
THE MALCEV COMPLETION OF COMPLEX BRAID GROUPS

IVAN MARIN

ABSTRACT. In this short note we provide an alternative proof of a theorem of Kapovich and Millson about the
Malcev completion of an arbitrary Artin group, and determine the Malcev completion of the braid group of an
irreducible finite complex reflection group.
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1. INTRODUCTION AND MAIN RESULTS

We refer the reader to [5] Ch. 12 for a modern account of the definition of the Malcev completionG⊗Q
of a group G and its main properties, some of which will be recalled in Section 2.

Let S be a finite set of vertices and Γ be a labelled graph on S, determined by a symmetric Coxeter
matrix (ms,t)s,t∈S with coefficients in {2, 3,… ,∞}. The Artin group B = A(Γ) attached to it is defined by
the presentation with generators S and relations

sts…
⏟⏟⏟
mst

= tst…
⏟⏟⏟
mst

for s, t ∈ S. It admits a natural epimorphism A(Γ) ↠ W (Γ) withW (Γ) the Coxeter group attached to the
same Coxeter matrix.

Evidence are given in [11] that the Kernel P (Γ) of A(Γ) ↠ W (Γ) should be residually torsion-free
nilpotent, which is equivalent to saying that it embeds into its Maltev completion P (Γ)⊗Q. More precisely,
it is shown in [11] that, if the Paris representation ofA(Γ) is faithful – which is the case in a number of cases
– then P (Γ) is residually torsion-free nilpotent. By contrast, the Malcev completion ofA(Γ) is quite poor. It
has been determined by Kapovich and Millson in [8]. This quite early reference has been communicated to
us by A. Suciu, after we found our proof independently. Since our proof is fairly direct and uses somewhat
different tools than the original one, we present it in this note. Some of its stages will moreover be used in
order to extend these results to the braid groups of (non-real) reflection groups.

We first start by a limited statement. The Artin group A(Γ) is said to be free of infinity if mst ≠ ∞ for
every s, t ∈ S, and Gab denotes the abelianization of the group G.

Theorem 1.1. Let B = A(Γ) be an Artin group which is free of infinity. Then the natural morphism
B ⊗Q ↠ Bab ⊗Q is an isomorphism.

The abelianization of B is easy to compute from the presentation itself : abelianizing the presentation
makes all relations corresponding to even labels vanish, and the remaining ones identify the generators
involved. Combinatorially, this can be described as follows. Considering the coarsest partition (that is,
with the smallest number of parts) of S as

⨆r
i=1 Si such that, for every two si ∈ Si, sj ∈ Sj with i ≠ j

we have that msi,sj is even, we get that every two s, t in the same Si can be connected by a path with odd
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labels, so that they are conjugates inside B. From this one readily gets that Bab ≃ Zr. The above result thus
implies B ⊗Q ≃ Qr

In the general case, we build a new Artin group attached to a Coxeter graph Γ with vertices the Si, i =
1,… , r and m̄i,j = mSi,Sj = 2 if we have ms,t < ∞ for some s ∈ Si, t ∈ Sj , and m̄i,j = ∞ otherwise. Then
A(Γ) is a right-angled Artin group (RAAG).

We have a surjective homomorphism A(Γ) → A(Γ) with maps each s ∈ Si to the generator Si of A(Γ).
Indeed, if s ∈ Si and t ∈ Sj satisfy i ≠ j, then either ms,t = 2m for some integer m, in which case
SiSj = SjSi and (st)m and (ts)m are both mapped to (SiSj)m = (SjSi)m, or ms,t = ∞ and there is nothing
to check. This induces an homomorphism A(Γ)⊗Q → A(Γ)⊗Q. The full result of Kapovich and Millson
is then the following one.

Theorem 1.2. Let Γ be an arbitrary Coxeter graph. Then the morphism A(Γ) ⊗ Q → A(Γ) ⊗ Q is an
isomorphism.

