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1. Introduction

We prove several new cases of the freeness conjecture for the generic Hecke algebras
associated to complex reflection groups (sometimes called : cyclotomic Hecke algebras),
including all 2-reflection groups (of exceptional types) but the largest one. Recall that,
when W is a finite reflection group over the real numbers, that is to say a finite Coxeter
group, the Iwahori-Hecke algebra H associated to it can be defined as the quotient of the
group algebra Z[q, q−1]B of the braid group B associated to W – which is also known in
this setup as an Artin group, or Artin-Tits group, or Artin-Brieskorn group. This is the
quotient by the relations (s+ 1)(s− q) = 0, where s runs among the natural generators
of B – or equivalently all their conjugates in B. These conjugates are called braided
reflections.

In the more general setting of complex reflection groups, there is a natural geometric
description of these braided reflections, as well as a topological description of the braid
group B, described in [BMR]. In case W is generated by (pseudo-)reflections of order
more than 2, or ifW admits several reflection classes (aka conjugacy classes of reflections)
the ring Z[q, q−1] needs to be replaced by a larger ring. However, since the groups we are
interested in are generated by reflections of order 2 – although they can not be realized
inside a real form of the vector space – and have a single reflection class we can and will
restrict to this case. A conjecture of Broué, Malle and Rouquier in [BMR] then states
the following.

Conjecture. The Hecke algebra H defined as the quotient of Z[q, q−1]B by the relations
(s + 1)(s − q) = 0 where s runs among the braided reflections of B is a free Z[q, q−1]-
module of rank the order |W| of W.
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We refer the reader to [Ma2] for the state-of-the-art of this conjecture, as well as the proof
that this formulation of the conjecture is equivalent to a few others (see proposition 2.9
there). We only mention the following important fact, originally proved in [BMR].

Proposition 1.1. In order to prove the conjecture for W it is sufficient to show that H
is spanned by |W| elements.

We state our main result.

Theorem 1.2. All primitive irreducible complex 2-reflection groups with a single reflec-
tion class, except possibly G34, satisfy the freeness conjecture, namely H is a free Z[q, q−1]
module of rank |W| for these groups.
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Figure 1. The coset graph for G24

In Shephard and Todd notation, this statement covers the groups G12, G22, G24, G27,
G29, G31 and G33. There is no reason so far for our method not to apply to the remaining
group G34. The reason why we could not really try to prove G34 is that the large order of
W and its number of generators makes it very difficult to be dealt with by the computers
we have at disposal now.

Together with previous results, this theorem admits several corollaries. We refer to [Ma2]
or [BMR] for the general statement of the BMR freeness conjecture we are refering to in
these corollaries.

First of all, it has been recently proved by E. Chavli in her thesis [C] that the group G13,
which is generated by 2-reflections but has two reflection classes, satisfies the conjecture.
This group is the only primitive 2-reflection group having more than one reflection class.
Therefore, we get the following corollary.

Corollary 1.3. Except possibly for G34, every irreducible complex 2-reflection group
satisfies the freeness conjecture.
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It has been proved in [Ma1] and [Ma2] that the groups G25, G26 and G32 satisfy the
freeness conjecture. In addition, Etingof and Rains have proved in [ER] that the groups
of rank 2 satisfy the weak freeness conjecture, namely that their Hecke algebra is finitely
generated (and therefore has the right dimension as vector space over the field of fractions
of the generic coefficients) – see again [Ma2] for further details, and see also the recent
preprint [L] for more implications. As a consequence, we get the following corollary.

Corollary 1.4. Except possibly for G34, every irreducible complex reflection group satis-
fies the weak freeness conjecture.

In order to prove the theorem, we need a presentation of the braid groups. For groups
of rank 2, presentations were first obtained by Bannai, in [Ba]. For groups of higher
rank, using the Zariski-Van Kampen method for computing presentations of fundamental
groups, a conjectural presentation of B was found by empirical means by Bessis and Michel
in [BM]. The proof that these presentations were correct did depend on the verification
of a geometric criterion. This justification was subsequently provided in [Be]. Moreover,
one finds in [Be] another way to justify these presentations in the case of well-generated
groups, that is, when the minimal number of reflections needed to generate W is equal
to the rank of W – this is the case for all the 2-reflection groups of higher rank except
G31. Note however that, because of proposition 1.1, we do not really need a presentation
of B, but only to know that the chosen generators are braided reflections, and that the
relations we use are valid – but we do not really need to check that they are sufficient to
define the group.

From such a presentation, we can describe H as the Z[q, q−1]-algebra defined by the same
generators si submitted to the defining relations of the group together with the additional
relations s2i = (q − 1)si + q. Indeed, it can be shown (see [BMR]) that all the braided
reflections are conjugated to one another as soon as W admits a single reflection class;
therefore, every relation s2 = (q − 1)s + 1 for s a braided reflection is implied by the
single relation s21 = (q− 1)s1 + q.

In order to prove the theorem, we use the following lemma, for which we do not know
any proof that does not rely on the classification.

Lemma 1.5. Every irreducible complex 2-reflection group W has a maximal parabolic
subgroup which is a Coxeter group.

