Éléments de Jucys-Murphy généralisés

Ivan Marin

12 novembre 2002

Abstract. We define Jucys-Murphy elements for the finite Coxeter groups which do not contain D_4 as a parabolic subgroup. We prove that these elements share some previously established properties with the original Jucys-Murphy elements of the symmetric group. This enables one to envisage an approach to the representation theory of these groups similar to the Vershik-Okounkov reconstruction for the symmetric group.

Résumé. Nous généralisons les éléments de Jucys-Murphy aux groupes de Coxeter finis qui ne contiennent pas D_4 comme sous-groupe parabolique. Nous montrons que ces éléments vérifient certaines propriétés établies précédemment pour le groupe symétrique, et permettent ainsi d'envisager une approche des représentations de ces groupes à la manière de Vershik et Okounkov pour le groupe symétrique.

MSC 2000 : 20C05, 20F55.

1 Introduction

Dans [7], Vershik et Okounkov ont présenté une approche alternative de la théorie des représentations du groupe symétrique, parallèle à l'approche classique des représentations des algèbres de Lie simples. Le rôle d'algèbre de Cartan y est joué par les éléments introduits par Jucys [5] et retrouvés par Murphy [6], qui sont des sommes de transpositions dans l'algèbre du groupe. Il est suggéré dans [7] que cette approche pourrait être généralisée aux autres groupes de Coxeter finis.

L'idée maîtresse de [7] consiste à utiliser le fait que ces éléments, semi-simples et diagonalisables sur \mathbb{Q} dans toute représentation, commutent entre eux. Cela permet d'associer à toute représentation (irréductible) son *contenu*, défini comme l'ensemble des *n*-uplets de valeurs propres de ces éléments. Une propriété cruciale de ces éléments est qu'ils engendrent une sous-algèbre commutative maximale, d'abord dans chaque représentation irréductible, mais également dans un modèle de Gelfand du groupe symétrique. C'est à cette propriété-ci que nous nous intéressons, étape préliminaire indispensable pour mener à bien l'extension de l'approche de [7] aux autres groupes de Coxeter. Il existe d'ores et déjà des généralisations de ces éléments à d'autres groupes de Coxeter réduits. Des éléments correspondant au type B sont déjà apparus dans la thèse d'Hoefsmit [4]. Cherednik a montré dans [2] qu'ils découlent naturellement, par quotient, d'éléments de Jucys-Murphy généralisés dans l'algèbre de Hecke affine de type A. Ces éléments sont également retrouvés par Ram dans [8], où sont de plus proposés des éléments de Jucys-Murphy pour d'autres groupes de Weyl. Cette dernière généralisation ne convient pas à certaines applications, parce que ces éléments-là, même pour $I_2(6) = G_2$, ne sont pas tous des sommes de réflexions. Si l'on impose que cette condition soit vérifiée, les seuls cas étudiés jusqu'alors sont donc, à notre connaissance, les types A et B.

Dans ce travail, nous étudions des généralisations des éléments de Jucys-Murphy pour tous les groupes de Coxeter finis qui ne contiennent pas D_4 comme sous-groupe parabolique — c'est-à-dire les groupes de symétrie d'un polytope régulier non nécessairement connexe. Dans un premier temps (section 2), nous mettons en place deux constructions générales, une construction naïve d'éléments dits « toroïdaux », puis une construction plus fine. Nous précisons les propriétés attendues pour les éléments à construire. La première approche redonne en type A les éléments de Jucys-Murphy proprement dit, et en type B des éléments déjà étudiés. En section 3, nous montrons que ces

éléments vérifient pour le type B les propriétés voulues, et nous déterminons tous les éléments de type toroïdal que l'on peut construire en type A. En section 4, nous déterminons des éléments de Jucys-Murphy pour les groupes diédraux, et en sections 5,6 et 7 des éléments de Jucys-Murphy pour les groupes exceptionnels F_4 , H_3 et H_4 .

Les notations générales que nous utiliserons ici sont les suivantes. Si W désigne un groupe de Coxeter fini, on notera \mathcal{R} l'ensemble de ses (classes de) représentations irréductibles, R l'ensemble de ses réflexions. Toutes les algèbres sont par définition unifères, et les morphismes d'algèbres (en particulier les inclusions) préservent l'unité. Pour toute partie S d'une algèbre unifère, nous noterons $\langle S \rangle$ la sous-algèbre *unifère* engendrée par S. Si λ désigne une partition d'un entier n, nous noterons $|\lambda| = n$, que nous appelons la taille de λ . Enfin, si ρ_1 et ρ_2 sont des représentations de groupes W_1 et W_2 et W est un sous-groupe commun de W_1 et W_2 , on notera $\operatorname{Hom}_W(\rho_1, \rho_2)$ l'espace des opérateurs d'entrelacement des restrictions de ρ_1 et ρ_2 à W.

Pour les groupes exceptionnels notamment, nous avons eu recours à des moyens informatiques. Les logiciels utilisés sont le module CHEVIE [11] de GAP3 [9] ainsi que GAP4 [10].

2 Eléments de Jucys-Murphy généralisés

2.1 Généralités

Nous essayons ici de généraliser les éléments de Jucys-Murphy de A_n aux autres groupes de Coxeter finis. Rappelons que ces éléments $JM(A_n) = (h_1, \ldots, h_n)$ sont définis par

$$h_{r-1} = (1 \ r) + (2 \ r) + \ldots + (r - 2 \ r) + (r - 1 \ r)$$

et vérifient l'identité $h_r = T_r - T_{r-1}$, où T_r désigne la somme des transpositions de $A_r = \mathfrak{S}_{r+1}$. Alternativement, on appelle également éléments de Jucys-Murphy ces éléments T_1, \ldots, T_r , qui engendrent la même sous-algèbre de $\mathbb{Q}A_r$. Nous notons $jm(A_n)$ la \mathbb{Q} -sous-algèbre (commutative) de l'algèbre de groupe engendrée par ces éléments. Pour un plongement parabolique $A_n \subset A_{n+1}$, on a de manière évidente $jm(A_n) \subset jm(A_{n+1})$, et $jm(A_{n+1})$ commute à A_n dans $\mathbb{Q}A_{n+1}$. Dans le cas ou W est de type A, ces algèbres sont diagonales dans $\mathbb{C}W$, et vérifient de plus les conditions

(B) jm(W) est commutative maximale dans $\mathbb{C}W$.

(C) jm(W) est diagonale dans KW, où K est le corps de définition de W.

On cherche à associer à chacun de ces groupes W une sous-algèbre jm(W) de $\mathbb{Q}W$, dite de Jucys-Murphy si jm(W) est commutative et engendrée par des sommes de réflexions, de façon telle que $jm(A_1) = \mathbb{Q}A_1$ et que, pour $W \neq A_1$, il existe un sous-groupe parabolique propre W' de W tel que $jm(W') \subset jm(W)$. Ces algèbres sont dès lors diagonales dans $\mathbb{R}W$, donc dans $\mathbb{C}W$. En effet, si l'on choisit un produit scalaire W-invariant sur $\mathbb{R}W$, les réflexions sont unitaires et involutives, donc autoadjointes, et toute somme de réflexion est ainsi diagonalisable à valeurs propres réelles. On dira qu'une telle algèbre est *parfaite* si elle vérifie les conditions (B) et (C). Rappelons que l'on appelle corps de définition (des représentations) d'un groupe de Coxeter W le plus petit sous-corps K de \mathbb{C} sur lequel sont définies toutes les représentations irréductibles de W, et que (cf. [3] th. 5.3.9 p. 153)

$$K = \mathbb{Q}\left(\cos\left(\frac{2\pi}{m_{s,t}}\right) \mid s, t \in S\right) \subset \mathbb{R}$$

où S désigne l'ensemble des générateurs de Coxeter et $m_{s,t}$ les coefficients de la matrice de Cartan de W.

D'autre part, on cherche à associer à W de rang n une famille JM(W) de sommes de réflexions, de façon telle que JM(W) soit de cardinal minimum (n dans la plupart des cas, 2n - 2 dans le cas des type B et F_4 , n + 1 dans le cas de H_4), engendre jm(W) en tant que Q-algèbre, et qu'il existe un sous-groupe parabolique maximal W' de W et une famille JM(W') tel que $JM(W) = JM(W') \cup SUP(W', W)$, avec SUP(W', W) commutant à W' dans $\mathbb{Q}W$. De tels éléments seront dits parfaits si jm(W) est parfaite. Nous introduisons d'autre part des conditions plus faibles que la condition (B). On dira que jm(W) ou JM(W) satisfait à la condition (B') si l'image de jm(W) dans chacune des représentations irréductibles de W sur \mathbb{C} est diagonale et maximale. C'est une condition minimale que doivent vérifier de telles sous-algèbres. Comme les algèbres considérées sont diagonales sur \mathbb{C} , on peut associer à toute représentation irréductible ρ de W sur un espace vectoriel complexe E son *contenu*, défini par

$$\operatorname{cont}(\rho) = \{ (\alpha_t)_{t \in JM(W)} \mid \exists x \in E \setminus \{0\} \quad \forall t \in JM(W) \quad \rho(t)x = \alpha_t x \}$$

Remarquons que, les éléments choisis étant sommes d'éléments du groupe, ils sont à coefficients matriciels entiers dans la représentation régulière. Leurs valeurs propres sont donc des entiers algébriques réels, et, si JM(W) satisfait (C), les contenus sont formés de familles d'entiers de K(en particulier d'entiers si $K = \mathbb{Q}$). Les conditions (B) et (B') équivalent d'autre part à

$$\begin{array}{ll} (B) & \Leftrightarrow & (B') \text{ et } \forall \rho \neq \rho' \operatorname{cont}(\rho) \cap \operatorname{cont}(\rho') \neq 0 \\ (B') & \Leftrightarrow & \forall \rho \ \# \operatorname{cont}(\rho) = \dim \rho \end{array}$$

La condition (B'), suffisante pour certaines applications, est cependant trop faible pour espérer rebâtir même une partie de la théorie des représentations des groupes de Coxeter sur de telles bases. Pour que les contenus ainsi recueillis fassent sens, on demande qu'ils ne se mélangent « pas trop ». Pour cela, on introduit la notion suivante, lorsque la famille JM(W) vérifie la condition (B') mais pas (B). On dira qu'elle admet un *ensemble exceptionnel* $\mathcal{E} = \{\rho_1, \ldots, \rho_r\}$ inclus dans l'ensemble \mathcal{R} des classes de représentations irréductibles de W si $\forall \rho, \rho' \notin \mathcal{E} \ \rho \neq \rho' \Rightarrow \operatorname{cont}(\rho) \cap \operatorname{cont}(\rho') = \emptyset$ et si, pour tout $\rho \in \mathcal{E}$, $\operatorname{cont}(\rho)$ est l'union disjointe d'ensembles de la forme $\operatorname{cont}(\rho')$ pour dim $\rho' <$ dim ρ . On montre facilement qu'un tel ensemble, s'il existe, est nécessairement unique (considérer une représentation de dimension minimale dans la différence symétrique de tels ensembles). On tâchera alors de minimiser le cardinal r de son ensemble exceptionnel. On vérifie facilement que ces dernières notions ne dépendent en fait que de jm(W).

Remarquons que, si $jm(W) = \langle jm(W'), SUP(W, W') \rangle$ est définie à partir d'un sous-groupe parabolique maximal W' de W, alors jm(W) ne peut être parfaite (resp. satisfaire à la condition (B')) que si jm(W') est parfaite (resp. satisfait à (B')).

