarrow{a} Y$$
• is a weak pullback square in *G*-set, then

$$Z \xrightarrow{a} T$$

$$M^*(\underline{d}) \circ M_*(\underline{c}) = M_*(\underline{b}) \circ M^*(\underline{a}).$$

Fused Mackey functors form a category $Mack^{f}(G)$.

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

for any finite G-sets X and Y, the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$
are inverse to each other, where $X \subset i_X \to X \sqcup Y \prec i_Y \supset Y$.

$$X \xrightarrow{a} Y$$

if $\underline{b} \downarrow \qquad \forall \underline{c}$ is a weak pullback square in G-set, then
 $Z \xrightarrow{a} T$

$$M^*(\underline{d}) \circ M_*(\underline{c}) = M_*(\underline{b}) \circ M^*(\underline{a}).$$

Fused Mackey functors form a category $Mack^{f}(G)$.

Theorem

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

1 for any finite G-sets X and Y, the maps
$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$
are inverse to each other, where $X \subset i_X \to X \sqcup Y \prec i_Y \supset Y$.
$$X \xrightarrow{a} Y$$
2 if $\underline{b} \downarrow \qquad \forall \underline{c}$ is a weak pullback square in G-set, then
$$Z \xrightarrow{a} T$$

$$M^*(\underline{d}) \circ M_*(\underline{c}) = M_*(\underline{b}) \circ M^*(\underline{a}).$$

Fused Mackey functors form a category $Mack^{f}(G)$.

Theorem

The categories $Mack^{c}(G)$

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

1 for any finite G-sets X and Y, the maps
$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$
are inverse to each other, where $X \subset i_X \to X \sqcup Y \prec i_Y \supset Y$.
$$X \xrightarrow{a} Y$$
2 if $\underline{b} \downarrow \qquad \forall \underline{c}$ is a weak pullback square in G-set, then
$$Z \xrightarrow{a} T$$

$$M^*(\underline{d}) \circ M_*(\underline{c}) = M_*(\underline{b}) \circ M^*(\underline{a}).$$

Fused Mackey functors form a category $Mack^{f}(G)$.

Theorem

The categories $Mack^{c}(G)$, $Mack^{f}(G)$

Definition

A fused Mackey functor is a bivariant functor G-<u>set</u> $\rightarrow \mathbb{Z}$ -Mod such that:

for any finite G-sets X and Y, the maps

$$M(X \sqcup Y) \xrightarrow{(M^*(i_X), M^*(i_Y))} M(X) \oplus M(Y)$$
are inverse to each other, where $X \xrightarrow{(i_X)} X \sqcup Y \xrightarrow{(i_Y)} Y$.

$$X \xrightarrow{a} Y$$

if $\underline{b} \forall \qquad \forall \underline{c}$ is a weak pullback square in G-set, then
 $Z \xrightarrow{a} T$

$$M^*(\underline{d}) \circ M_*(\underline{c}) = M_*(\underline{b}) \circ M^*(\underline{a}).$$

Fused Mackey functors form a category $Mack^{f}(G)$.

Theorem

The categories $Mack^{c}(G)$, $Mack^{f}(G)$, and \mathcal{F}_{G} are equivalent.

21 / 22

Serge Bouc (CNRS-LAMFA)

2

Let $\Omega_G = \underset{H \leq G}{\sqcup} G/H$. Then:

표 문 문

Let
$$\Omega_G = \bigsqcup_{H \leq G} G/H$$
. Then:

Theorem (Thévenaz-Webb, B.)

The category Mack(G) is equivalent to the category $\mu_{\mathbb{Z}}(G)$ -Mod

Let
$$\Omega_G = \bigsqcup_{H \leq G} G/H$$
. Then:

Theorem (Thévenaz-Webb, B.)

The category Mack(G) is equivalent to the category $\mu_{\mathbb{Z}}(G)$ -**Mod**, where $\mu_{\mathbb{Z}}(G) = \mathcal{B}(G(\Omega_G \times \Omega_G))$ is the Mackey algebra of G.

Let
$$\Omega_G = \bigsqcup_{H \leq G} G/H$$
. Then:

Theorem (Thévenaz-Webb, B.)

The category Mack(G) is equivalent to the category $\mu_{\mathbb{Z}}(G)$ -Mod, where $\mu_{\mathbb{Z}}(G) = \mathcal{B}(G(\Omega_G \times \Omega_G))$ is the Mackey algebra of G.

Theorem

Let
$$\Omega_G = \bigsqcup_{H \leq G} G/H$$
. Then:

Theorem (Thévenaz-Webb, B.)

The category Mack(G) is equivalent to the category $\mu_{\mathbb{Z}}(G)$ -Mod, where $\mu_{\mathbb{Z}}(G) = \mathcal{B}(G(\Omega_G \times \Omega_G))$ is the Mackey algebra of G.

Theorem

Let $\mu_{\mathbb{Z}}^{f}(G)$ denote the fused Mackey algebra of G

22 / 22

Let
$$\Omega_G = \bigsqcup_{H \leq G} G/H$$
. Then:

Theorem (Thévenaz-Webb, B.)

The category Mack(G) is equivalent to the category $\mu_{\mathbb{Z}}(G)$ -Mod, where $\mu_{\mathbb{Z}}(G) = \mathcal{B}(G(\Omega_G \times \Omega_G))$ is the Mackey algebra of G.

Theorem

Let $\mu_{\mathbb{Z}}^{f}(G)$ denote the fused Mackey algebra of G, i.e. the quotient of $\mu_{\mathbb{Z}}(G) = \mathcal{B}(G(\Omega_{G} \times \Omega_{G}))$ by the subgroup generated by differences

$$(*) \qquad \begin{pmatrix} b & Z \\ \swarrow & & \\ \Omega_G & \Omega_G \end{pmatrix} - \begin{pmatrix} u * b & Z \\ \swarrow & & \\ \Omega_G & \Omega_G \end{pmatrix}$$

Let
$$\Omega_G = \bigsqcup_{H \leq G} G/H$$
. Then:

Theorem (Thévenaz-Webb, B.)

The category Mack(G) is equivalent to the category $\mu_{\mathbb{Z}}(G)$ -Mod, where $\mu_{\mathbb{Z}}(G) = \mathcal{B}(G(\Omega_G \times \Omega_G))$ is the Mackey algebra of G.

Theorem

Let $\mu_{\mathbb{Z}}^{f}(G)$ denote the fused Mackey algebra of G, i.e. the quotient of $\mu_{\mathbb{Z}}(G) = \mathcal{B}(G(\Omega_{G} \times \Omega_{G}))$ by the subgroup generated by differences

$$(*) \qquad \begin{pmatrix} b & Z \\ \swarrow & \swarrow \\ \Omega_G & \Omega_G \end{pmatrix} - \begin{pmatrix} u * b & Z \\ \swarrow & \swarrow \\ \Omega_G & \Omega_G \end{pmatrix}$$

Then the category $Mack^{f}(G)$ is equivalent to $\mu_{\mathbb{Z}}^{f}(G)$ -**Mod**.

Serge Bouc (CNRS-LAMFA)