Proof. If W belongs to the infinite series of complex reflection groups, of type G(de, e, n)
in Shephard and Todd notation, the subgroup G(1, 1, n) of permutation matrices, which is
a Coxeter group of typeAn−1, is a maximal parabolic subgroup, except whenG(de, e, n) =
G(1, 1, n) is itself a Coxeter group. If W is an exceptional group of 2-reflections of rank
2, the subgroup generated by either of its reflection is a maximal parabolic subgroup of
Coxeter type A1. In higher rank the groups G24 and G27 admit a maximal parabolic
subgroup of Coxeter type B2, and the groups G29, G31, G33 and G34 admit maximal
parabolic subgroups of Coxeter types B3, A3, A4, D5 respectively. �

We then prove the theorem as follows. We know by [BMR] that to any such maximal
parabolic subgroup W0 is attached a (non-canonical) embedding B0 → B of the braid
groups of W0 inside B. Among the presentations of [BM], we choose one for which such
an embedding corresponds to the choice of a proper subset I of the set of indices involved
in the presentation of B. That is, we can identify B0 with the subgroup of B generated
by the corresponding generators, and defining relations of B0 are given by the set of all
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Figure 2. Diagrammatic presentations for the Coxeter relations of the
groups G24/G27, G29, G31, G33

the relations of the given presentation of B which do not involve any generator of B0. In
rank at least 3, the relations of Coxeter type in these presentations can be depicted inside
a Coxeter-like diagram, see figure 2. Of course, there are additional relations involving 3
generators, that we will describe in due time (for G31, these are represented by a circle
in the diagram).

This group homomorphism B0 → B induces an algebra morphism H0 → H, where H0

denotes the (usual) Hecke algebra of W0. Although we do not know a priori that it is
injective, it nevertheless endows H with the structure of a H0-module.

We prove the following, for W of a complex 2-reflection group with a single reflection
class but G34, and W0 the parabolic subgroup provided by lemma 1.5.

Proposition 1.6. As a H0-module, H is generated by |W/W0| elements.

By the classical theory of Iwahori-Hecke algebras we know that H0 is generated as a
Z[q, q−1]-module by |W0| elements ; therefore proposition 1.6 implies that H is generated
as a Z[q, q−1]-module by |W| = |W0|.|W/W0| elements and proposition 1.1 finally implies
the theorem.

Once it is proved, the theorem implies that the map H0 → H is indeed injective. Actually,
propositions 1.6 and 1.1 together imply a statement a bit stronger than the theorem,
namely:

Proposition 1.7. As a H0-module, H is a free H0-module of rank |W/W0|.

We now explain how we prove proposition 1.6. In each case, we choose a system of
representatives of W/W0, and more specifically a set xl, l ∈ {1, . . . , |W/W0|} of words in
the si of minimal length whose images in W represent all the classes of W/W0. We show
that the H0-submodule

∑
lH0xl is a right ideal in H. Since it contains the identity of H

this will prove our proposition 1.6. For this we need to establish |W0|.rank(W) relations
of the form xl.s =

∑
16k6|W:W0|

αl,k(s)xk with αl,k(s) ∈ H0. This is basically what we
do.

In section 3 we will prove the conjecture for the group G24 following this procedure ‘by
hand’ by establishing a number of equations of the formm.s = . . . form some word in the
generators. This involves a well-defined ordering in the building of coset representatives,
plus a well-defined ordering of the entries that we fill in, so that the computation of each
entry does not involve entries that are not yet filled in. A visual support is given by the
‘coset graph’ for W/W0, namely the graph whose vertices are the (images in W0 of the)
xl, and an edge xl →s xn means that xn is defined as xl.s. The graph for G24 is given
by figure 1, the three different colors for the edges corresponding to the 3 generators of
the group. The graphs for G12 and G29 are similarly depicted in figures 3 and 4.

Then, in section 5, we will show that the procedure can be automatized : we define
algorithms which happen to converge in each case. These algorithms need to know in
advance some additional relations inside B, that we found heuristically. The search for
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Figure 3. The coset graph for G12

such relations and their justification rely on the solution of the word problem inside B.
Fortunately, thanks to previous works, all these groups have decidable word problem,
and there are effective software to deal with them ; we explain all this, along with some
basic algorithmic procedures, in section 2. For the case that we leave open, corresponding
to the group G34, the number of cosets would be 20412, thus the table should contain
6 × 20412 = 122472 elements of the Hecke algebra of D5. By comparison, the case of
G31 corresponds to a table with 9600 entries belonging to the Hecke algebra of A3, and
it took our computer 3 weeks to complete it.

2. General automatic procedures

We now explain a few tools that we use in a systematic way and for which we will not
detail the calculations.

2.1. Determining the coset graph. The coset graph of W0 in W is the graph which

has the (right) cosets W0w, w ∈ W, as its vertices, and edges x
s

—– y if x.s = y for
cosets x, y.

The coset graph, together with a distinguished spanning tree, is determined by a standard
orbit algorithm which works on an ordered copy Ŝ of the set S of generators of W, which
induces a fixed order on all subsets J of S.

Input: W, Ŝ and a subset J of S.
Output: The coset graph Γ = (V, E) of W0 in W with respect to S and a spanning tree
T ⊆ E.