2.2 Réduction aux composantes connexes

Soit (W, S) un système de Coxeter. On peut décomposer, de manière essentiellement unique, S en $S_1 \cup \ldots \cup S_r$ de façon telle que (W_i, S_i) soit un système de Coxeter réduit, où W_i désigne le sous-groupe parabolique de W engendré par S_i . On dit qu'un groupe de Coxeter réduit est rectiligne si le graphe sous-jacent à son graphe de Coxeter est une chaîne, i.e. s'il est de type A, B, $I_2(m)$, F_4 , H_3 ou H_4 . On dit que (W, S) est rectiligne si chacun des (W_i, S_i) l'est.

Supposons que l'on ait défini des éléments $JM(W_i)$ pour $i \in [1, r]$, et les algèbres $jm(W_i)$ qu'ils engendrent. On a $W = W_1 \times \ldots \times W_r$. On note $JM^+(W_i)$ l'image de $JM(W_i)$ dans $\mathbb{Q}W$ pour l'inclusion naturelle, $jm^+(W_i)$ l'image de $jm(W_i)$ dans $\mathbb{Q}W$ pour l'inclusion naturelle d'algèbres, et on pose

$$JM(W) = JM^+(W_1) \cup \ldots \cup JM^+(W_r).$$

On peut alors définir jm(W) indifféremment comme l'algèbre engendrée par JM(W), ou comme la somme des $jm^+(W_i)$. Il est clair que, si chacune des $jm(W_i)$ vérifie (B) (resp. (B')), alors jm(W) également. En effet, comme chacune des représentations irréductibles ρ de W est un produit tensoriel de représentations irréductibles ρ_i des W_i , $\operatorname{cont}(\rho)$ est le produit cartésien des $\operatorname{cont}(\rho_i)$. D'autre part, si chacune des $jm(W_i)$ vérifie (B') et admet dans son ensemble des classes de représentations irréductibles \mathcal{R}_i un ensemble exceptionnel \mathcal{E}_i , on définit

$$\mathcal{E}_i^+ = \mathcal{R}_1 \times \ldots \times \mathcal{R}_{i-1} \times \mathcal{E}_i \times \mathcal{R}_{i+1} \times \ldots \times \mathcal{R}_r \subset \mathcal{R}_i$$

où \mathcal{R} désigne l'ensembles des représentations irréductibles de W, et on désigne par $\mathcal{E} \subset \mathcal{R}$ l'union des \mathcal{E}_i^+ : c'est bien un ensemble exceptionnel pour jm(W).

On est donc ramené, dans le cas des groupes de Coxeter rectilignes, à construire des éléments JM(W) pour (W, S) un groupe de Coxeter rectiligne réduit.

3 Groupes réduits

Nous présentons ici deux constructions pour les groupes de Coxeter réduits. La première est systématique et généralise les éléments T_1, \ldots, T_r du type A. Elle se base sur l'idée que chaque T_r est la somme des réflexions de A_r . Elle est cependant trop grossière pour certains groupes, même de rang 2. La seconde, plus fine, est au contraire moins systématique : le fait que les éléments introduits commutent entre eux n'est pas automatique. Elle se base sur l'idée que h_r est la somme des réflexions de A_r qui n'appartiennent pas à A_{r-1} .

3.1 Construction toroïdale

Si s est une réflexion de W, on note $\omega^W(s)$ la somme dans $\mathbb{Q}W$ de ses conjugués, et, pour toute représentation ρ de W, $\omega_{\rho}^W(s) = \rho(\omega^W(s))$. Suivant le contexte, on omettra éventuellement les indices W et ρ . Si ρ est irréductible et χ désigne son caractère, $\omega_{\rho}(s)$ est scalaire, et

$$\omega_{\rho}(s) = \frac{|\mathcal{C}_s|}{\dim \rho} \chi(s) = |\mathcal{C}_s| \frac{\chi(s)}{\chi(1)}$$

où C_s désigne la classe de conjugaison de s. On appelle les éléments de $\mathbb{Q}W$ de la forme $\omega(s)$ les éléments toroïdaux de W. Ils appartiennent au centre de $\mathbb{Q}W$. Une première construction consiste à associer à tout groupe de Coxeter W l'ensemble TOR(W) de ses éléments toroïdaux et de définir tor(W) comme $\langle tor(W'), TOR(W) \rangle$ pour un certain sous-groupe parabolique maximal bien choisi W' de W. Il y a en fait une algèbre tor(W) pour chaque filtration de W par des sous-groupes paraboliques maximaux. Dans le cas du type A, cette construction redonne l'algèbre de Jucys-Murphy habituelle, qui correspond à la filtration $A_1 \subset A_2 \subset \ldots \subset A_{r-1} \subset A_r$.

Pour cette construction, si tor(W) = tor(W'), TOR(W) >, tor(W) satisfait à (C) si et seulement si tor(W') satisfait à (C) – en effet, les éléments de TOR(W) sont éléments du centre de QW, et ainsi diagonalisables sur K. Pour la même raison, tor(W) satisfait à (B) si et seulement si

- -tor(W') satisfait à (B).
- La paire $W' \subset W$ est parfaite.

ou l'on dit qu'une telle paire $W' \subset W$ est parfaite si

- Les restrictions à W' des représentations irréductibles de W sont sans multiplicités (on dit que $W' \subset W$ est sans multiplicités).
- Si les éléments de TOR(W) agissent par les mêmes valeurs sur deux représentations irréductibles non isomorphes ρ et ρ' , alors $\operatorname{Hom}_{W'}(\rho, \rho') = \{0\}$.

De même, tor(W) satisfait à la condition (B') si et seulement si tor(W') la satisfait et si, de plus, la paire $W' \subset W$ est sans multiplicités. Un obstacle majeur à cette approche apparaît donc quand Wn'admet pas de sous-groupe parabolique maximal W' tel que $W' \subset W$ soit sans multiplicités. C'est en particulier le cas de E_8 et H_4 . D'autre part, même quand tel n'est pas le cas, cette approche est souvent trop grossière, comme nous le verrons dans l'étude des groupes exceptionnels.

3.2 Une construction plus fine

On fixe un sous-groupe parabolique maximal W' de W. On note R (resp. R') l'ensemble des réflexions de W (resp. W'), $T \in \mathbb{Q}W$ (resp. $T' \in \mathbb{Q}W'$) la somme des éléments de R (resp. R'), et l'on suppose défini JM(W'). On considère alors l'action par conjugaison de W' sur $R \setminus R'$, et

l'on associe, à chacune des orbites $c \in (R \setminus R')/W$, l'élément T_c somme dans $\mathbb{Q}W$ des éléments de c. Il est clair que T_c commute à $\mathbb{Q}W'$, donc à JM(W'), et que

$$T = T' + \sum_{c \in (R \setminus R')/W} T_c.$$

Si les T_c pour $c \in (R \setminus R')/W$ commutent entre eux, on peut alors définir

$$JM(W) = JM(W') \cup \{T_c \mid c \in (R \setminus R')/W\}$$

Il s'agit alors de vérifier deux choses. D'abord, que ces éléments T_c commutent entre eux. Ensuite, que l'algèbre commutative ainsi construite est plus grosse que l'algèbre naïvement par $\langle JM(W'), TOR(W) \rangle$.

Dans deux cas au moins, il est automatique que les T_c commutent. Comme la somme des éléments de $R \setminus R'$ vaut T - T', elle commute à chacun des T_c . Si $(R \setminus R')/W$ est de cardinal 2, alors les T_c commutent entre eux. Si $(R \setminus R')/W$ est de cardinal 3, et est composé d'une classe à un élément w et de deux classes c_1 et c_2 de cardinalités différentes, c'est encore vrai. En effet, wc_1w est un ensemble de réflexions stable par l'action de W', dont l'intersection avec R' est vide, et sur lequel l'action de W' est transitive; on en déduit que wc_1w est une orbite de $R \setminus R'$, de même cardinal que c_1 , donc $wc_1w = c_1$ et de même $wc_2w = c_2$. En conséquence de quoi $[T_{c_2}, w] = [T_{c_1}, w] = 0$ et

$$[T_{c_2}, T_{c_1}] = [T, T_{c_1}] - [T', T_{c_1}] - [T_{c_1}, T_{c_1}] - [w, T_{c_1}] = 0.$$

Ces deux situations se produisent notamment dans les cas de H_3 et F_4 .

Dans les cas de type A et B, on ne gagne rien avec cette construction. En effet, dans le premier cas, il n'y a qu'une seule orbite dans $R \setminus R'$, et l'élément correspondant est la différence des éléments centraux correspondant à W et W': pour la filtration standard, ce sont les éléments de Jucys-Murphy originels. De même, dans le deuxième cas $W = B_n$, et, si W' est de type B_{n-1} , $R \setminus R'$, de cardinal 2n - 1, se décompose en deux orbites de cardinaux respectifs 2n - 2 et 1 correspondant aux deux classes de conjugaisons de réflexions. Si W' est de type A_{n-1} , $(R \setminus R')/W'$ est encore composée de deux orbites qui correspondent encore aux deux classes de conjugaisons. L'algèbre obtenue est alors engendrée par $JM(A_{n-1})$ et les deux éléments centraux. Elle ne vérifie aucune des conditions (B) et (B') parce que la restriction à A_{n-1} des représentations irréductibles de B_n présente des multiplicités en général, au moins si $n \ge 6$.

3.3 Exemple de B_3

Nous illustrons la construction de 3.2 sur l'exemple de B_3 , qui correspond au diagramme

$$(s_1) = (s_2) - (s_3)$$

Ce groupe est d'ordre 48 et comporte 9 réflexions. Ses représentations irréductibles sont indexées par les couples (λ, μ) de partitions telles que $|\lambda| + |\mu| = 3$. On note $V, \mathbb{1}, \varepsilon$ les représentations de réflexion, triviales et alternées, qui correspondent respectivement aux couples $(2, 1), (3, \emptyset)$ et $(\emptyset, 111])$, et $\eta = (\emptyset, 3)$ de l'indexation classique des représentations de B_3 (cf. [3]), où l'on note pour alléger *ijk* la partition [i, j, k]. On a $\eta(s_1) = -1, \eta(s_2) = \eta(s_3) = 1$. On note encore U la représentation de dimension 2 qui correspond à ($[2, 1], \emptyset$). Les représentations irréductibles de B_3 sont alors $\mathbb{1}, \varepsilon, \eta, \varepsilon \otimes \eta, U, U \otimes \eta, V, V \otimes \eta, V \otimes \varepsilon, V \otimes \eta \otimes \varepsilon$. Si l'on considère l'inclusion $B_2 \subset B_3$, on montre facilement (voir l'étude des groupes diédraux en section 5 pour plus de détails) que des éléments de Jucys-Murphy parfaits pour B_2 sont s_1 et $s_2 + s_1s_2s_1$, et on trouve que $(R \setminus R')/W'$ est composé de deux orbites

$$c_1 = \{s_3, s_2s_3s_2, s_1s_2s_3s_2s_1, s_2s_1s_2s_3s_2s_1s_2\}$$

$$c_2 = \{s_3s_2s_1s_2s_3\}$$

On pose alors $JM(B_3) = \{s_1, \bar{s}_2 = s_2 + s_1 s_2 s_1, T_{c_1}, T_{c_2}\}.$

Si l'on considère au contraire $W' = \langle s_2, s_3 \rangle \simeq A_2$, $(R \setminus R')/W'$ est composé de deux orbites

$$\begin{array}{rcl} c_1' &=& \{s_1, s_2 s_1 s_2, s_3 s_2 s_1 s_2 s_3\} \\ c_2' &=& \{s_1 s_2 s_1, s_1 s_2 s_3 s_2 s_1, s_2 s_1 s_2 s_3 s_2 s_1 s_2\} \end{array}$$

et on définit alors, comme éléments de Jucys-Murphy, $JM'(B_3) = \{s_3, \check{s}_2 = s_2 + s_3s_2s_3, T_{c'_1}, T_{c'_2}\}$. On note $jm(B_3)$ et $jm'(B_3)$ les algèbre commutatives engendrées par $JM(B_3)$ et $JM'(B_3)$, respectivement. Il est immédiat que ces deux algèbres sont distinctes (elles ne commutent pas entre elles).