This completes the task of determinating the Malcev completion of Artin groups, as the case of a RAAG
is simple enough (see Proposition 2.1 below).

Our original result then concerns the generalized braid groups attached to an arbitrary finite complex
reflection group, that is a finite subgroupW ofGLn(C) generated by complex (pseudo-)reflections. Its braid
group is defined as B = �1(X∕W ), where X is the complement inside Cn of the hyperplane arrangement
 made of the fixed point sets of the reflections. We refer to [3] for basic results on these groups.

WhenW is irreducible, it is an easy consequence of the classification of complex reflection groups that
the number c(W ) = |∕W | of orbits of hyperplanes under the natural action ofW is at most 3, and that it
can be equal to 3 only in rank n = 2. Then, one has Bab ≃ Zc(W ) (see [3] Theorem 2.17).

The result is the following one, where F2 is the free group on 2 generators.

Theorem 1.3. Let W be an irreducible complex reflection group. Then the natural morphism B ⊗ Q ↠
Bab ⊗ Q ≃ Qc(W ) is an isomorphism except if c(W ) = 3. In this case, we have B ≃ Z × F2 whence B is
residually torsion-free nilpotent and B ⊗Q ≃ Q × (F2 ⊗Q)

2. PRELIMINARIES ON THE MALCEV COMPLETION

Let G be a group. For x, y ∈ G we set (x, y) = xyx−1y−1 and, for H1,H2 < G two subgroups of G
we denote (H1,H2) the subgroup generated by the (x, y) for x ∈ H1, y ∈ H2. The lower central series
is defined by the sequence C1G = G, Cn+1G = (G,CnG). The commutator map G × G → G given by
(x, y) induces a Lie algebra structure on the graded Z-module gr G =

⨁∞
n=1 C

nG∕Cn+1G. One of its main
properties is that it is generated as a Lie algebra by gr 1G = G∕(G,G) = Gab (see [2] ch. 2 §4).

The lower central series without torsion is defined by TCnG = {g ∈ G | ∃m ≠ 0 gm ∈ CnG}. Let I
be the augmentation ideal of the group algebra QG, that is the kernel of the augmentation map QG → Q
mapping each g ∈ G to 1. Then TCnG is equal to the kernel of the natural mapG → QG∕In+1 (see [7, 13])
and the Malcev completion ofG isG⊗Q = lim

←←←←←←←←←←←
G∕TCnG⊗QwhereG∕TCnG⊗Q is the original Malcev

completion of the torsion-free nilpotent group G∕TCnG as in [10].
We consider the case of so-called right-angled Artin groups (RAAG), namely the case where ms,t ∈

{2,∞} for each s, t ∈ S. In this case, we define (Γ) to be the graded Lie algebra over Q with generators
xs,∈ S and relations [xs, xt] = 0 if ms,t = 2, and denote ̂(Γ) its completion with respect to the grading.
It is easy to see that the envelopping algebra of (Γ) can be identified with the (graded) unital associative
algebra (Γ) with generators the xs, s ∈ S and relations xsxt = xtxs when ms,t = 2 (which is actually the
monoid algebra of the corresponding Artin monoid). The latter is therefore a Hopf algebra with coproduct
Δ(xs) = xs ⊗ 1 + 1⊗ xs for s ∈ S, and exp ̂(Γ) can be identified with the grouplike elements of ̂(Γ)
(see [14]) where ̂(Γ) is the completion of(Γ)w.r.t. the grading. A similar statement can be found in [8].

Proposition 2.1. Let A(Γ) be a RAAG. Then A(Γ)⊗Q ≃ exp ̂(Γ).