1. Initialize a empty queue Q, a vertex list V and two edge lists E and T as empty lists.
Then push the trivial coset W0 = 〈J〉 onto Q and add it to V .
2. while Q is not empty:
3. pop the next coset x off Q
4. for s ∈ Ŝ: process (x, s).
5. return the graph Γ = (V, E) and spanning edges T .

Processing (x, s) is done as follows:

1. Compute the coset z := x.s and add the edge x
s

—– z to E if not already present.

2. If z /∈ V : push z onto Q and V , and add the edge x
s

—– z to the spanning tree T .
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Figure 4. The coset graph for G29/B3

Note that the spanning tree T defines, for each coset x, a word w of minimal length in
the generators S, which represents the coset when evaluated in W. This word depends
on the ordering of Ŝ. The cosets are enumerated in the lexicographic order induced by Ŝ
on the set of words in S.

It is possible, to group the cosets into double cosets of W0 in W and to ensure that the
words representing cosets in the same double coset have a double coset representative as
a common prefix. For this, one uses an additional queue P, which like Q initially contains
only the trivial coset W0, and modifies the processing of (x, s) so that a new coset z = x.s
is also pushed to the queue P, in addition to Q.

The modified algorithm has the same input and output as the original. The order Ŝ on
S induces an order Ĵ on the subset J and an order K̂ on its complement K = S \ J. The
algorithm then proceeds as follows.
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1a. Initialize two empty queues P and Q, a vertex list V and two edge lists E and T as
empty lists. Then push the trivial coset W0 onto P and Q, and add it to V .
1b. while P is not empty:
1c. pop a coset y off P
1d. for t in K̂:
2a. while Q is not empty:
3a. pop a coset x off Q
4a. for s ∈ Ĵ: process (x, s)
5a. process (y, t)
5b. return the graph Γ = (V, E) and spanning edges T .

Note that this modified algorithm enumerates the cosets of W0 in W in an order that
is potentially different from the original lexicographic order, with potentially different
words for the coset representatives.

In the tables of results below we will indicate which version of the algorithm was used,
to uniquely identify the words used for the coset representatives.

2.2. Inversion of the relations. The most elementary tool we will use in both cases is
the following one.

Lemma 2.1. Assume that α ∈ H0 is invertible with inverse α ′, and that β ∈ H. Then,
for each generator s with inverse s ′, we have

xl.s = αxn − (q−1)β =⇒ xn.s = qα
′xl + (q−1)xn + q(q−1)α ′β.s ′,(2.1)

xl.s = αxn + (q−1)(xl + β) =⇒ xn.s = qα
′xl − (q−1)α ′β.s.(2.2)

Hence, xn.s can be computed provided that β.s is computable.

Proof. We have xl.s = αxn − (q−1)β hence αxn.s
′ = xl + (q−1)β.s ′ and, expanding s ′,

we get xn.(s− (q−1)) = qα ′(xl + (q−1)β.s ′). Therefore, xn.s = qα
′(xl + (q−1)β.s ′) +

(q−1)xn. For the second equality we have xl.s = αxn + (q−1)xl + (q−1)β hence
qxl.s

′ = αxn + (q−1)β and therefore αxn = qxl.s
′ − (q−1)β whence xn.s = qα ′xl −

(q−1)α ′β.s. �

2.3. Checking equalities inside the braid group. The groups B are known to have
decidable word problems, and there are actually efficient decision algorithms. In the case
of well-generated reflection groups, Bessis has shown in [Be] that the groups B are the
groups of fractions of monoids M which share with the monoid of usual positive braids
all the properties used by Garside to solve the word problem for the usual braid group
(such groups B are called Garside groups). Bessis actually introduced one monoid for
each choice of a so-called Coxeter element c in W. In terms of the generators that we
introduce later on (see also the numbering of the diagrams inside figure 2) one can choose
c = s1s2s3 for G24 and G27, c = s1s2s4s3 for G29 and c = s5s4s2s1s3 for G33. There
are tools in Michel’s development version of the CHEVIE package for GAP3 (which is
described in [Mi]) in order to encode that monoid and therefore to efficiently decide the
equalities of two words inside B. In case the groups are badly generated, we use the
following properties. In the case of G12 and G22, they are groups of fractions of the
monoids f(4, 3) and f(5, 3), where f(h,m) denotes the monoid presented by generators
x1, . . . , xm and relations

x1x2 . . . xmx1 . . .︸ ︷︷ ︸
h terms

= x2x3 . . . xmx1 . . .︸ ︷︷ ︸
h terms

= . . .
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These monoids are also Garside monoids, investigated in M. Picantin’s thesis (see [P]),
and therefore we can use the same algorithm to get a normal form. In the case of G31, it
is possible to embed B inside the Artin group of type E8, using the formulas of [DMM]
§3.

Let us now consider some entry xl.s that we want to compute. Let x̃l ∈ W be the
corresponding element of the group. There exists w ∈W0 and n such that x̃l.s = wx̃n.
Since W0 is a Coxeter group, it is easy to find a shortest length word m = si1 . . . sir
representing w in W. Then, through the computations of normal forms we can make 2r

tests in order to check whether the equality xl.s = s
±1
i1
. . . s±1ir

.xn holds inside B for some
choice of the signs ±1. This is the way we used to find the additional relations used in
the sequel.

