Errata to "Representations of finite groups of Lie type", LMS Student texts no. 95

June 10, 2025

page 95

Proposition 6.1.12 is wrong (thanks to Jay Taylor for noticing that). It should read

Proposition 6.1.12 If (\mathbf{L}_I, Λ) is a cuspidal pair where Λ is a unipotent character (see Definition 11.3.4), then W_I is normalised by w_J for any F-stable $J \subset S$ containing I, where w_J is the longest element of the Coxeter group W_J ; $W_{\mathbf{G}^F}(\mathbf{L}_I)$ is a Coxeter group with generating simple reflections the elements w_Jw_I where $J \supset I$ and J - I is a single orbit under F.

The proof actually proves this corrected statement.

page 138

In the statement of Proposition 9.1.2 there is a word missing: "morphism" should be "separable morphism"; a counterexample to the statement as given is a Frobenius morphism (thanks to Pierre Deligne for noticing that).

Above Definition 9.1.3: The irreducibility (when **U** is in no *F*-stable proper parabolic subgroup) is for the variety $\mathbf{X}_{\mathbf{U}}/\mathbf{L}^{F}$, not for $\mathbf{X}_{\mathbf{U}}$.

middle of page 186

The assertion that there is no noncentral quasi-isolated element in ${}^{2}G_{2}$ is false (thanks to Gunter Malle for noticing that). There is such an element of order 2 such that $C_{\mathbf{G}^{*}}(s)$ is connected of type $A_{1} \times A_{1}$ where F^{*} exchanges the 2 components. One can deduce Lusztig's Jordan decomposition by using • the character table of ${}^{2}G_{2}(3^{2r+1})$ in

H. N. Ward, "On Rees's series of simple groups", Trans. Amer. Math. Soc. **21**(1966), pp 62–89.

• the centralizers of semi-simple elements and irreducible characters of ${}^{2}G_{2}(3^{2r+1})$ in Lemmas 8.2.2 and 8.2.3, in particular 8.2.3 (b) in

G. Hiss, "Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definierender Charakteristik" *Habilitationschrift, Aachen* (1990)

bottom of page 246

The function $R_{(1,\varepsilon)}$ is equal to $\eta q^2 \mathcal{Y}_{(G_2(a_1),\varepsilon)}$ where $\eta = \pm 1$ is equal to $q \pmod{3}$. Consequently table 14.2 is wrong. The values of unipotent characters of G_2 on unipotent classes $(p \neq 2, 3)$:

	1	A_1	\tilde{A}_1	$G_2(a_1)_3$	$G_2(a_1)_2$	$G_{2}(a_{1})$	G_2
1	1	1	1	1	1	1	1
St	q^6	•		•		•	
σ	$\frac{q}{3}\Phi_3\Phi_6$	$-\frac{q}{3}\Phi_1\Phi_2$	q	$\frac{q}{3}(\eta q + 5)$	$-\frac{q}{3}(\eta q - 1)$	$\frac{q}{3}(\eta q - 1)$	
au	$\frac{q}{3}\Phi_3\Phi_6$	$\frac{q}{3}(2q^2+1)$		$\frac{\ddot{q}}{3}(\eta q - 1)$	$-\frac{q}{2}(\eta q - 1)$	$\frac{\dot{q}}{3}(\eta q+2)$	
ρ	$\frac{q}{6}\Phi_2^2\Phi_3$	$\frac{q}{6}(2q+1)\Phi_2$	$\frac{q}{2}\Phi_2$	$\frac{\dot{q}}{6}(\eta q + 5)$	$-\frac{3}{6}(\eta q-1)$	$\frac{\dot{q}}{6}(\eta q-1)$	
ho'	$\frac{q}{2}\Phi_{2}^{2}\Phi_{6}$	$\frac{q}{2}\Phi_2$	$\frac{q}{2}\Phi_2$	$-\frac{q}{2}(\eta q - 1)$	$\frac{q}{2}(\eta q + 1)$	$-\frac{q}{2}(\eta q - 1)$	
$\gamma_{[-1]}$	$\frac{\tilde{q}}{2}\Phi_{1}^{2}\Phi_{3}$	$-\frac{q}{2}\Phi_1$	$-\frac{q}{2}\Phi_1$	$-\frac{\overline{q}}{2}(\eta q - 1)$	$\frac{q}{2}(\eta q+1)$	$-\frac{\overline{q}}{2}(\eta q - 1)$	
$\gamma_{[1]}$	$\frac{\bar{q}}{6}q\Phi_1^2\Phi_6$	$\frac{q}{6}(2q-1)\Phi_1$	$-\frac{\hat{q}}{2}\Phi_1$	$\frac{q}{6}(\eta q + 5)$	$-\frac{\overline{q}}{6}(\eta q - 1)$	$\frac{q}{6}(\eta q - 1)$	
$\gamma_{[\zeta_3]}$	$\frac{q}{3}\Phi_{1}^{2}\Phi_{2}^{2}$	$-\frac{q}{3}\Phi_{1}\Phi_{2}$		$\frac{q}{3}(\eta q-1)$	$-\frac{q}{3}(\eta q - 1)$	$\frac{\dot{q}}{3}(\eta q+2)$	
$\gamma_{[\zeta_3^2]}$	$\frac{\ddot{q}}{3}\Phi_1^2\Phi_2^2$	$-\frac{\ddot{q}}{3}\Phi_1\Phi_2$	•	$\frac{\dot{q}}{3}(\eta q - 1)$	$-\frac{\dot{q}}{3}(\eta q - 1)$	$\frac{\dot{q}}{3}(\eta q+2)$	