Chacune de ces deux algèbres vérifie les conditions (B) et (C), comme on peut le vérifier sur le tableau suivant (les valeurs sur les autres représentations se déduisent immédiatement de celles données ici, après produit tensoriel par ε et η).

Rep.	s_1	\bar{s}_2	T_{c_1}	T_{c_2}	Rep.	s_3	\check{s}_2	$T_{c_1'}$	$T_{c_2'}$
1	1	2	4	1	1	1	2	3	3
U	1	-2	2	1	U	1	-1	3	0
	1	2	-2	1		-1	1	3	0
V	1	0	2	1	V	-1	1	1	2
	1	2	0	-1		1	-1	1	2
	-1	0	2	1		1	2	1	-1

4 Sur les types A et B

Les constructions toroïdales fonctionnent bien dans le cas des types A et B. En premier lieu, nous montrons que $tor(B_n)$ est parfaite pour la filtration naturelle. En second lieu, nous déterminons toutes les filtrations paraboliques du groupe A_n pour lesquelles $tor(A_n)$ est parfaite.

4.1 Eléments de Jucys-Murphy de type B

On considère le groupe de Coxeter B_n , pour $n \ge 1$, correspondant au diagramme

$$\bigcirc \underbrace{\longrightarrow}_{t} \bigcirc \underbrace{\longrightarrow}_{s_1} \bigcirc \underbrace{\longrightarrow}_{s_2} \bigcirc \underbrace{\longrightarrow}_{s_3} \dotsb \underbrace{\longrightarrow}_{s_{n-2}} \bigcirc \underbrace{\longrightarrow}_{s_{n-1}} \bigcirc$$

et on identifie B_r pour $r \in [1, n]$ au sous-groupe de B_n engendré par $\{t, s_1, \ldots, s_{r-1}\}$. On fixe ainsi une filtration de B_n par des sous-groupes paraboliques maximaux. Les éléments s_i sont conjugués entre eux. On note $\omega^n(t)$ (resp. $\omega^n(s)$, pour $n \ge 2$) la somme des réflexions de B_n conjuguées à t(resp. s_1, \ldots, s_{n-1}), et $\omega_{\rho}^n(t), \omega_{\rho}^n(s)$ les actions correspondantes sur une représentation ρ . On pose

$$JM_{1}(B_{n}) = \{\omega^{1}(t), \omega^{2}(s), \omega^{3}(t), \omega^{3}(s), \dots, \omega^{n}(t), \omega^{n}(s)\} \\ JM_{2}(B_{n}) = \{\omega^{1}(t), \omega^{2}(t), \omega^{3}(s), \omega^{3}(t), \dots, \omega^{n}(s), \omega^{n}(t)\}$$

et $JM(B_n) = JM_1(B_n) \cup JM_2(B_n)$. Il est clair que chacune de ces algèbres engendre $tor(B_n)$. Il nous suffit donc de montrer que $JM(B_n)$ est parfaite. Pour montrer (B), on considère un modèle de Gelfand M de B_n , c'est-à-dire une représentation de B_n dans laquelle chaque représentation irréductible intervient avec multiplicité 1. Comme la paire naturelle $B_{n-1} \subset B_n$ est sans multiplicités pour tout $n \ge 2$, une base de Gelfand-Tsetlin de M pour la filtration de B_n choisie est indexée par les n-uplets $((\lambda_1, \mu_1), \ldots, (\lambda_n, \mu_n))$ avec $|\lambda_i| + |\mu_i| = i$, dans lesquels

$$\forall r < n \; \exists d \; (\lambda_r, \mu_r) = (\lambda_{r+1}^{(d)}, \mu_{r+1}) \; \text{ou} \; (\lambda_r, \mu_r) = (\lambda_{r+1}, \mu_{r+1}^{(d)}).$$

où $\lambda^{(d)}$ désigne la suite $(\lambda_1, \ldots, \lambda_{d+1}, \lambda_d - 1, \lambda_{d-1}, \ldots, \lambda_n)$. Les éléments de $JM(B_n)$ agissent diagonalement sur une telle base, et il s'agit de montrer que l'action, nécessairement scalaire d'après le lemme de Schur, de la famille des $\omega^r_{(\lambda_r,\mu_r)}(t), \omega^r_{(\lambda_r,\mu_r)}(s)$ pour $r \in [1, n]$ permet de

déterminer le *n*-uplet correspondant. On démontre ce fait par récurrence sur *n*, le cas n = 2étant celui d'un groupe diédral ($B_2 = I_2(4)$), pour lequel nous renvoyons à l'étude générale des groupes diédraux (section 5). On suppose donc que l'on connaît $(\lambda_1, \mu_1), \ldots, (\lambda_{n-1}, \mu_{n-1})$ ainsi que $\omega_{(\lambda_{n-1}, \mu_{n-1})}(t), \omega_{(\lambda_{n-1}, \mu_{n-1})}(s), \omega_{(\lambda_n, \mu_n)}(t), \omega_{(\lambda_n, \mu_n)}(s)$. Ces dernières valeurs peuvent s'exprimer simplement en fonction des partitions $\lambda_{n-1}, \mu_{n-1}, \lambda_n, \mu_n$ (cf. par exemple [3], preuve de la proposition 6.4.6 p. 196). On a

$$\begin{array}{lll} \omega_{(\lambda_{n},\mu_{n})}(t) & = & |\lambda_{n}| - |\mu_{n}| \\ \omega_{(\lambda_{n-1},\mu_{n-1})}(t) & = & |\lambda_{n-1}| - |\mu_{n-1}| \end{array}$$

d'où

$$\omega_{(\lambda_n,\mu_n)}(t) - \omega_{(\lambda_{n-1},\mu_{n-1})}(t) = 1 \quad \text{si } \mu_n = \mu_{n-1}$$
$$= -1 \quad \text{si } \lambda_n = \lambda_{n-1}$$

On suppose qu'on est dans le premier cas. On sait alors qu'il existe d tel que $\lambda_{n-1} = \lambda_n^{(d)}$ et $\mu_{n-1} = \mu_n$. D'autre part, $\omega_{(\lambda,\mu)}(s) = 2(a(\lambda^*) - a(\lambda) + a(\mu^*) - a(\mu))$ où $a(\lambda)$ désigne l'invariant de Lusztig (cf. [3] 5.4, 5.5 et 6.2.5) d'où

$$\omega_{(\lambda_n,\mu_n)}(s) - \omega_{(\lambda_{n-1},\mu_{n-1})}(s) = 2((\lambda_n)_d - d) = 2((\lambda_{n-1})_d - d + 1).$$

Comme λ_{n-1} est une partition, la famille des $(\lambda_{n-1})_r = (\lambda_{n-1})_r - r + 1$ est strictement décroissante, ce qui permet d'identifier d, donc (λ_n, μ_n) . Le cas $\lambda_n = \lambda_{n-1}$ est absolument similaire, avec

$$\omega_{(\lambda_n,\mu_n)}(s) - \omega_{(\lambda_{n-1},\mu_{n-1})}(s) = 2((\mu_n)_d - 1)$$

si $\mu_{n-1} = \mu_n^{(d)}$. On en déduit

Proposition 1. Les familles $JM_1(B_n)$ et $JM_2(B_n)$ sont parfaites.

Remarquons que ces familles sont de cardinal 2n-2.

4.2 D'autres approches du type A

Dans l'approche classique, on utilise l'inclusion $A_{n-1} \subset A_n$ pour obtenir des éléments de Jucys-Murphy toroïdaux. Une condition nécessaire utilisée ici est que l'inclusion $A_{n-1} \subset A_n$ ne fait pas apparaître de multiplicités. Le groupe de Coxeter A_n admet, pour tout n, d'autres sous-groupes paraboliques qui présentent cette particularité, de type $A'_{n-1} = A_{n-2} \times A_1$. A toute filtration $S_1 \subset S_2 \subset \ldots \subset S_n = S$ de S par une suite de telles inclusions élémentaires, de type $A_{n-1} \subset A_n$ ou $A'_{n-1} = A_n$, on peut donc associer des éléments toroïdaux. Par exemple, à la filtration $A_1 \subset A_2 \subset$ $A'_3 \subset A_4$ correspond la famille { $T_2 = s_1, T_3, s_4, T_5$ }, où T_r désigne la somme des transpositions de $\mathfrak{S}_r = A_{r-1}$. L'algèbre correspondante sera alors parfaite si chaque inclusion élémentaire correspond à une paire parfaite. Déterminer les filtrations par des paraboliques maximaux qui correspondent à des algèbre toroïdales parfaites revient à déterminer ces paires parfaites. Elles sont représentées sur le diagramme de la table 1. Nous ne distinguons pas les deux inclusions paraboliques $A_{n-1} \subset A_n$ (resp. $A'_{n-1} \subset A_n$) parce qu'elles sont conjuguées par un automorphisme intérieur de A_n . Les chemins de ce diagramme qui partent de A_1 et aboutissent à A_n (ou A'_n) représentent les éléments toroïdaux de A_n (ou A'_n) qui satisfont à la condition (B). Ils satisfont automatiquement la condition (C).

Proposition 2. Le diagramme de la table 1 représente toutes les algèbres toroïdales parfaites pour les groupes de Coxeter réduits de type A.

Preuve — Tout sous-groupe parabolique maximal de \mathfrak{S}_n est de la forme $\mathfrak{S}_r \times \mathfrak{S}_s$ pour r+s=n et $r, s \geq 1$. On suppose $r, s \geq 3$, donc $n \geq 6$. Il découle alors de la règle de Littlewood-Richardson que, dans la restriction de $[r, 2, 1^{s-2}]$ à $\mathfrak{S}_r \times \mathfrak{S}_s$, la représentation irréductible $[r-1, 1] \otimes [2, 1^{s-2}]$ intervient avec multiplicité au moins 2. Aucune de ces paires n'est donc parfaite. Il ne reste plus

TAB. 1 – Inclusions parfaites en type A.

qu'à examiner les cas $r \leq 2$, i.e. les sous-groupes paraboliques maximaux de A_n de la forme A_{n-1} ou A'_{n-1} . Nous montrons d'abord que les paires $A'_{n-2} \subset A_{n-1}$, c'est-à-dire $\mathfrak{S}_{n-2} \times \mathfrak{S}_2 \subset \mathfrak{S}_n$, ne sont pas parfaites pour $n \geq 8$. Si n est pair (resp. impair), les représentations $[4 + d, 3, 1^{d+1}]$ et $[5+d, 1^{d+3}]$ (resp. $[5+d, 4, 1^d]$ et $[6+d, 2, 1^{d+1}]$) pour $d \geq 0$ admettent un sous-espace $\mathfrak{S}_{n-2} \times \mathfrak{S}_2$ stable, isomorphe à $[4+d, 1^{d+2}] \otimes \mathbb{1}$ (resp. $[5+d, 2, 1^d] \otimes \mathbb{1}$). Comme l'action de l'élément toroïdal de \mathfrak{S}_n agit sur les deux représentations par le même scalaire, ces paires ne sont pas parfaites. Il en est de même de la paire $A'_4 \subset A_5$ à cause des représentations [3,3] et [4,1,1] qui admettent dans leur restriction un composant isomorphe à $[3,1] \otimes \mathbb{1}$. Les inclusions $A_{n-1} \subset A_n$ sont parfaites : c'est le cas classique. On en déduit que les inclusions $A'_{n-1} \subset A'_n$ le sont également. Il est évident que les inclusions $A_{n-1} \subset A'_n$ sont parfaites. Que les autres inclusions sont parfaites se démontre enfin facilement au cas par cas.