3. A sample case by hand : G24

The braid group of type G24 admits the presentation

B = 〈s1, s2, s3 | s1s2s1 = s2s1s2, s1s3s1 = s3s1s3, s2s3s3s2 = s3s2s3s2,
s2s3s1s2s3s1s2s3s1 = s3s2s3s1s2s3s1s2s3〉

and the first three relations can be symbolized by the diagram

2 3

1

For short, we replace each generator by its numerical label, and therefore the defining re-
lations for G24 become 121 = 212, 131 = 313, 2323 = 3232 and 231231231 = 323123123.
Although we have at disposal an automatized procedure to check equalities of braids,
we point out a few properties of this presentation that are helpful if one is willing to
check ‘by hand’ the braid relations below (which is actually what we did at first). First
of all, the relation (123)3 = (231)2232 shows that the map 1 7→ 1 ′, 2 7→ 3 ′, 3 7→ 2 ′

defines an automorphism of B. (here and later on, we denote i ′ the inverse s−1
i of the

corresponding generator). For instance the relation 123123123 = 231231232 is proved

by noticing that 231231232 = 23c22 = c2(23)c
2

2 where c = 123. Another useful braid
relation is 123 ′2313 ′23.1 = 2 · 123 ′2313 ′23

The computations are gathered in table 1. One first gets a list of representatives of
the cosets in the form of words in the generators, as described in the previous section.
Here we choose to group the cosets W/W0 corresponding to the same double coset inside

W0\W/W0, by using the modified version of the algorithm on the natural order Ŝ =
(1, 2, 3, 4).

The entries x1.2 = 2 · x1 and x2.3 = 3 · x2 arise from the fact that W0 is generated by s2
and s3.

Entries corresponding to edges in the spanning tree are underlined, e.g., the edge x1
1

—– x2
is represented by the entries x2 for x1.1 and qx1 + (q−1)x for x2.1. (The name x in the
entry for xn.s always denotes xn.)
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x x.1 x.2 x.3
x1 = ∅ x2 2 · x 3 · x
x2 = 1 qx1 + (q−1)x x3 x4
x3 = 12 2 · x qx2 + (q−1)x x5
x4 = 13 3 · x x6 qx2 + (q−1)x
x5 = 123 x10 x7 qx3 + (q−1)x
x6 = 132 x14 qx4 + (q−1)x x8
x7 = 1232 x18 qx5 + (q−1)x x9
x8 = 1323 x22 x9 qx6 + (q−1)x
x9 = 12323 x26 qx8 + (q−1)x qx7 + (q−1)x
x10 = 1231 qx5 + (q−1)x x11 2 · x
x11 = 12312 x19 qx10 + (q−1)x x12
x12 = 123123 232 ′ · x x13 qx11 + (q−1)x
x13 = 1231232 x34 qx12 + (q−1)x 2 · x
x14 = 1321 qx6 + (q−1)x 3 · x x15
x15 = 13213 x24 x16 qx14 + (q−1)x
x16 = 132132 (3.1) qx15 + (q−1)x x17
x17 = 1321323 x38 3 · x qx16 + (q−1)x
x18 = 12321 qx7 + (q−1)x x19 x20
x19 = 123212 qx11 + (q−1)x qx18 + (q−1)x (3.2)
x20 = 123213 x28 x21 qx18 + (q−1)x
x21 = 1232132 (3.11) qx20 + (q−1)x (3.3)
x22 = 13231 qx8 + (q−1)x x23 x24
x23 = 132312 x27 qx22 + (q−1)x x25
x24 = 132313 qx15 + (q−1)x (3.4) qx22 + (q−1)x
x25 = 1323123 (3.5) (3.9) qx23 + (q−1)x
x26 = 123231 qx9 + (q−1)x x27 x28
x27 = 1232312 qx23 + (q−1)x qx26 + (q−1)x x29
x28 = 1232313 qx20 + (q−1)x x30 qx26 + (q−1)x
x29 = 12323123 (3.8) x31 qx27 + (q−1)x
x30 = 12323132 (3.12) qx28 + (q−1)x x32
x31 = 123231232 (3.13) qx29 + (q−1)x x33
x32 = 123231323 (3.17) x33 qx30 + (q−1)x
x33 = 1232312323 x42 qx32 + (q−1)x qx31 + (q−1)x
x34 = 12312321 qx13 + (q−1)x 232 ′ · x x35
x35 = 123123213 2 · x x36 qx34 + (q−1)x
x36 = 1231232132 (3.6) qx35 + (q−1)x x37
x37 = 12312321323 (3.7) 232 ′ · x qx36 + (q−1)x
x38 = 13213231 qx17 + (q−1)x x39 (3.14)
x39 = 132132312 3 · x qx38 + (q−1)x x40
x40 = 1321323123 (3.10) x41 qx39 + (q−1)x
x41 = 13213231232 (3.15) qx40 + (q−1)x (3.16)
x42 = 12323123231 qx33 + (q−1)x (3.18) (3.19)

Table 1. Multiplication table for G24 and sorting



10 IVAN MARIN AND GÖTZ PFEIFFER

Some of the remaining entries are straightforward consequences of the braid relations:

x8.2 = x9 x9.2 = qx8 + (q−1)x9

x11.1 = x19 x19.1 = qx11 + (q−1)x19

x15.1 = x24 x24.1 = qx15 + (q−1)x24

x20.1 = x28 x28.1 = qx20 + (q−1)x28

x23.1 = x27 x27.1 = qx23 + (q−1)x27

x32.2 = x33 x33.2 = qx32 + (q−1)x33

and

x3.1 = 2 · x3
x4.1 = 3 · x4
x10.3 = 2 · x10
x12.1 = 232

′ · x12
x13.3 = 2 · x13
x14.2 = 3 · x14
x17.2 = 3 · x17
x34.2 = 232

′x34

x35.1 = 2 · x35
x37.2 = 232

′ · x37
x39.1 = 3 · x39

Note that x10.3 can also be computed as x10.3 = x10.1
′3 ′131, there are similar relations

for the other equations in this list.