Proof. From the presentation of A(Γ) we get that there is a well-defined morphism mapping each s ∈ S
to exp(xs), as st = ts ⇒ xs = xt ⇒ exp(xs) exp(xt) = exp(xt) exp(xs) = exp(xs + xt). The aug-
mentation ideal of A(Γ) is mapped to elements of valuation at least 1 inside ̂(Γ), so that this morphism
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extends to a morphism A(Γ)⊗Q → exp ̂(Γ). Conversely, we can define similarly a Lie algebra morphism
(Γ) → Lie(A(Γ) ⊗ Q), where A(Γ) ⊗ Q is endowed with a structure of pro-unipotent group as in e.g.
[13] and Lie(A(Γ)⊗Q) = log(A(Γ)⊗Q) is its Lie algebra. Indeed, when ms,t = 2 we have st = ts hence
log(s) log(t) = log(t) log(s) inside Lie(A(Γ)⊗Q), so that mapping each xs to log(s) for s ∈ S defines a Lie
algebra morphism(Γ) → Lie(A(Γ)⊗Q), which can be extended to its completion ̂(Γ) → Lie(A(Γ)⊗Q).
This provides a group homomorphism exp ̂(Γ)→ A(Γ)⊗Q).

We want to prove that these provide converse isomorphisms. This is equivalent to considering the corre-
sponding morphisms of Lie algebras between LieA(Γ)⊗Q and ̂(Γ). One then proves that the composed
maps are automorphisms of LieA(Γ)⊗Q and ̂(Γ), respectively. But in order to check this it is enough to
check that we get the induced graded morphisms are isomorphisms of gr LieA(Γ)⊗ Q ≃ (gr A(Γ))⊗ Q
and gr ̂(Γ) ≃ (Γ), respectively. But since both graded Lie algebras are generated by their homogeneous
components of degree 1, it is enough to check that these morphisms are the identity in degree 1. This is
immediate on each generator, and this concludes the proof. �

3. LOWER CENTRAL SERIES OF DIHEDRAL ARTIN GROUPS

We consider the case S = {a0, a1} and assume that e = ma0,a1 is even. Then B = ⟨a0, a1 | (a0a1)e∕2 =
(a1a0)e∕2⟩ and we can already notice that Bab = ⟨a0, a1 | a0a1 = a1a0⟩ is also a dihedral Artin group with
e = 2. The goal of this Section is to prove the following Proposition.

Proposition 3.1. Let B be an Artin group of dihedral type I2(e) with e even. Then C2B∕C3B ≃ Z∕(e∕2)Z.

It is probably possible to prove this proposition by a direct group-theoretic argument. We prefer an
homological approach. We consider the Dehornoy-Lafont Order Complex (D∙B, )∙) for these groups at-
tached to the corresponding Artin monoids, with ordering a0 < a1 on the atoms. We refer to [6] for its
definition. We have by construction DkB = 0 for k > 2 and D0B, D1B and D2B are free ZB-modules
with bases {[∅]}, {[a0], [a1]} and {[a0, a1]}, respectively. From the description in [6] it is immediate that
)1([ai]) = (ai − 1)[∅], )0([∅]) = 1 and it is straightforward to show that

)2([a0, a1]) = a0a1… a0
⏟⏞⏞⏟⏞⏞⏟

e−1

[a1] − a1a0… a1
⏟⏞⏞⏟⏞⏞⏟

e−1

[a0]

− [a1] − a1[a0] − a1a0[a1] −⋯ − a1a0… a0
⏟⏞⏞⏟⏞⏞⏟

e−2

[a1]

+ [a0] + a0[a1] + a0a1[a0] +⋯ + a0a1… a1
⏟⏞⏞⏟⏞⏞⏟

e−2

[a0]

In particular, for e = 2 we have )2([a0, a1]) = (a0 − 1)[a1] − (a1 − 1)[a0].
It is already known that H2(B,Z) ≃ Z for every even e ≥ 2 (see [16]), with basis the class of [a0, a1].