5 Groupes diédraux

On note $I_2(m) = (W, S)$ où $S = \{s, t\}$ et W est le groupe de Coxeter défini par

c'est-à-dire par générateurs s, t et relations $s^2 = t^2 = 1$ et $(st)^m = 1$. $I_2(m)$ est le groupe dihédral d'ordre 2m. Si l'on pose $\omega = st$, il admet également comme présentation $s^2 = 1$, $\omega^m = 1$, $s\omega = \omega^{-1}s$. Les m symétries, de la forme $s\omega^r$ pour $0 \le r \le m-1$, sont conjuguées si m est impair. Si m est pair, on a deux classes de conjugaisons de réflexions, chacune de cardinal m/2, celle de set celle de t. On note T la somme des symétries et, si m est pair,

$$\begin{array}{rcl} T_s &=& s+tst+ststs+\dots\\ T_t &=& t+sts+tstst+\dots \end{array}$$

de telle sorte que $T = T_s + T_t$. On a toujours deux représentations de dimension 1, $\mathbb{1}$ et ε ($\varepsilon(s) = \varepsilon(t) = -1$). On note $\zeta = \exp(2i\pi/m)$. Pour $1 \leq j \leq (m-1)/2$, on note ρ_j la représentation irréductible définie par

$$\rho_j(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \rho_j(\omega) = \begin{pmatrix} \zeta^j & 0 \\ 0 & \zeta^{-j} \end{pmatrix} \quad \rho_j(t) = \begin{pmatrix} 0 & \zeta^{-j} \\ \zeta^j & 0 \end{pmatrix}$$

Si m est impair, $1, \varepsilon$ et les ρ_j forment un système complet de représentants des classes d'isomorphismes de représentations irréductibles de $I_2(m)$. Si m est pair, il y a encore deux représentations de dimension 2, ε_1 et ε_2 , définies par

$$\begin{aligned} \varepsilon_1(s) &= 1 & \varepsilon_1(t) &= -1 \\ \varepsilon_2(s) &= -1 & \varepsilon_2(t) &= 1 \end{aligned}$$

Dans $\mathbb{C}I_2(m)$, si l'on considère l'algèbre commutative $\langle s, T \rangle$, son action est semi-simple sans multiplicités sur toutes les représentations irréductibles : c'est évident pour les représentations de

dimension 1, et c'est vrai pour celles de dimension 2 parce que l'action de s admet deux valeurs propres distinctes. Si ρ désigne une représentation irréductible de $I_2(m)$, T est central, donc agit par un scalaire, et $\rho(T) = \chi(T)/(\dim \rho)$, c'est-à-dire qu'il agit par 0 sur les représentations de dimension 2 : ces représentations ont donc même contenu. L'algèbre commutative engendrée par s et T n'est donc pas maximale s'il y a au moins deux telles représentations, i.e. si $m \ge 5$. Pour m = 4, elle n'est pas non plus maximale parce que $\operatorname{cont}(\rho) = \operatorname{cont}(\varepsilon_1) \cup \operatorname{cont}(\varepsilon_2)$, avec ρ la représentation irréductible de dimension 2 de $B_2 = I_2(4)$.

D'autre part, si m est pair, et pour toute représentation ρ de $I_2(m)$,

$$\rho(T_s) = \frac{m}{2\dim\rho}\chi(s) \quad \rho(T_t) = \frac{m}{2\dim\rho}\chi(t)$$

c'est-à-dire que, sur les représentations de dimension 2 on a toujours $\rho(T) = \rho(T_s) = \rho(T_t) = 0$, et l'action sur les représentations de dimension 1 se déduit aisément de celles de s et t. On en déduit que, si m est pair, les images de $\langle s, T \rangle$ et $\langle s, T_t \rangle$ dans les représentations irréductibles sont diagonales maximales. De plus, si m est pair et $m \leq 4$, on déduit du tableau que $\langle s, T_t \rangle$ est maximale — ce qu'elle n'est pas pour m > 4. On en déduit que cette approche ne fournit les résultats désirés que dans les cas $I_2(2) = A_1 \times A_1 = D_2$, $I_2(3) = A_2$, $I_2(4) = B_2$.

	s	t	T_s	T_t	Т
1	1	1	$\frac{m}{2}$	$\frac{m}{2}$	m
ε	-1	-1	$\frac{-m}{2}$	$\frac{-m}{2}$	-m
ε_1	1	-1	$\frac{m}{2}$	$\frac{-m}{2}$	0
ε_2	-1	1	$\frac{-m}{2}$	$\frac{m}{2}$	0

On met maintenant en œuvre la deuxième procédure de construction d'éléments de Jucys-Murphy pour $G = I_2(m)$. Les réflexions s'écrivent $s\omega^i$ pour $0 \le i \le m-1$, et on a $R' = \{s\}$. Comme $s(s\omega^i)s = \omega^i s = s\omega^{-i}$, on en déduit que, sous l'action de $W' = \langle s \rangle \simeq \mathbb{Z}/2\mathbb{Z}$, on a, dans $R \setminus R', (m-1)/2$ orbites de cardinal 2 de la forme $\{s\omega^i, s\omega^{-i}\}$ pour $1 \le i \le (m-1)/2$, et, si m est pair, une orbite de cardinal 1, $\{s\omega^{m/2}\}$. On note alors $T_i = s\omega^i + s\omega^{-i}$ pour $1 \le i \le (m-1)/2$. et (m-1)/2. On vérifie immédiatement que $[T_i, T_j] = 0$ pour tous i, j, et, si m est pair, $[T_i, s\omega^{m/2}] = 0$ pour tout i. On pose dans ce cas $T_{m/2} = s\omega^{m/2}$. On définit $jm(I_2(m))$ comme l'algèbre commutative engendrée par s et ces éléments T_k . On a alors, pour $k \le (m-1)/2$, $\rho_j(T_k) = 2\cos(\frac{2jk\pi}{m})\rho_j(s)$ et $\rho_j(T_{m/2}) = (-1)^j \rho_j(s)$. Il est clair que ces éléments vérifient la condition (B), ainsi que (C) puisque $\cos(\frac{2jk\pi}{m}) \in K$ (c'est un polynôme de Tchebyshev de $\cos(\frac{2\pi}{m})$). En fait, il suffit de ne garder que s et T_1 pour engendrer $jm(I_2(m))$, c'est-à-dire de poser

$$JM(I_2(m)) = \{s, t + sts\}.$$

Si l'on échange les rôles de s et t, on obtient comme éléments t et s + tst. Ces deux sous-algèbres sont évidemment isomorphes, et distinctes dès que $m \ge 3$.

	s	(sts+t)/2	T_t	T_s	T
1	1	1	$\frac{m}{2}$	$\frac{m}{2}$	m
ε	-1	-1	$\frac{-m}{2}$	$\frac{-m}{2}$	-m
ε_1	1	-1	$\frac{-m}{2}$	$\frac{m}{2}$	0
ε_2	-1	1	$\frac{m}{2}$	$\frac{-m}{2}$	0
$ ho_j$	1	$\cos(\frac{2\pi j}{m})$	0	0	0
	-1	$-\cos(\frac{2\pi j}{m})$	0	0	0

6 Le groupe de l'icosaèdre

On considère l'inclusion $I_2(5) \subset H_3$, où H_3 désigne le groupe de l'icosaèdre, correspondant au diagramme de Coxeter

$$(s_1) \frac{5}{--} (s_2) \frac{--}{-} (s_3)$$

On identifie donc $I_2(5)$ au sous-groupe parabolique de H_3 engendré par s_1 et s_2 . On note φ le nombre d'or $(1 + \sqrt{5})/2$, $x \mapsto \bar{x}$ la conjugaison dans $\mathbb{Q}(\sqrt{5})$, de sorte que $\bar{\varphi} = 1 - \varphi$. Pour décrire les représentations irréductibles de H_3 , on note V la représentation de réflexion de H_3 , dont on déduit, par conjugaison dans $\mathbb{Q}(\sqrt{5})$ et produit tensoriel par ε , quatre représentations irréductibles $V, V' = V \otimes \varepsilon, \bar{V}, \bar{V}'$. Il y a 15 réflexions dans H_3 , d'où $\omega(s_3) = 15\chi(s_3)/\chi(1)$ si χ est le caractère de la représentation irréductible considérée. On note U la représentation de dimension 4 définie par

$$s_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix} \quad s_2 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \quad s_3 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

on note X la représentation de dimension 5 définie par

$$s_{1} = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad s_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad s_{3} = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

et $U' = U \otimes \varepsilon, X' = X \otimes \varepsilon$. L'action de $\omega(s_3)$ vaut 3 sur X, -3 sur X', 0 sur U et U', 5 sur V et \bar{V} , -5 sur V' et \bar{V}' . Si l'on pose $\bar{s}_2 = s_2 + s_1 s_2 s_1$, on a les tableaux suivants, pour $I_2(5)$ et H_3

							$\omega(s_3)$
	s_1	\bar{s}_2	$\omega(s_2)$	Res V	=	$\mathbb{1}\oplus ho$	5
1	1	2	5	Res \bar{V}	=	$\mathbb{1}\oplusar{ ho}$	5
ε	-1	-2	-5	Res V'	=	$arepsilon\oplus ho$	-5
ρ	1	$-\bar{\varphi}$	0	Res \bar{V}'	=	$arepsilon\oplusar ho$	-5
	-1	$\bar{\varphi}$	0	${\rm Res}\ U$	=	$ ho\oplusar ho$	0
$\bar{\rho}$	1	$-\varphi$	0	Res U'	=	$ ho\oplusar ho$	0
	-1	φ	0	${\rm Res}\ X$	=	$\mathbb{1}\oplus ho\oplusar ho$	3
				${\rm Res}\; X'$	=	$\varepsilon \oplus \rho \oplus \bar{\rho}$	-3

où l'on a noté ρ la représentation de réflexion de $I_2(5)$, $\bar{\rho}$ sa conjuguée. On en déduit que la condition (B') est vérifiée pour $\langle s_1, s_2 + s_1 s_2 s_1, \omega(s_3) \rangle$. En revanche, la condition (B) n'est pas vérifiée par cette algèbre, car elle ne permet pas de distinguer les vecteurs de U de ceux de U' – ceci montre de plus qu'elle n'admet pas non plus d'ensemble exceptionnel. Appliquant la procédure précédemment décrite, on trouve $(R \setminus R')/W' = \{c_1, c_2\}$ avec

$$c_{1} = \{s_{3}, s_{3}s_{2}s_{3}, s_{3}s_{1}s_{2}s_{1}s_{3}, s_{2}s_{3}s_{1}s_{2}s_{1}s_{3}s_{2}, s_{1}s_{2}s_{3}s_{1}s_{2}s_{1}s_{3}s_{2}s_{1}s_{2}s_{1}s_{3}s_{2}s_{1}s_{2}s_{1}s_{3}s_{2}s_{1}s_{2}s_{1}s_{3}s_{2}s_{1}s_{2}s_{1}s_{2}s_{1}s_{3}s_{2}s_{1}s_$$

On pose alors $jm(H_3) = \langle jm(I_2(5)), \{T_{c_1}, T_{c_2}\} \rangle$. A partir des matrices des représentations irréductibles, on montre que $JM(H_3)$ vérifie (B) et (C) (tableau 2, où l'on note toujours $\bar{s}_2 = s_2 + s_1 s_2 s_1$, et $\check{s}_2 = s_2 s_1 s_2 + s_1 s_2 s_1 s_2 s_1$). On obtient ainsi quatre choix possibles pour engendrer $jm(H_3)$:

Proposition 3. Les familles suivantes sont parfaites et engendrent la même sous-algèbre $jm(H_3)$ de KH_3 .