The expression for x9.2 follows obviously by expanding 2 ′ in x9.2
′ = x8. Note that this

can also be computed by applying (2.1) from Lemma 2.1 with α = ∅ (the empty word
and identity of H0) and β = 0.

After that, 19 entries in the table remain to be filled, and this is achieved through the
following explicit computations.

(3.1) x16.1 = 3
′23 · x16

− (q−1)(q3 ′232 ′ · x7 + 3 ′23 · x9 + 3 ′23 · x15 − q2 ′ · x18 − x24 − x26)
+ (q− 1)2(q3 ′232 ′ · x5 + 3 ′23 · x8 − q2 ′ · x10 − x22)

In order to get this formula, we start from the relation

13 ′21 ′32 ′.1 = 3 ′23 · 13 ′21 ′32 ′,

which holds true inside B. By expansion of the inverses we have q213 ′21 ′3 = x15 −
(q−1)(x8+q2

′ ·x5) and therefore x15−(q−1)(q2 ′ ·x5+x8)).2 ′1 = 3 ′23·(x15−(q−1)(q2 ′ ·
x5 + x8)).2

′. Expanding 2 ′ then yields (3.1).

x19.3 = 232
′ · x19 − (q−1)(232 ′ · x11 − x12)(3.2)
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We start from the relation

123121 ′.3 = 232 ′ · 123121 ′,

which holds true in B. By expanding 1 ′ it can be rewritten (x19 − (q−1)x11).3 = 232
′ ·

(x19 − (q−1)x11), from which we get (3.2).

(3.3) x21.3 = 232
′ · x21 − (q−1)(232 ′ · x20 − 2332 ′ · x18 − 2 · x12 + 23 · x11)

+ (q− 1)2(23− 2332 ′) · x10.

This can be computed as x21.3 = x21.2
′3 ′23232 ′, or from the relation

1232 ′13 ′2 ′.3 = 232 ′ · 1232 ′13 ′2 ′.

x24.2 = 3
′23 · x24 − (q−1)(3 ′23 · x22 − x23 + q3 ′232 ′ · x10 − q2 ′ · x11)(3.4)

This can be computed as x24.2 = x24.1
′2 ′121, or from the relation

13 ′21 ′31.2 = 3 ′23 · 13 ′21 ′31.

x25.1 = q
−223 · x36 − (q−1)(q−223 · x35 + q−13 ′23 · x34)(3.5)

x36.1 = q
33 ′2 ′ · x25 + (q−1)(x36 + q2

′ · x35 + q223 ′2 ′ · x13)(3.6)

For the first equation, we use 1323123.1 = 23 ·123123213 ′2 ′ and expand 3 ′2 ′. The second
one is a consequence, multiplying on the right the first one by 1, as an application of
Lemma 2.1.

x37.1 = q
33 ′2 ′x29 + (q−1)(x37 + q232

′2 ′ · x35 + q2x13)(3.7)

x29.1 = q
−223 · x37 − (q−1)(q−123 · x34 + q−2323 · x35)(3.8)

The first equation can be computed as x37.1 = x37.3
′1 ′313. The second follows by using

the second form of Lemma 2.1.

x25.2 = 3
′23 · x25 − (q−1)(3 ′23 · x12 − x13)(3.9)

By expanding 3 ′ we get 13 ′23123 = x25 − (q−1)x12. Then, multiplying on the right by
2 and using the relation

13 ′23123.2 = 3 ′23 · 13 ′23123

we get (3.9).

(3.10) x40.1 = q23 · x21
− (q−1)(q23 · x20 + q23 · x19 − q2 ′323 · x12 − q−2223 · x37 − q−13 ′223 · x36)

+(q−1)2(q23 ·x18−q323 ·x10−(q−13 ′223+q−22323) ·x35−(3 ′3 ′223+q−1232) ·x34)
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(3.11) x21.1 = 3
′2 ′ · x40

− (q−1)(3 ′ · x29 − x28 + q3 ′2 ′3 ′2 · x25 − x21 + q3 ′2 ′3 · x12 − qx11)
+ (q−1)2(q232 ′ · x5 − qx7 − x20)

We start from 1 ′3 ′2 ′1323123.1 = 23 · 123213 ′2 ′ and expand the 1 ′3 ′2 ′ on the LHS. This
provides (3.10). Then (3.11) is obtained by multiplying (3.10) by 1 on the right and
q−13 ′2 ′ on the left, as an application of Lemma 2.1.