We wish to compute the morphism H2(B,Z) → H2(Bab,Z) induced by '. For this we use the standard
method of see e.g. [4] p. 48 to consider the acyclic complex (D∙(Bab), )ab) as a complex ofZM-modules via
the morphism ' ∶ B → Bab, and construct a morphism of ZM-complexes f ∶ D∙(B) → D∙(Bab). Since
D∙(B) is a complex of projective modules andD∙(Bab) is acyclic one knows that such a morphism exists and
is unique up to homotopy. Since each fi is a morphism of ZB-modules one needs to specify only its values
on the chosen basis of Di(M). One takes obvisouly f0([∅]) = [∅] and f1([ai]) = [ai]. Then, one needs to
find x ∈ ZBab such that setting f2([a0, a1]) = x[a0, a1] we have )ab2 (f2([a0, a1])) = f1()2([a0, a1])), that is
x)ab2 [a0, a1] = f1()2([a0, a1])). Applying f1 to the formula above we get

f1()2([a0, a1])) =

⎛

⎜

⎜

⎜

⎝

e−2
2
∑

k=0
(a0a1)k

⎞

⎟

⎟

⎟

⎠

([a0] − [a1] + a0[a1] − a1[a0])

so that x =
∑

e−2
2
k=0(a0a1)

k. Since Di(B) = 0 for i ≥ 3 this concludes the description of the morphism.
In order to compute H2(fi,Z), we apply the functor ∙⊗ZB Z to this morphism of complexes, and get the
following diagram
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… 0 Z Z⊕ Z Z Z

… 0 Z Z⊕ Z Z Z

0

e∕2

0

Id

1

1

0 0 1

so that the induced morphismH2(B,Z)→ H2(Bab,Z) is multiplication by e∕2.
The Stallings-Stammbach exact sequence of [17, 18] attached to the short exact sequence 1 → C2B →

B → Bab → 1 then reads

H2(B,Z) H2(Bab,Z)
C2B
C3B H1(B,Z) H1(Bab,Z)

Z Z Z2 Z2

e∕2 ≃

so that C2B∕C3B ≃ Z∕(e∕2)Z. This concludes the proof of the Proposition.

4. PROOFS OF THE MAIN RESULTS

We can now prove Theorem 1.1. Since gr B is generated as a Lie algebra by gr 1B = Bab, we can take
for generators the image of an arbitrary choice of elements ai ∈ Si, and need to prove that [ai, aj] = 0
inside Q ⊗ gr 2B for all i, j. Indeed, if we can do that, then Q ⊗ gr B is a commutative Lie algebra over
Q generated by gr 1B, so that Q⊗ gr B = Q⊗ gr 1B = Q⊗ gr Bab and gr nB ⊗ Q = 0 for every n ≥ 2.
Since gr B is generated by gr 1B ≃ Zr it follows that each gr nB is finitely generated as a Z-module, hence
gr nB is finite for each n ≥ 2. But this implies for n ≥ 2 that, for each x ∈ TCnG, we have xm ∈ CnG for
some m ≠ 0, and then (xm)N ∈ Cn+1G for N = |gr nB|, so that x ∈ TCn+1G and the sequence TCnG is
stationnary. It follows that

B = lim
←←←←←←←←←←←

B∕TCnB ⊗Q = B∕TC2B ⊗Q = Bab ⊗Q

and this will prove Theorem 1.1.
So let us consider a pair 1 ≤ i, j ≤ rwith i ≠ j. By assumption, we have that e = mai,aj is even. Consider

the subgraph Γ0 of Γ with vertices ai, aj . We have a natural homomorphism B0 = A(Γ0) → A(Γ) = B
mapping each ak to itself for k = i, j. It induces a Lie algebra homomorphism Q ⊗ gr B0 → Q ⊗ gr B.
Since [ai, aj] = 0 inside Q ⊗ gr B0 by Proposition 3.1, we get that [ai, aj] = 0 inside Q ⊗ gr B and this
concludes the proof of Theorem 1.1.