Rep.	s_1	\bar{s}_2	\check{s}_2	T_{c_1}	T_{c_2}	$\omega(s_3)$
1	1	2	2	5	5	10
ε	-1	-2	-2	-5	-5	-10
V	-1	$\bar{\varphi}$	φ	$2+\bar{\varphi}$	$2 + \varphi$	5
	1	2	2	$arphi-ar{arphi}$	$ar{arphi}-arphi$	0
	1	$-\bar{\varphi}$	$-\varphi$	$2+\bar{\varphi}$	$2+\varphi$	5
\bar{V}	-1	φ	$\bar{\varphi}$	$2+\varphi$	$2+\bar{\varphi}$	5
	1	$-\varphi$	$-\bar{\varphi}$	$2+\varphi$	$2+\bar{\varphi}$	5
	1	2	2	$\bar{\varphi} - \varphi$	$\varphi - \bar{\varphi}$	0
V'	1	$-\bar{\varphi}$	$-\varphi$	$-2-\bar{\varphi}$	$-2-\varphi$	-5
	-1	$\bar{\varphi}$	φ	$-2-\bar{\varphi}$	$-2-\varphi$	-5
	-1	-2	-2	$\bar{\varphi} - \varphi$	$arphi-ar{arphi}$	0
V'	1	$-\varphi$	$-\bar{\varphi}$	$-2-\varphi$	$-2-\bar{\varphi}$	-5
	-1	-2	-2	$\varphi - \bar{\varphi}$	$ar{arphi}-arphi$	0
	-1	φ	$\bar{\varphi}$	$-2-\varphi$	$-2-\bar{\varphi}$	-5
U	1	$-\bar{\varphi}$	$-\varphi$	$\varphi - ar{\varphi}$	$\bar{\varphi} - \varphi$	0
	1	$-\varphi$	$-\bar{\varphi}$	$\bar{\varphi} - \varphi$	$arphi-ar{arphi}$	0
	-1	φ	$\bar{\varphi}$	$\bar{\varphi} - \varphi$	$arphi-ar{arphi}$	0
	-1	$\bar{\varphi}$	φ	$\varphi - \bar{\varphi}$	$\bar{\varphi} - \varphi$	0
U'	-1	φ	$\bar{\varphi}$	$\varphi - \bar{\varphi}$	$\bar{\varphi} - \varphi$	0
	-1	$\bar{\varphi}$	φ	$\bar{\varphi} - \varphi$	$arphi-ar{arphi}$	0
	1	$-\bar{\varphi}$	$-\varphi$	$\bar{\varphi} - \varphi$	arphi - ar arphi	0
	1	$-\varphi$	$-\bar{\varphi}$	$\varphi - \bar{\varphi}$	$\bar{\varphi} - \varphi$	0
X	1	2	2	-1	-1	-2
	1	$-\bar{\varphi}$	$-\varphi$	φ^2	$\bar{\varphi}^2$	3
	1	$-\varphi$	$-\bar{\varphi}$	$\bar{\varphi}^2$	φ^2	3
	-1	φ	$\bar{\varphi}$	$\bar{\varphi}^2$	φ^2	3
	-1	$\bar{\varphi}$	φ	φ^2	$\bar{\varphi}^2$	3
X'	1	$ -\bar{\varphi} $	$-\varphi$	$-\varphi^2$	$-\overline{\varphi}^2$	
	1	$-\varphi$	$-\bar{\varphi}$	$-\bar{\varphi}^2$	$-\varphi^2$	-3
	-1	φ	$\bar{\varphi}$	$-\bar{\varphi}^2$	$-\varphi_2^2$	-3
	-1	$\bar{\varphi}$	φ	$-\varphi^2$	$-\bar{\varphi}^2$	-3
	-1	-2	-2	1	1	2

TAB. 2 – Contenus de H_3

Rep	s_3	\bar{s}	T'_{c_1}	$T'_{c_2} + T'_{c_3}$	Rep	s_3	\bar{s}	T'_{c_3}	$T'_{c_1} + T'_{c_2}$
X	-1	1	$(1+\sqrt{13})/2$	$(5-\sqrt{13})/2$	X	1	2	1	-1
	-1	1	$(1-\sqrt{13})/2$	$(5+\sqrt{13})/2$		1	-1	$(1+\sqrt{13})/2$	$(5 - \sqrt{13})/2$
	1	2	1	-1		1	-1	$(1-\sqrt{13})/2$	$(5+\sqrt{13})/2$
	1	-1	$(1+\sqrt{13})/2$	$(5-\sqrt{13})/2$		-1	1	$(1+\sqrt{13})/2$	$(5 - \sqrt{13})/2$
	1	-1	$(1-\sqrt{13})/2$	$(5+\sqrt{13})/2$		-1	1	$(1-\sqrt{13})/2$	$(5+\sqrt{13})/2$
X'	-1	1	$(\sqrt{13}-1)/2$	$-(5+\sqrt{13})/2$	X'	1	-1	$(\sqrt{13} - 1/2)$	$-(5+\sqrt{13})/2$
	-1	1	$-(1+\sqrt{13})/2$	$(\sqrt{13}-5)/2$		1	-1	$-(1+\sqrt{13})/2$	$(\sqrt{13}-5)/2$
	-1	-2	-1	1		-1	-2	-1	1
	1	-1	$(\sqrt{13}-1)/2$	$-(5+\sqrt{13})/2$		-1	1	$(\sqrt{13}-1)/2$	$-(\sqrt{13}+5)/2$
	1	-1	$-(1+\sqrt{13})/2$	$(\sqrt{13}-5)/2$		-1	1	$-(1+\sqrt{13})/2$	$(\sqrt{13}-5)/2$

TAB. 3 – Éléments de Jucys-Murphy alternatifs pour H_3

Remarque. On aurait également pu considérer la restriction de H_3 à son sous-groupe parabolique de type A_2 . Une approche toroïdale est vouée à l'échec, parce que les restrictions de X et X' présentent des multiplicités (la représentation irréductible de dimension 2 de A_2 y intervient deux fois). Avec $W' = A_2$, l'ensemble quotient $(R \setminus R')/W'$ est composé de trois orbites

 $c_1 = s_1 + s_2 s_1 s_2 + s_3 s_2 s_1 s_2 s_3$

 $c_2 = s_1 s_2 s_1 + s_1 s_2 s_1 s_2 s_1 + s_1 s_2 s_3 s_2 s_1 + s_1 s_3 s_2 s_1 s_2 s_1 s_3 + s_2 s_1 s_2 s_3 s_2 s_1 s_2 + s_2 s_1 s_3 s_2 s_1 s_2$

 $c_3 = s_1 s_2 s_1 s_2 s_3 s_2 s_1 s_2 s_1 + s_1 s_2 s_1 s_3 s_2 s_1 s_2 s_1 s_3 s_2 s_1 + s_2 s_1 s_2 s_1 s_3 s_2 s_1 s_3 s_2 s_1 s_2 s_$

Les trois éléments correspondants, T'_{c_1} , T'_{c_2} et T'_{c_3} , ne commutent pas entre eux. En revanche, ils commutent évidemment à leur somme, donc on peut prendre par exemple pour éléments de Jucys-Murphy s_3 , $\bar{s} = s_2 + s_3 s_2 s_3$, et $T'_{c_1} + T'_{c_3}$, T'_{c_2} . L'algèbre engendrée vérifie la condition (B'), mais pas la condition (B). En effet, on a alors $\operatorname{cont}(V) = \operatorname{cont}(\bar{V})$, $\operatorname{cont}(V') = \operatorname{cont}(\bar{V}')$. Tous ces éléments sont diagonalisables, non seulement sur $K = \mathbb{Q}(\sqrt{5})$, mais sur \mathbb{Q} . En revanche, les deux autres choix possibles, c'est-à-dire $T'_{c_1} + T'_{c_2}$, T'_{c_3} et $T'_{c_2} + T'_{c_3}$, T'_{c_1} , fournissent des algèbres qui vérifient la condition (B). Elles ne vérifient cependant pas la condition (C) : les actions des éléments correspondants sur X et X' sont diagonalisables sur $\mathbb{Q}(\sqrt{13})$, et non $\mathbb{Q}(\sqrt{5})$ (cf. table 3). Les éléments que nous avons définis sont donc les seuls à satisfaire complètement les conditions naturelles que nous avons choisies.

7 Le groupe F_4

On considère l'inclusion $B_3 \subset F_4$, où F_4 correspond au diagramme

$$\underbrace{\$_1} - \underbrace{\$_2} = \underbrace{\$_3} - \underbrace{\$_4}$$

et où B_3 est identifié au sous-groupe engendré par s_1, s_2 et s_3 . La restriction des représentations irréductibles de F_4 à B_3 est sans multiplicités. Un premier essai consiste donc à poser

$$JM'(F_4) = JM(B_3) \cup \{\omega(s_1), \omega(s_4)\}.$$

Les 24 réflexions de F_4 se répartissent en effet en deux classes de conjugaison, celle de s_1 et celle de s_4 . Les éléments $\omega'(s_1) = \omega^{B_3}(s_1)$ et $\omega'(s_3) = \omega^{B_3}(s_3)$ distinguent d'autre part les représentations irréductibles de B_3 , comme le montre le tableau suivant, où l'on fait figurer les représentations irréductible de B_3 sur la première ligne, et les valeurs du couple ($\omega(s_1), \omega(s_3)$) sur la deuxième.

$(3, \emptyset)$	$(21, \emptyset)$	$(111, \emptyset)$	(2,1)	(11, 1)	(1, 11)	(1,2)	$(\emptyset, 111)$	$(\emptyset, 21)$	$(\emptyset,3)$
(3, 6)	(3,0)	(2, -6)	(1, 2)	(1, -2)	(-1, -2)	(-1,2)	(-3, -6)	(-3,0)	(-3, 6)

Comme les restrictions à B_3 sont sans multiplicités, cela implique immédiatement que la condition (B') est vérifiée par $JM'(F_4)$. Pour déterminer si ces éléments satisfont à la condition (B), on a besoin des valeurs de $(\omega(s_1), \omega(s_4))$ sur chacune des représentations irréductibles de F_4 . On utilise les notations de CHEVIE et de [3], appendice C table C.3, c'est-à-dire que $\phi_{d,r}$ désigne une représentation irréductible de F_4 de dimension d et de b-invariant de Lusztig r.

