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page 95

Proposition 6.1.12 is wrong (thanks to Jay Taylor for noticing that). It should
read

Proposition 6.1.12 If (L;,A) is a cuspidal pair where A is a unipotent
character (see Definition 11.5.4), then Wy is normalised by wy for any F-stable
J C S containing I, where wy is the longest element of the Coxeter group Wy;
War(Ly) is a Cozeter group with generating simple reflections the elements
wywy where J D I and J — I is a single orbit under F'.

The proof actually proves this corrected statement.

page 138

In the statement of Proposition 9.1.2 there is a word missing: “morphism”
should be “separable morphism”; a counterexample to the statement as given
is a Frobenius morphism (thanks to Pierre Deligne for noticing that).

Above Definition 9.1.3: The irreducibility (when U is in no F-stable proper
parabolic subgroup) is for the variety Xy /L%, not for Xy.

middle of page 186

The assertion that there is no noncentral quasi-isolated element in 2G5 is false
(thanks to Gunter Malle for noticing that). There is such an element of order
2 such that Cg-«(s) is connected of type A; x A; where F* exchanges the 2
components. One can deduce Lusztig’s Jordan decomposition by using
e the character table of 2G5 (32" 1) in

H. N. Ward, “On Rees’s series of simple groups”, Trans. Amer. Math. Soc.
21(1966), pp 62-89.
e the centralizers of semi-simple elements and irreducible characters of 2G5 (3% 1)
in Lemmas 8.2.2 and 8.2.3, in particular 8.2.3 (b) in

G. Hiss, “Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definierender

Charakteristik” Habilitationschrift, Aachen (1990)



bottom of page 246

The function R ) is equal to nq2y(G2(al))5) where n = +1isequal to ¢ (mod 3).
Consequently table 14.2 is wrong.
The values of unipotent characters of G on unipotent classes (p # 2, 3):

1 A1 A1 Gg(a1)3 Gz(al)Q Gg(al) GQ
1 1 1 1 1 1 1 1
St q° . . . . .
o | 10305 —10D, q 4ng+5) —4mg—1) 4(ng—1)
T | 43P 2(2¢°+1) ing—1) —fmg—-1) 2(ng+2)
p | dP3®3 (¢ +1)P2 4Py E(ng+5) —Emg—1) Eng—1)
P 550 10, §02 —2(mg—1) 2Z(mg+1) —Zng—1)
V-1 | $07Ps —4®1 =20 —d(ng—-1) dng+1) —Z(ng—1)
T | @7 E(2¢—1)@1 -0 I(ng+5) —Lng-1) E(ng—1)
Ves] | 5P1P5 4D Dy ng—-1) —Lmg—1) L(ng+2)
Vez) | 8PTPE —101 Py ing—1) —%(mg—1) 4(ng+2)