Computing x30.1 = x30.2
′1 ′212 yields:

(3.12) x30.1 = 3
′2 ′ · x41 − (q−1)(3 ′ · x31 − x30 − qx20 − q2x10)

+ (q−1)2(qx11 + q
223 ′2 ′ · x7 − q2x5) +

(
(q−1)3q−1(232 ′) − (q−1)q3 ′3 ′2

)
· x25

+
(
(q−1)3(3 ′ + q−12) − (q−1)2q−12323 ′ − (q−1)q3 ′2 ′3

)
· x13

+
(
(q−1)4q−1(3− 232 ′) + (q−1)2q3 ′3 ′2

)
· x12.

Computing x31.1 = x31.2
′1212 ′ yields:

(3.13) x31.1 = 3 · x31 − (q−1)(q2 ′3 · x25 + 3 · x29 − q−1232 ′ · x36 − q−223 · x37)
− (q−1)2((q−2323+ q−1232 ′) · x35 + q−123 · x34 + 3 · x13)

Computing x38.3 = 1
′3 ′131 yields:

(3.14) x38.3 = 3
′23 · x38

− (q−1)(q23 ′23 · x6 − q2x8 + q3
′23 · x18 − qx20 + 3 ′232 · x26 − 2 · x28)

+ (q−1)2(q23 ′23 · x3 − q2x5 + 3
′223 · x22 − 3 ′23 · x24) − (q−1)3(3 ′223− 3 ′232) · x10

Computing x41.1 = x41.2
′1212 ′ yields:

(3.15) x41.1 = q23 · x30 − (q−1)(q323 · x5 + q23 · x28 − 23 · x31)
+ (q−1)2(q−2223 · x37 − 23 · x29 − q3 · x25 − q23 · x19 − q23 ′23 · x18 − 3 ′223 · x12)

− (q−1)323 · x13 + ((q−1)q−1332+ (q−1)2q−123 ′23) · x36
− ((q−1)2q−1332+ (q−1)3q−123 ′23+ (q−1)3q−22323) · x35

+ ((q−1)q3− (q−1)3q3 ′ − (q−1)43 ′3 ′23− (q−1)3q−1232) · x34

Computing x41.3 = x41.2
′3 ′2 ′3232 yields:

(3.16) x41.3 = 3
′23 · x41

+ (q−1)(2 · x33 − 2323 ′ · x31 + q2232 ′ · x20 − q223 · x18 + q4x5 − q
43 ′23 · x3)

+ (q−1)2q(3 ′23 · x25 − 3 ′223 · x23 + (2332 ′ − 23) · x19 + (2− 3 ′23) · x13)
+(q−1)2q2(−3 ′23·x9+3 ′223·x7)−(q−1)3q3 ′23·x12+((q−1)33323−(q−1)4232)·x11

Expanding 3 ′ inside the braid relation 123 ′2313 ′23.1 = 2 · 123 ′2313 ′23 yields:

(3.17) x32.1 = 2 · x32 − (q−1)(q223 · x5 − q23 · x10 + 2 · x29 − q−223 · x37)
+ (q−1)2((q∅− q3 ′2) · x12 − q−123 · x34 − q−2323 · x35)
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Computing x42.2 = x42.1
′2 ′121 yields:

(3.18) x42.2 = 2 · x42 − (q−1)(23 · x31 − 223 · x29)
+ (q−1)2(q−1(3 ′23− 3) · x37 + (32− 3 ′223) · x34 + q23 · x19 − q223 · x18)

− ((q−1)3q−2323+ (q−1)2q−12232 ′) · x36
+ ((q−1)3q−22323+ (q−1)2q−122232 ′) · x35

Computing x42.3 = x42.1
′3 ′131 yields:

(3.19) x42.3 = 3 · x42 − (q−1)(q23 · x27 − q3 ′23 · x29 + q23 · x23 − q2x25)

+ (q−1)2(q−2(232− 323) · x37 + q−1(23− 2 ′323) · x36 + 3 ′2232 ′ · x35 − 2232 ′x34)

In summary, three different types of operations are used to fill in an entry. It is either
derived from a suitable relation in the braid group, or it is derived by replacing the acting
generator s by a word w in the generators (so that s−1w = 1 is equivalent to a defining
relation of W; this is called a cyclic expansion of s in the next section), or it is obtained
by an application of Lemma 2.1, that is by reverting an edge in the coset graph.

A systematic search for suitable relations is computationally expensive and not guaran-
teed to succeed. Cyclic expansions and edge reversals can simply be applied on a trial
and error basis. It turns out that the operations of cyclic expansion and edge reversal
are sufficient to complete the coset tables for the algebras in Theorem 1.2, provided we
add only a few defining relations to the usual presentations of the braid groups. In the
next section we will formulate this as a strategy.

4. Algorithm

The observations from the example in the previous section can be used to automate the
entire procedure. This leads to the following algorithm. The strategy used is similar
to a Todd-Coxeter procedure. Here, however, first all the cosets are defined all at once
(using the information on cosets in the finite group), and only then cyclic conjugates of
the relations are used to fill missing entries in the table.

By this we mean, that every relation is used to express a generator as a word in all
possible ways. The words obtained in this way, for a generator s ∈ S form the set Rs of
cyclic expansions of s.