For the proof of Theorem 1.2, we use the isomorphism A(Γ)⊗Q ≃ exp ̂(Γ) of Proposition 2.1. Com-
posing it with the natural morphism A(Γ) ⊗ Q → A(Γ) ⊗ Q we get an homomorphism of pro-unipotent
groups Φ ∶ A(Γ)⊗Q → exp ̂(Γ). In order to get the conclusion, we prove that Φ is an isomorphism. For
this it is sufficient to prove that the induced morphism of Lie algebras ' ∶ Lie(A(Γ)⊗Q)→ ̂(Γ) is an iso-
morphism, and for this it is sufficient to prove that the associated morphism between graded algebras gr ' ∶
gr A(Γ)⊗Q → (Γ) is an isomorphism. We define a morphism of Lie algebras  ∶ (Γ)→ gr A(Γ)⊗Q
by mapping xSi to the class of an arbitrary s ∈ Si inside gr 1A(Γ)⊗ Q = A(Γ)ab. One needs to check for
i ≠ j that, if there exists s ∈ Si and t ∈ Sj with ms,t < ∞, then [s, t] = 0 inside gr 1A(Γ) ⊗ Q, which
we already checked using Proposition 3.1. Therefore  is well-defined and  ◦gr ' is a Lie endomorphism
of gr B ⊗ Q which maps each generator to itself. It follows that  ◦gr ' is the identity, whence gr ' is
injective. Since its image contains a generating set of (Γ) it is surjective, so it is indeed an isomorphism,
and this completes the proof of Theorem 1.2.

We finally prove Theorem 1.3, and refer to [9] for general results on irreducible complex reflection
groups, including their Shephard-Todd classification into a general seriesG(de, e, n) depending on 3 integral
parameters d, e, n and the list G4, G5,…G37 of exceptional groups.

If B ≃ Z × F2, then Bab ≃ Z3, so that c(W ) = |∕W | = 3. Assume conversely that c(W ) = 3. By
the classification of irreducible complex reflection groups, we have that either W = G(de, e, 2) for some
d > 1 and e even, orW ∈ {G7, G11, G19, G15}. In all these cases, it is known by [1] that the corresponding
braid group is isomorphic to Z × F2, which is residually torsion-free nilpotent, as all free groups are so. In
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order to conclude the proof of Theorem 1.3, it thus remains to prove that B⊗Q ≃ Bab⊗Q for all the other
groups.

If W is a real reflection group, this is known by Theorem 1.1. This is true more generally for groups
for which B is an Artin group, such as for instance the so-called Shephard groups studied in [12]. These
Shephard groups cover the exceptional groups G25, G26, G32, as well as most of the exceptional groups in
dimension 2. The remaining ones in dimension 2 are then G12, G13 and G22. But the braid group of G13
has been proved in [1] to be isomorphic to an Artin group, so this case is settled as well.

The statement is also true for the groups such that c(W ) = 1, because in that case grB = gr 1B = Z, as
gr B is generated as a Lie algebra by gr 1B. This covers G12 and G22, as well as the remaining exceptional
groups of rank at least 3. This also covers the groups G(e, e, n) for n ≥ 3 – they are already covered when
n = 2, because in this case they are real (dihedral) reflection groups in disguise.

Browsing the classification, the only groups remaining to be considered are the groups G(de, e, n) for
n ≥ 3 and d > 1. But in these cases, one gets immediately from the presentations obtained in [3] that the
projectionmapB ↠ Bab = Z2 splits (take the subgroup ⟨s, t2⟩ ≃ Z2 from Table 1 there), so that the induced
map H2(B,Z) → H2(Bab,Z) admits a section and is therefore surjective. Then, the Stallings-Stammbach
exact sequence is

H2(B,Z) H2(Bab,Z)
C2B
C3B H1(B,Z) H1(Bab,Z)

≃

so that C2B∕C3B = 0 hence gr 2B = 0 and we conclude as before that B⊗Q ≃ Bab⊗Q. This concludes
the proof of the Theorem.
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