	$\omega(s_1)$	$\omega(s_4)$		$\omega(s_1)$	$\omega(s_4)$		$\omega(s_1)$	$\omega(s_4)$
$\phi_{1,0}$	12	12	$\phi_{9,6}'$	-4	4	$\phi_{8,3}''$	6	0
$\phi_{1,12}''$	12	-12	$\phi_{9,10}$	-4	-4	$\phi_{8,9}'$	-6	0
$\phi'_{1,12}$	-12	12	$\phi_{6,6}'$	0	0	$\phi_{8,3}'$	0	6
$\phi_{1,24}$	-12	-12	$\phi_{6,6}''$	0	0	$\phi_{8,9}''$	0	-6
$\phi_{2,4}''$	12	0	$\phi_{12,4}$	0	0	$\phi_{16,5}$	0	0
$\phi'_{2,16}$	-12	0	$\phi_{4,1}$	6	6	$\phi'_{2,4}$	0	12
$\phi_{4,8}$	0	0	$\phi_{4,7}''$	6	-6	$\phi_{2,16}''$	0	-12
$\phi_{9,2}$	4	4	$\phi'_{4,7}$	-6	6			
$\phi_{9.6}''$	4	-4	$\phi_{4,13}$	-6	-6			

Les seuls obstacles à la condition (B) pour $JM'(F_4)$ proviennent donc des représentations irréductibles sur lesquelles $(\omega(s_1), \omega(s_4))$ agit par (0, 0). Or, pour l'inclusion $B_3 \subset F_4$, les restrictions de ces représentations sont

 $\begin{array}{ll} \operatorname{Res} \, \phi_{6,6}' = (11,1) + (1,2) & \operatorname{Res} \, \phi_{6,6}'' = (2,1) + (1,11) \\ \operatorname{Res} \, \phi_{4,8} = (21,\emptyset) + (\emptyset,21) & \operatorname{Res} \, \phi_{12,4} = (2,1) + (11,1) + (1,11) + (1,2) \\ \operatorname{Res} \, \phi_{16,5} = (21,\emptyset) + (2,1) + (11,1) + (1,11) + (1,2) + (\emptyset,21) \end{array}$

On a donc par exemple $\operatorname{cont}(\phi_{12,4}) \cap \operatorname{cont}(\phi_{16,5}) \neq \emptyset$: la condition (B) n'est pas vérifiée. En revanche, l'ensemble { $\phi_{12,4}, \phi_{16,5}$ } forme bien un ensemble exceptionnel, et on a

$$\begin{array}{rcl} \operatorname{cont}(\phi_{12,4}) &=& \operatorname{cont}(\phi_{6,6}') \cup \operatorname{cont}(\phi_{6,6}'') \\ \operatorname{cont}(\phi_{16,5}) &=& \operatorname{cont}(\phi_{12,4}) \cup \operatorname{cont}(\phi_{4,8}) \end{array}$$

On va chercher à réduire la taille de cet ensemble exceptionnel. Pour $W = F_4$, $W' = B_3$, $(R \setminus R')/W$ est composé de trois orbites

On note $jm_1(F_4)$ (resp. $jm_2(F_4)$) l'algèbre engendrée par $jm(B_3)$ (resp. $jm'(B_3)$) et $\{T_{c_1}, T_{c_2}, T_{c_3}\}$, où l'on utilise les notations de la section 3.3. On note $\mathbb{1} = \phi_{1,0}$ la représentation triviale, $\varepsilon = \phi_{1,24}$ la représentation alternée, et $\eta = \phi_{1,12}''$ définie par $\eta(s_1) = \eta(s_2) = 1$, $\eta(s_3) = \eta(s_4) = -1$. On a $\phi_{1,12}' = \varepsilon \otimes \eta$. Si l'on connait le contenu d'une représentation donnée V, les contenus de $V \otimes \varepsilon$ et $V \otimes \eta$ s'en déduisent facilement. Comme $\phi_{9,6}', \phi_{9,6}', \phi_{9,10}$ (resp. $\phi_{4,7}', \phi_{4,7}', \phi_{4,13}$) sont isomorphes au produit tensoriel de $\phi_{9,2}$ (resp. $\phi_{4,1}$) par $\eta, \eta \otimes \varepsilon$ et ε , leur contenu s'en déduit. On a de même $\phi_{2,16}' = \phi_{2,4}'' \otimes \varepsilon, \phi_{8,9}' = \phi_{8,3}' \otimes \varepsilon, \phi_{8,9}'' = \phi_{8,3}' \otimes \varepsilon, \phi_{6,6}'' = \phi_{6,6}' \otimes \eta$. On vérifie alors que les conditions (B') et (C) sont vérifiées ($K = \mathbb{Q}$), aussi bien par $jm_1(F_4)$ que par $jm_2(F_4)$. Ces deux algèbres distinctes admettent le même ensemble exceptionnel, qui se réduit au singleton $\{\phi_{12,4}\}$, avec

$$\operatorname{cont}(\phi_{12,4}) = \operatorname{cont}(\phi'_{6,6}) \cup \operatorname{cont}(\phi''_{6,6}).$$

Pour restreindre le nombre d'éléments de Jucys-Murphy, il ne reste plus qu'à déterminer si un sous-ensemble propre de $\{T_{c_1}, T_{c_2}, T_{c_3}\}$ uni à $JM(B_3)$ ou $JM'(B_3)$ suffit à engendrer cette même algèbre commutative. On vérifie que le *seul* sous-ensemble qui convient, dans chacun des deux

cas, est $\{T_{c_1}, T_{c_2}\}$ – c'est même le seul à fournir une algèbre au moins aussi grosse que l'algèbre engendrée par $JM'(F_4)$. On définit ainsi

$$\begin{aligned} JM_1(F_4) &= \{s_3, s_2 + s_3 s_2 s_3, s_1 + s_2 s_1 s_2 + s_3 s_2 s_1 s_2 s_3 + s_2 s_3 s_2 s_1 s_2 s_3 s_2, s_1 s_2 s_3 s_2 s_1, T_{c_1}, T_{c_2} \} \\ JM_2(F_4) &= \{s_1, s_2 + s_1 s_2 s_1, s_3 + s_2 s_3 s_2 + s_1 s_2 s_3 s_2 s_1 + s_3 s_2 s_1 s_2 s_3 + s_2 s_3 s_2 s_1 s_2 s_3 s_2 s_3 s_2 s_3 s_2 s_1 s_2 s_3 s_2$$

qui sont de cardinal 6. On a donc

Proposition 4. $JM_1(F_4)$ et $JM_2(F_4)$ sont deux familles d'éléments de Jucys-Murphy de F_4 de cardinal 6 qui vérifient les conditions (B') et (C), et admettent un ensemble exceptionnel de cardinal 1, $\{\phi_{12.4}\}$.

Dans la table 4, qui décrit les contenus correspondant à $JM_1(F_4)$, on note $\bar{s}_2 = s_2 + s_3 s_2 s_3$, $\bar{s}_1 = s_1 + s_2 s_1 s_2 + s_3 s_2 s_1 s_2 s_3 + s_2 s_3 s_2 s_1 s_2 s_3 s_2$, $\bar{s}_3 = s_1 s_2 s_3 s_2 s_1$. Les contenus correspondant à $JM_2(F_4)$ se déduisent facilement de cette table et de l'étude de B_3 en section 3.3.

8 Le groupe de l'hypericosaèdre

On considère $(W, S) = H_4$, correspondant au diagramme de Coxeter

$$\underbrace{(s_1)}_{--}\underbrace{(s_2)}_{--}\underbrace{(s_3)}_{--}\underbrace{(s_4)}_{--}\underbrace{($$

Ce groupe admet 60 réflexions, qui appartiennent toutes à la même classe de conjugaison. On identifie H_3 à $W' = \langle s_1, s_2, s_3 \rangle \subset H_4$. Nous numérotons les classes de représentations irréductibles de H_4 de χ_1 à χ_{34} , suivant les conventions de [3] p. 412, Alvis-Lusztig [1], ou encore de CHEVIE. Parmi les restrictions à H_3 , seules celles des représentations irréductibles de dimensions 25, 36, 40 et 48, c'est-à-dire χ_{27} , χ_{28} , χ_{31} , χ_{32} , χ_{33} et χ_{34} présentent des multiplicités. Cela implique d'ores et déjà que, pour une approche toroïdale, la condition (B') ne saurait être vérifiée. On étudie donc $(R \setminus R')/W'$, qui comporte 4 classes c_1, c_2, c_3, c_4 de cardinalités respectives 12, 20, 12 et 1 (cf. table 5). On note T_k la classe dans QW des éléments de c_k . Si l'on note $c_4 = \{w\}$, on a $wc_2w = c_2$ parce que c_2 est la seule classe de cardinal 20, d'où $[T_4, T_2] = 0$. Un calcul élémentaire à l'aide de CHEVIE montre que, de même, $wc_1w = c_1$, $wc_3w = c_3$, donc que T_4 commute à T_1, T_2 et T_3 . En revanche, $[T_1, T_2], [T_1, T_3]$ et $[T_2, T_3]$ sont non nuls. On a alors trois choix naturels pour définir $JM(H_4)$, que l'on numérote comme suit

$$JM'_{1}(H_{4}) = JM(H_{3}) \cup \{T_{1} + T_{3}, T_{2}, T_{4}\} JM'_{2}(H_{4}) = JM(H_{3}) \cup \{T_{1} + T_{2}, T_{3}, T_{4}\} JM'_{3}(H_{4}) = JM(H_{3}) \cup \{T_{2} + T_{3}, T_{1}, T_{4}\}$$

Comme les différents choix possibles pour $JM(H_3)$ définissent la même algèbre, nous ne préciserons pas le choix fait. Nous utilisons maintenant des modèles explicites des représentations irréductibles de H_4 pour étudier, à l'aide d'un ordinateur et du logiciel GAP 4, les propriétés de leur contenu.

Nous remarquons d'abord les faits suivants. Comme w est une réflexion, T_4 est diagonalisable sur \mathbb{Q} . Comme $T_1+T_2+T_3+T_4$ est diagonalisable sur $\mathbb{Q}(\sqrt{5})$, il en est de même de $T_1+T_2+T_3$. Pour déterminer sur quel corps, contenant $\mathbb{Q}(\sqrt{5})$, sont diagonalisables les familles $JM'_i(H_4)$, il suffit donc de répondre à cette question pour T_1 , T_2 et T_3 . Par calcul explicite, on obtient que T_1 n'est pas diagonalisable sur $\mathbb{Q}(\sqrt{5})$ pour un certain nombre de représentations. On doit introduire en plus $\mathbb{Q}(\sqrt{13})$ pour χ_{27} , χ_{28} , $\mathbb{Q}(\sqrt{61})$ pour χ_{33} , $\mathbb{Q}(\sqrt{14},\sqrt{29})$ pour χ_{34} . Enfin, pour χ_{31} (resp. χ_{32}), le polynôme caractéristique de T_1 admet pour pour facteur irréductible sur $\mathbb{Q}(\sqrt{5})$ le polynôme $P(x) = x^4 - 6x^3 - 12x^2 + 88x - 16$ (resp. P(-x)). On est donc très éloigné de la condition (C). Il en est de même pour T_3 . En fait, on peut vérifier que le polynôme caractéristique de T_3 est conjugué dans $\mathbb{Q}(\sqrt{5})$ à celui de T_1 dans chacune des représentations irréductibles de H_4 , donc que T_3 est conjugué à \overline{T}_1 dans KH_4 .