For example, the relation 121 = 212, gives cyclic expansions

1→ 2121 ′2 ′ 2→ 1212 ′1 ′

1→ 2 ′1 ′212 2→ 1 ′2 ′121

1→ 2 ′1212 ′ 2→ 1 ′2121 ′

i.e., R1 = [2121 ′2 ′, 2 ′1 ′212, 2 ′1212 ′] and R2 = [1212 ′1 ′, 1 ′2 ′121, 1 ′2121 ′].

The algorithm then proceeds as follows.

0. Compute the lists Rs, s ∈ S, of cyclic expansions.
1. Compute coset representives and a spanning tree as in section 2.1, and fill the corre-
sponding entries of the table.
2. for each s ∈ J, set the entry x1.s = s · x1, where x1 is the trivial coset, represented by
the empty word.
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3. loop over missing entries x.s, try to compute x.s as x.w forw ∈ Rs, or by an application
of Lemma 2.1 if possible, until no more entries can be filled.

Note that step 2 corresponds to filling the subgroup tables in a Todd-Coxeter procedure.
The order in which the different computations in step 3 are tried is not relevant.

In our implementation of the algorithm, Lemma 2.1 is only applied, if the coefficient α is
obviously invertible, i.e. if it is a product of a power of q and an element of the natural
basis of H0. This is sufficient for the purpose of proving Theorem 1.2. In general, it is
indeed a nontrivial task to identify and invert invertible elements of the Hecke algebra
H0.

In the example of G24 the algorithm completes after the following sequence of steps.
Here, an expression like revert(x8.2) stands for the result of applying Lemma 2.1 to the
known entry x8.2.

x3.1 = x3.2
′1 ′212 . . .

x4.1 = x4.3
′1 ′313 x34.2 = x34.1

′2 ′121

x8.2 = x8.3
′2 ′3 ′2323 x35.1 = x35.3

′1 ′313

x9.2 = revert(x8.2) x37.1 = x37.3
′2 ′1 ′3 ′2 ′1 ′232 ′123123

x10.3 = x10.1
′3 ′131 x29.1 = revert(x37.1)

x11.1 = x11.2
′1 ′212 x37.2 = x37.3

′2 ′3 ′2323

x19.1 = revert(x11.1) x39.1 = x39.2
′1 ′212

x12.1 = x12.3
′2 ′1 ′3 ′2 ′1 ′232 ′123123 x25.1 = x25.3

′1313 ′

x13.3 = x13.2
′3 ′2 ′3232 x36.1 = revert(x25.1)

x14.2 = x14.1
′2 ′121 x25.2 = x25.1212

′1 ′

x15.1 = x15.3
′1 ′313 x31.1 = x31.2

′1212 ′

x24.1 = revert(x15.1) x32.1 = x32.3
′2 ′1 ′3 ′2 ′1 ′232 ′123123

x17.2 = x17.3
′2 ′3 ′2323 x42.2 = x42.1

′2 ′121

x19.3 = x19.1
′3131 ′ x42.3 = x42.1

′3 ′131

x20.1 = x20.3
′1 ′313 x24.2 = x24.3

′23232 ′3 ′

x28.1 = revert(x20.1) x40.1 = x40.3
′2 ′1 ′23 ′2 ′12312313 ′2 ′

x21.3 = x21.2
′3 ′23232 ′ x21.1 = revert(x40.1)

x23.1 = x23.2
′1 ′212 x41.1 = x41.2

′1212 ′

x27.1 = revert(x23.1) x30.1 = revert(x41.1)

x32.2 = x32.3
′2 ′3 ′2323 x41.3 = x41.1313

′1 ′

x33.2 = revert(x32.2) x16.1 = x16.2
′1212 ′

. . . x38.3 = x38.1
′3 ′131

A similiar sequence of steps proves the theorem in the remaining number of cases.
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5. Proof of the main theorem

The proof of the theorem is then obtained by applying the above algorithm to each 2-
reflection group having a single class of conjugation, together with a presentation of the
group. We start with the groups of rank 2, where we use the standard presentations of
[BMR]. In the ‘ordering’ column we put the ordered set Ŝ used to build the spanning
tree, as in section 2.1. We use parenthesis as in (1, 2, 3) in order to indicate that we use
lexicographic ordering, while we use square brackets as in [1, 2, 3] to indicate that we use
the modified version of the algorithm that groups cosets into double cosets. In each case,
the digit in bold font indicates (the generator of) the parabolic subgroup which is used
– in general, the digits in bold font will be the generators forming the subset J of section
2.1. The other columns indicate the Coxeter type of the parabolic subgroup W0, the
order of the group W and the number of cosets inside W/W0. Finally, the last column
contains a checkmark if the algorithm succeeded, and if not it contains a cross together
with the number of entries that remained empty at the end of the process.

W relations W0 |W| |W/W0| ordering result

G12 1231 = 2312 A1 48 24 (1, 2, 3) X
1231 = 3123 (1, 2, 3) X

(1, 2, 3) X
[1, 2, 3] X
[1, 2, 3] ×(9)
[1, 2, 3] X

G22 12312 = 23123 A1 240 120 (1, 2, 3) X
23123 = 31231 (1, 2, 3) X
12312 = 31231 (1, 2, 3) X

[1, 2, 3] ×(25)
[1, 2, 3] ×(26)
[1, 2, 3] ×(25)

Of course the choice of a parabolic subgroup matters, in that the completion of the
algorithm proves that H is a free H0-module, for the given choice of W0 ⊂ W. The
choice of ordering also matters, in that it proves that the specific list of words in the
generators induced by this ordering provides a basis of the free module H0-module H.
For instance, let us consider the case where W has type G12. In case of (1, 2, 3), that is
the standard lexicographic process attached to the ordering (1, 2, 3), the basis of H as a
H0-module that we obtain is

∅, 2, 3, 21, 23, 31, 32, 212, 213, 231, 232, 312, 313, 321, 323,
2121, 2123, 2131, 2323, 3131, 3232, 21212, 21232, 21313

while for [1, 2, 3] it is

∅, 2, 21, 3, 31, 23, 231, 212, 2121, 213, 2131, 32, 321, 312, 3121,
313, 3131, 232, 2321, 21212, 21213, 212131, 31212, 312121.

Therefore, every checkmark in the table, for a given group, corresponds to a new result,
distinct from the other ones – but of course only one checkmark is needed in order to
prove theorem 1.2 for this group.

We turn to the cases of rank 3 and 4. In the first two cases, we slightly changed the
standard presentation of [BM]. It is easily checked that the non-Coxeter relation we use



16 IVAN MARIN AND GÖTZ PFEIFFER

for G24 is equivalent to the standard one 231231231 = 323123123, while the one we use
for G27 is equivalent to the standard one 323123123123 = 231231231232. In the case of
G29, we do not need any additional relation to the standard presentation. In the process,
we however noticed that the companion relation 423423 = 234234, which holds inside
the reflection group but not in the braid group, admits a pretty-looking counterpart
42 ′34 ′23 ′ = 2 ′34 ′23 ′4, which holds inside B and might be useful in other contexts.

W relations W0 |W| |W/W0| ordering result

G24 121 = 212 B2 336 42 (1, 2, 3) X
131 = 313 [1, 2, 3] X
3232 = 2323
12312313 ′

= 232 ′12312
G27 121 = 212 B2 2160 270 (1, 2, 3) ×(136)

131 = 313 [1, 2, 3] X
3232 = 2323
232 ′1231231

= 12312313 ′23
G29 121 = 212 B3 7680 160 (1, 2, 3, 4) X

242 = 424 [1, 2, 3, 4] X
343 = 434
2323 = 3232

13 = 31, 14 = 41
432432 = 324324

The case of the remaining group of rank 4 is somewhat special, in that it involves two
new generators instead of one, and because we needed to introduce a number of extra
relations so that our algorithm manage to fill all the entries of the table. Moreover, there
is no really ‘natural’ ordering of the vertices in this case. We got the following results.

W relations W0 |W| |W/W0| ordering result

G31 141 = 414, 15 = 51 A3 46080 1920 (1, 2, 3, 4, 5) X
242 = 424, 252 = 525 (5, 1, 2, 3, 4) X
34 = 43, 535 = 353 (4, 5, 1, 2, 3) X
45 = 54, 123 = 231 (3, 4, 5, 1, 2) X
231 = 312, 123 = 312 (2, 3, 4, 5, 1) X

R31 (2, 4, 5, 1, 3) X
(2, 4, 5, 3, 1) X
[1, 2, 3, 4, 5] ×(2633)

In this table, the additional relations are :

R31 : 124124 = 412412, 235235 = 523523, 232 ′523 = 5232 ′52, 1242 ′12 = 242 ′124
212 ′5235 = 52352 ′12, 232 ′4124 = 41242 ′32

Finally, the group G33 has a standard presentation in which a parabolic Coxeter subgroup
of type A4 naturally shows up. The Coxeter relations are symbolized by the diagram

1 2

3

4 5
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and there is one additional relation 423423 = 342342. This group G33 also contains a
parabolic subgroup of type D4 which cannot be seen in this presentation. In [BM], Bessis
and Michel propose an alternative presentation of the braid group for G33, given (up
to an harmless swapping of letters) by the Coxeter relations described by the following
diagram,

s t

u

w

v

together with the relation wvutwv = vutwvu. This presentation is deduced from the
previous one by the relations s = 1, t = 2, u = 4, v = 3, w = 3454 ′3 ′. From these
presentations and the corresponding parabolic subgroups we get the following results,
which in particular conclude the proof of theorem 1.2.

W relations W0 |W| |W/W0| ordering result

G33 121 = 212, 323 = 232 A4 51840 432 (1, 2, 3, 4, 5) X
424 = 242, 434 = 343
454 = 545, 13 = 31
14 = 41, 15 = 51
25 = 52, 35 = 53
423423 = 342342
342342 = 234234

G33 121 = 212, 454 = 545 D4 51840 270 (1, 2, 3, 4, 5) X
13 = 31, 14 = 41 [1, 2, 3, 4, 5] X
15 = 51, 232 = 323
242 = 424, 252 = 525
343 = 434, 35 = 53
543254 = 432543

RD
33

In this table, the additional relations are :

RD
33 : 324324 = 432432, 324324 = 243243, 432432 = 243243,

4215421 = 252 ′421542, 425432 = 32543245 ′

Altogether this completes the proof of theorem 1.2. The interested reader will find the
code we used at the url http://www.lamfa.u-picardie.fr/marin/GGGGcode-en.html.
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