Enfin, T_2 est diagonalisable dans $\mathbb{Q}(\sqrt{5})$ pour presque toutes les représentations irréductibles de H_4 , à l'exception de χ_{31} , χ_{32} (diagonalisable dans $\mathbb{Q}(\sqrt{21})$) et χ_{34} (diagonalisable dans $\mathbb{Q}(\sqrt{6})$).

	s_3	\bar{s}_2	\bar{s}_1	\bar{s}_3	T_{c_1}	T_{c_2}	T_{c_3}		s_3	\bar{s}_2	\bar{s}_1	\bar{s}_3	T_{c_1}	T_{c_2}	T_{c_3}
$\phi_{1,0}$	1	2	4	1	8	6	1	$\phi_{12,4}$	1	0	-2	-1	0	2	1
$\phi_{2,4}''$	1	2	4	1	-4	6	1		1	0	-2	1	0	2	-1
, ,	-1	2	4	-1	4	6	-1		1	0	2	-1	0	-2	1
$\phi_{4,8}$	1	2	-2	1	-4	0	1		1	0	2	1	0	-2	-1
	1	-2	2	1	-4	0	1		1	-2	0	-1	0	2	-1
	-1	-2	2	-1	4	0	-1		1	2	0	-1	0	-2	-1
	-1	2	-2	-1	4	0	-1		-1	2	0	1	0	-2	1
$\phi_{9,2}$	1	-2	2	1	0	4	1		-1	-2	0	1	0	2	1
,	1	2	4	1	0	-2	1		-1	0	-2	-1	0	2	1
	1	2	-2	1	0	4	1		-1	0	-2	1	0	2	-1
	1	2	0	-1	4	2	-1		-1	0	2	1	0	-2	-1
	1	0	2	-1	4	2	1		-1	0	2	-1	0	-2	1
	1	0	2	1	4	2	-1	$\phi_{4,1}$	1	2	0	-1	4	4	1
	-1	0	2	1	4	2	-1		1	2	4	1	4	0	-1
	-1	0	2	-1	4	2	1		1	0	2	1	4	4	1
	-1	2	0	1	4	2	1		-1	0	2	1	4	4	1
		-		1 -				1		_	_	_	m	m	m
	<i>s</i> ₃	\bar{s}_2	\bar{s}_1	\bar{s}_3	T_{c_1}	T_{c_2}	T_{c_3}		<i>s</i> ₃	\bar{s}_2	\bar{s}_1	\bar{s}_3	T_{c_1}	T_{c_2}	T_{c_3}
$\phi_{16,5}$	s_3 -1	\overline{s}_2	\overline{s}_1	\overline{s}_3	T_{c_1}	T_{c_2} 0	T_{c_3}	$\phi'_{8,3}$	$s_3 -1$	\overline{s}_2	\overline{s}_1 -2	\overline{s}_3	T_{c_1} 4	T_{c_2}	T_{c_3} 1
$\phi_{16,5}$		$ \begin{array}{c c} \bar{s}_2 \\ -2 \\ -2 \\ 0 \end{array} $	$\overline{s_1}$ 2 0	$\overline{s_3}$ -1 1	$\begin{array}{c c} T_{c_1} \\ 2 \\ 2 \\ 2 \\ 0 \end{array}$	$\begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ 0 \end{array}$	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ 1 \end{array}$	$\phi_{8,3}'$		\overline{s}_2 0 0 0	$\overline{s_1}$ -2 2	\overline{s}_3 1 1 1	$\begin{bmatrix} T_{c_1} \\ 4 \\ 4 \\ 4 \end{bmatrix}$	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \end{array}$	T_{c_3} 1 1 1
$\phi_{16,5}$	$ \begin{array}{c c} $	$ \begin{array}{c c} \bar{s}_2 \\ -2 \\ -2 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c c} \bar{s}_1 \\ 2 \\ 0 \\ 2 \\ 0 \end{array} $	\bar{s}_3 -1 1 -1	$\begin{array}{c c} T_{c_1} \\ 2 \\ 2 \\ 2 \\ 2 \\ \end{array}$	$\begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ 0 \end{array}$	$\begin{array}{ c c c } T_{c_3} & 1 & \\ 1 & -1 & \\ -1 & -1 & \\ 1 & \end{array}$	$\phi_{8,3}'$		\overline{s}_2 0 0 0 0 0	$\overline{s_1}$ -2 2 -2 2	$ar{s}_3$ 1 1 1 1 1	$\begin{array}{c} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array}$	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ 2 \\ \end{array}$	T_{c_3} 1 1 1 1 1
$\phi_{16,5}$	$ \begin{array}{c c} $		$ \begin{array}{c c} \bar{s}_1 \\ 2 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$		$ \begin{array}{c c} T_{c_1} \\ 2 \\ 2 \\ 2 \\ $	$ \begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ -2 \\ 2 \end{array} $	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \end{array}$	φ _{8,3}		$egin{array}{c} ar{s}_2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			$ \begin{array}{c} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	$ \begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \end{array} $	T_{c_3} 1 1 1 1 1 1 1 1
$\phi_{16,5}$	$ \begin{array}{c c} $	$ \begin{array}{c c} \bar{s}_2 \\ -2 \\ -2 \\ $	$ \begin{array}{c c} \bar{s}_1 \\ \bar{s}_1 \\ 0 \\ 2 \\ -2 \\ -2 \\ 0 \end{array} $		$ \begin{array}{c c} T_{c_1} \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ 2 \end{array} $	$ \begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$ \begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{array} $	φ _{8,3}					$ \begin{array}{c} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	$ \begin{array}{r} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \end{array} $	$\begin{array}{c} T_{c_3} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$
$\phi_{16,5}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\bar{s}_3 -1 1 -1 1 1 -1 1 1 1 1 -1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{ c c c }\hline T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ $	φ _{'8,3}	$egin{array}{c} s_3 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$egin{array}{c} ar{s}_2 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ -2 \\ 2 \end{array}$		$egin{array}{c} ar{s}_3 \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$		$\begin{array}{c c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ \end{array}$	T_{c_3} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
φ _{16,5}	$\begin{array}{c c} s_3 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$ \begin{array}{c c} \bar{s}_2 \\ -2 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c c} \bar{s}_3 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c }\hline T_{c_2} \\ 0 \\ 2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 0 \\ \end{array}$	$\begin{array}{ c c c }\hline T_{c_3} & 1 & \\ & 1 & \\ -1 & -1 & \\ & 1 & \\ & 1 & \\ -1 & -1 &$	$\phi'_{8,3}$	$egin{array}{c} s_3 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$egin{array}{c} ar{s}_2 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \end{array}$		$egin{array}{c} ar{s}_3 \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$egin{array}{c} T_{c_1} & & \\ 4 & & \\ 4 & & \\ 4 & & \\ 4 & & \\ 4 & & \\ 4 & & \\ 4 & & \\ 4 & & \\ 4 & & \\ \end{array}$	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} T_{c_3} \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \end{array}$
φ _{16,5}	$\begin{array}{c c} s_{3} \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \bar{s}_{3} \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -$	$egin{array}{c c} T_{c_1} & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & $	$\begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 1$	φ _{8,3}	$egin{array}{c} s_3 \ -1 \ -1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	$egin{array}{c} ar{s}_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & -2 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & $	$ \begin{array}{r} \bar{s}_{1} \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ $	$egin{array}{c} \bar{s}_3 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $	$ \begin{array}{c} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 2 \end{array} $	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ -2 \\ 4 \end{array}$	$\begin{array}{c} T_{c_3} \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ $
φ _{16,5}	$\begin{array}{c c} s_{3} \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c c} \bar{s}_3 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 $	$\begin{array}{ c c c }\hline T_{c_1} \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ 2 \\ $	$\begin{array}{ c c c }\hline T_{c_2} & 0 \\ 0 & 2 \\ -2 & -2 \\ 2 & 2 \\ -2 & 0 \\ 0 & 0 \\ 0 & 2 \\ \end{array}$	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\phi_{8,3}''$	$\begin{array}{c} s_{3} \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$egin{array}{c} ar{s}_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$ \begin{array}{r} \bar{s}_{1} \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 2 \\ $	$egin{array}{c} ar{s}_3 & \ 1 & \$	$ \begin{array}{c} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 2 \right) $	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ -2 \\ 4 \\ 4 \end{array}$	$\begin{array}{c} T_{c_3} \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\$
<i>_</i>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \bar{s}_{3} \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\begin{array}{ c c c }\hline T_{c_1} \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ 2 \\ $	$\begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\phi_{8,3}''$	$egin{array}{c} s_3 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$ \begin{array}{r} \bar{s}_2 \\ 0 \\ 0 \\ 0 \\ -2 \\ -2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 2 \end{array} $	$ \begin{array}{r} \bar{s}_1 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 0 \\ 2 \\ $	$egin{array}{c} ar{s}_3 & \ 1 & \$	$ \begin{array}{r} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 2 \\ 2 2 3 3 3 4 4 4 4 4 $	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ -2 \\ 4 \\ 4 \\ 4 \\ 4 \\ \end{array}$	$egin{array}{cccc} T_{c_3} & 1 & & \\ 1 & 1 & & \\ 1 & 1 & & \\ -1 & -1 &$
φ _{16,5}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} \bar{s}_2 \\ -2 \\ -2 \\ 0 \\ 0 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ 0 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \bar{s}_{3} \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\begin{array}{ c c c }\hline T_{c_1} \\ 2 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ 2 \\ $	$\begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 2 \end{array}$	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\phi'_{8,3}$	$egin{array}{c} s_3 \ -1 \ -1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	$ \begin{array}{r} \bar{s}_2 \\ 0 \\ 0 \\ 0 \\ -2 \\ -2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 2 \\ 0 \\ 2 \\ $	$ \begin{array}{r} \bar{s}_1 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 4 \end{array} $	$egin{array}{c} ar{s_3} \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ -$	$ \begin{array}{r} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \end{array} $	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ -2 \\ 4 \\ 4 \\ 4 \\ 0 \\ \end{array}$	$\begin{array}{c} T_{c_3} \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ $
φ _{16,5}	$\begin{array}{c c} s_3 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \bar{s}_{3} \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\begin{array}{c c} T_{c_1} \\ 2 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ 2 \\ $	$\begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 2 \\ 2 \end{array}$	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\phi'_{8,3}$	$egin{array}{c} s_3 \ -1 \ -1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	$ \begin{array}{r} \bar{s}_2 \\ 0 \\ 0 \\ 0 \\ -2 \\ -2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ $	$ \begin{array}{r} \bar{s}_1 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 4 \\ 2 \end{array} $	$egin{array}{c} ar{s_3} \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ -$	$ \begin{array}{c} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ -2 \\ -2 \\ -2 \\ 2 \end{array} $	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ -2 \\ 4 \\ 4 \\ 4 \\ 0 \\ 4 \end{array}$	$\begin{array}{c} T_{c_3} \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $
φ _{16,5}	$\begin{array}{c c} s_3 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \bar{s}_{1} \\ \hline \\ 2 \\ 0 \\ 2 \\ -2 \\ -2 \\ 0 \\ -2 \\ 0 \\ 2 \\ 0 \\ -2 \\ 0 \\ 2 \\ 0 \\ -2 \\ 0 \\ 2 \\ 0 \\ -2 \\ 0 \\ 2 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c c} \bar{s}_{3} \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\begin{array}{ c c c }\hline T_{c_1} & 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ 2 \\ $	$\begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\phi'_{8,3}$	$egin{array}{c} s_3 \ -1 \ -1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	$ \begin{array}{r} \bar{s}_2 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ $	$ \begin{array}{r} \bar{s}_1 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 4 \\ 2 \\ 2 0 4 2 3 4 3 4 3 4 3 4 4 3 4 4 3 4 4 4 4 4 $	$ \begin{array}{r} \bar{s}_{3} \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ $	$ \begin{array}{r} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ -2 \\ -2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 2 \\ $	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ -2 \\ 4 \\ 4 \\ 4 \\ 0 \\ 4 \\ 4 \\ 0 \\ 4 \\ 4 \\ \end{array}$	$\begin{array}{c} T_{c_3} \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $
φ _{16,5}	$\begin{array}{c c} s_{3} \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$\begin{array}{c c} \bar{s}_2 \\ -2 \\ -2 \\ 0 \\ 0 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -$	$\begin{array}{c c} \bar{s}_1 \\ \hline \\ 2 \\ 0 \\ 2 \\ -2 \\ -2 \\ 0 \\ -2 \\ 0 \\ -2 \\ 0 \\ 2 \\ 0 \\ -2 \\ -2$	$\begin{array}{c c} \bar{s}_{3} \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\begin{array}{c c} T_{c_1} \\ 2 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ 2 \\ $	$\begin{array}{c c} T_{c_2} \\ 0 \\ 2 \\ -2 \\ 2 \\ 2 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\phi_{8,3}''$	$egin{array}{c} s_3 \ -1 \ -1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	$ \begin{array}{r} \bar{s}_2 \\ 0 \\ 0 \\ 0 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{r} \bar{s}_1 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 4 \\ 2 \\ 2 \\ 4 \end{array} $	$\begin{array}{c} \overline{s_3} \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ -$	$\begin{array}{c} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ $	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ -2 \\ 4 \\ 4 \\ 4 \\ 0 \\ 4 \\ 4 \\ 0 \\ 4 \\ 4 \\ 0 \\ 4 \\ 0 \\ 4 \\ 0 \\ 0$	$\begin{array}{c} T_{c_3} \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $
φ _{16,5}	$\begin{array}{c c} s_{3} \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$\begin{array}{ c c c c c }\hline \bar{s}_2 & & \\ \hline -2 & & \\ -2 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 2 &$	$\begin{array}{c c} \bar{s}_1 \\ 2 \\ 0 \\ 2 \\ -2 \\ -2 \\ 0 \\ -2 \\ 0 \\ -2 \\ 0 \\ 2 \\ 0 \\ -2 \\ 0 \\ -2 \\ 2 \\ 0 \\ -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{c c} \bar{s}_{3} \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\begin{array}{c c} T_{c_1} \\ 2 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ 2 \\ $	$\begin{array}{ c c c }\hline T_{c_2} & 0 \\ 0 & 2 \\ -2 & -2 \\ 2 & 2 \\ -2 & 0 \\ 0 & -2 \\ 0 & 0 \\ 2 & 2 \\ 2 & -2 \\ 0 & 2 \\ 2 & -2 \\ 0 & -2$	$\begin{array}{c c} T_{c_3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\phi_{8,3}''$	$egin{array}{c} s_3 \ -1 \ -1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	$\begin{array}{c} \bar{s}_2 \\ 0 \\ 0 \\ 0 \\ -2 \\ -2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0$	$ \begin{array}{r} \bar{s}_1 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 4 \\ 2 \\ 4 \\ 0 \\ \end{array} $	$\begin{array}{c} \overline{s_3} \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ -$	$\begin{array}{c} T_{c_1} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ $	$\begin{array}{c} T_{c_2} \\ 2 \\ -2 \\ 2 \\ -2 \\ 2 \\ 0 \\ 0 \\ -2 \\ 4 \\ 4 \\ 4 \\ 0 \\ 4 \\ 4 \\ 0 \\ 4 \\ 4 \\ 0 \\ 4 \\ 0 \\ 4 \\ 4$	$\begin{array}{c} T_{c_3} \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $

	s_3	\bar{s}_2	\bar{s}_1	\bar{s}_3	T_{c_1}	T_{c_2}	T_{c_3}
$\phi_{6,6}'$	1	0	-2	1	0	2	-1
	1	0	2	-1	0	-2	1
	1	-2	0	-1	0	2	-1
	-1	0	-2	1	0	2	-1
	-1	0	2	-1	0	-2	1
	-1	2	0	1	0	-2	1
$\phi'_{2,4}$	1	-2	2	1	8	0	1
Ĺ	1	2	-2	1	8	0	1

TAB. 4 – Contenus de F_4

c_1	=	$\{s_4, s_3s_4s_3, s_2s_3s_4s_3s_2, s_1s_2s_3s_4s_3s_2s_1, s_2s_1s_2s_3s_4s_3s_2s_1s_2, s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1, s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1, s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1, s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_3s_4s_3s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_2s_3s_4s_3s_2s_1s_2s_2s_2s_2s_2s_2s_2s_2s_2s_2s_2s_2s_2s$
		$s_3s_2s_1s_2s_3s_4s_3s_2s_1s_2s_3, s_1s_3s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_3, s_2s_1s_3s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_3s_2, \\$
		$s_1s_2s_1s_3s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_3s_2s_1, s_2s_1s_2s_1s_3s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_3s_2s_1s_2,\\$
		$s_3s_2s_1s_2s_1s_3s_2s_1s_2s_3s_4s_3s_2s_1s_2s_1s_3s_2s_1s_2s_3\}$
c_2	=	$\{s_4s_3s_2\gamma^{-1}, s_1s_4s_3\theta s_3s_4, s_2s_1\gamma\delta s_4, s_1s_2s_1\gamma\delta s_1s_4, \eta^{-1}\gamma\delta s_4s_3, \theta\gamma\delta s_1s_2s_4, s_1\eta^{-1}\gamma\delta s_1s_4s_3, \theta\gamma\delta s_1s_2s_4, \theta\gamma\delta s_1s_2s_4, \theta\gamma\delta s_1s_2s_4, \theta\gamma\delta s_1s_4s_3, \theta\gamma\delta s_1s_2s_4, \theta\gamma\delta s_1s_4s_3, \theta\gamma\delta s_1s_2s_4, \theta\gamma\delta s_1s_2s_4, \theta\gamma\delta s_1s_2s_4, \theta\gamma\delta s_1s_4s_3, \theta\gamma\delta s_1s_4s_4, $
		$s_3\theta\gamma\delta s_1s_2s_4s_3, \delta s_1\gamma\delta s_1s_4s_3s_2, s_2s_3\theta\gamma\delta s_1s_2s_4s_3s_2, s_1\delta s_1\gamma\delta s_1\gamma, \eta\theta\gamma\delta s_1s_2\gamma,$
		$s_2s_1\delta s_1\gamma\delta s_1\gamma s_2, s_2\eta\theta\gamma\delta s_1s_2\gamma s_2, \eta^{-1}\delta s_1\gamma\delta s_1\gamma s_2s_3, s_1s_2\eta\theta\gamma\delta s_1s_2\gamma s_2s_1,$
		$s_2\eta^{-1}\delta s_1\gamma\delta s_1s_2\gamma s_2s_3, \eta s_2s_1\delta s_1\gamma\delta s_1s_2\gamma s_2s_1s_3, s_2\eta s_2s_1\delta s_1\gamma\delta s_1s_2\gamma\delta, s_1s_2\eta s_2s_1\delta s_1\gamma\delta s_1s_2\gamma\delta s_1\}$
c_3	=	$\{\gamma\delta\eta\gamma\delta\gamma^{-1}, s_3\gamma\delta\eta\gamma\delta\gamma^{-1}s_3, s_2s_3\gamma\delta\eta\gamma\delta\gamma^{-1}s_3s_2, \eta\gamma\delta\eta\gamma\delta\eta\gamma, s_2\eta\gamma\delta\eta\gamma\delta s_1s_2s_3\gamma s_2, $
		$s_1s_2\eta\gamma\delta\eta\gamma\delta\eta\gamma s_2s_1, s_3s_2\eta\gamma\delta\eta\gamma\delta\eta\gamma s_2s_3, s_1s_3s_2\eta\gamma\delta\eta\gamma\delta\eta\gamma s_2s_1s_3,$
		$\delta\eta\gamma\delta\eta\gamma\delta\eta\gamma\delta, s_1\delta\eta\gamma\delta\eta\gamma\delta\eta\gamma\delta s_1, s_2s_1\delta\eta\gamma\delta\eta\gamma\delta\eta\gamma\delta s_1s_2, \eta^{-1}\delta\eta\gamma\delta\gamma^{-1}\eta^{-1}\delta\eta\gamma\delta\eta\}$
c_4	=	$\{\gamma\delta\eta\gamma\delta\gamma^{-1}\eta^{-1}\delta\eta\gamma\delta\gamma^{-1}\}$

 $\gamma = s_4 s_3 s_2 s_1, \delta = s_2 s_1 s_3 s_2, \eta = s_1 s_2 s_3, \theta = s_2 s_1 s_2 s_1$

TAB. 5 – Classes de $R \setminus R'$ pour H_4

Les éléments $JM'_1(H_4)$ sont donc les plus proches de la condition (C), ils vérifient la condition (B'), mais en revanche ils n'admettent pas d'ensemble exceptionnel : les intersections non vides entre différents contenus ne correspondent pas nécessairement au contenu d'une autre représentation. Par exemple, les contenus des deux représentations irréductibles χ_3 et χ_5 , de dimension 4, admettent dans leur intersection un unique vecteur, qui ne correspond à aucune représentation de dimension 1.

Les deuxièmes et troisièmes choix possibles vérifient encore la condition (B'), mais admettent cette fois un ensemble exceptionnel $\{\chi_{22}\}$, avec $\operatorname{cont}(\chi_{22}) = \operatorname{cont}(\chi_{15}) \cup \operatorname{cont}(\chi_9)$. On vérifie enfin que le seul élément que l'on peut supprimer dans la liste des générateurs est T_4 pour conclure la démonstration de la

Proposition 5. Les familles suivantes, où $JM(H_3)$ désigne une des familles de la proposition 3, vérifient la condition (B') et admettent pour ensemble exceptionnel $\{\chi_{22}\}$.

 $JM_1(H_4) = JM(H_3) \cup \{T_1 + T_2, T_3\}$ $JM_2(H_4) = JM(H_3) \cup \{T_2 + T_3, T_1\}$

Remerciements. Je remercie Meinolf Geck et Dean Alvis pour m'avoir communiqué sous forme informatique les modèles matriciels ou les W-graphes des représentations de F_4 et H_4 .

Références

- D. Alvis, G. Lusztig, The representations and generic degrees of the Hecke algebra of type H₄, J. Reine Angew. Math. **336** (1982), 201-212.
- [2] I. Cherednik, Computation of monodromy of certain W-invariant local systems of types B, C and D, Funct. Anal. Appl. 23 91-92 (1989).
- [3] M. Geck, G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke algebras, London Math. Soc. Monographes new series 21, Clarendon Press, 2000.
- [4] P.N. Hoefsmit, Representations of Hecke algebras of finite groups with BN-pairs of classical type, Ph.D. thesis, University of British Columbia, 1974.
- [5] A.-A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring, Rep. Math. Phys. 5, 107-112 (1974).

- [6] G.E. Murphy, A new construction of Young's seminormal representation of the symmetric groups, J. Algebra 69, 287-297 (1981).
- [7] A. Okounkov, A. Vershik, A new approach to representation theory of symmetric groups, Sel. Math., New Ser. 2, No.4, 581-605 (1996).
- [8] A. Ram, Seminormal representations of Weyl groups and Iwahori-Hecke algebras, Proc. London Math. Soc. (3) 75, 99-133 (1997).
- [9] Martin Schönert et al. GAP Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, fifth edition, 1995.
- [10] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.3; 2002, (http://www.gap-system.org).
- [11] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer. CHEVIE A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras. AAECC, 7 :175–210, 1996.