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Abstract. In this technical note, we complete the PhD work of A. Esterle about deter-
mining the image of any Artin group of finite Coxeter type inside the associated Hecke
algebra over a finite field, when the latter is semisimple. The only remaining case was the
48-dimensional irreducible representation in type H4, for which the image is proven here to
be Ω

+
48.

1. Introduction

In [2], A. Esterle determined the image of the Artin groups of finite Coxeter type inside
the corresponding Hecke algebra over a finite field, under some conditions on the parameter
essentially made so that the latter is semisimple. There is just one case for which the methods
of [2] where not conclusive, because a main technical tool due to Guralnick and Saxl could
not be applied there. This case is the largest irreducible representation of the exceptional
Coxeter type H4. Here we solve this remaining case by going back to the original basic tool
in this area, namely Aschbacher’s classification theorem.

We use the notational conventions of A. Esterle’s thesis [2]. In particular, as in [2], let
us denote AH4

the Artin group of type H4 and AH4
its derived subgroup. We consider

the representation ρ ∶ AH4
→ GL48(Fp) deduced from the only 48-dimensional irreducible

representation of the Hecke algebra in type H4, and we want to determine the image G of ρ.
The convention on Hecke algebras is that the Artin generators have eigenvalues −1, α.

It is the only unsolved case in [2], where it is shown that G is a subgroup of Ω
+
48(

√
q),

depending on the parameter α ∈ F
×
q with Fq = Fp(α). It is assumed that p /∈ {2, 3, 5} and

the order of α in F
×
q is assumed not to divide 20,30 or 48. These conditions imply q ≥ 19

and, when q is a square, that q ≥ 121. Moreover, since the other cases are already dealt
with in [2], one can assume that (condition ’1 ∼ 2’ in [2]) there exists a field automorphism

Φ of Fp(α, ξ + ξ−1) such that Φ(α + α−1) = α + α−1 and Φ(ξ + ξ−1) = ξ
2 + ξ−2), which is

equivalent ([2] lemma 8.1.2) to the condition Fp(α, ξ + ξ−1) = Fp(α + α−1, ξ + ξ−1). We set

Fg = Fp(α + α−1).
Because of the existence of Φ ∈ Gal(Fg(ξ + ξ−1)/Fg) \ {Id}, Fg has index 2 inside Fg(ξ +

ξ
−1). Now, it is proven in [2] that the representation of AH4

under consideration admits

a matrix model over Fg(ξ + ξ−1), so we can write it as ρ ∶ AH4
→ GL48(Fg(ξ + ξ−1)). If

Fp(α) = Fg, that is q = g, since there is only one 48-dimensional irreducible representation of
AH4

that factorizes through the Hecke algebra of type H4, and since this one is defined over
Fg, we have Φ◦ρ ≃ ρ and we can assume that ρ takes value inside GL48(Fg) = GL48(Fq) (see
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e.g. [2] lemma 3.2.5). If not, we have that [Fp(α) ∶ Fg] = 2 hence Fp(α) = Fg(ξ + ξ−1) and

ρ also takes value inside GL48(Fq), this time with q = g
2
. But then Φ is the only non-trivial

element of Gal(Fp(α)/Fg), hence exchanges α and α
−1

. From Proposition 2.1.2 of [2] this

implies that Φ ◦ ρ ≃ ρ hence ρ can actually be defined over Fp(α+α−1) = Fg and this proves
that ρ can be defined with values in GL48(Fg) again.

The purpose of this note is to establish the following statement, which solves conjecture
8.5.1 of [2] and completes the goal of A. Esterle thesis. Notice that actually the case Fp(α) =
Fp(α + α−1) was overlooked there, which makes Conjecture 8.5.1 trivially false as stated in
this case, so that Theorem 8.5.1 of [2] needs to be corrected. Explicitely, in the cases 1.a, 1.d

of the theorem, the factor Ω
+
48(

√
q) of the decomposition must be replaced by Ω

+
48(q).

Theorem 1.1. In the case 1 ∼ 2, and with the notations of [2], we have G = Ω
+
48(g), with

Fg = Fp(α + α−1).
Distinguishing cases, this statement can be rewritten as follows.

(1) If Fq = Fp(α) = Fp(α + α−1), then G = Ω
+
48(q)

(2) If Fq = Fp(α) ≠ Fp(α + α−1) = F√
q, then G = Ω

+
48(

√
q)

As explained in [2], this case could not be tackled by the methods used there, because
the restrictions to some parabolic subgroup do not contain elements of the type needed for
applying a very handy theorem of Guralnick and Saxl. Therefore we change strategy and
directly apply Aschbacher’s theorem (see [1]). By the considerations above this theorem
implies that it is sufficient to show that G cannot belong to any of the Aschbacher classes
C1, . . . , C7 and S.

By [2] theorem 8.1.1 p. 166 and the fact that the representation 48rr of the Coxeter group

of type H4 restricts to 3s+3
′
s+3s+3′s+2×4r+2×4

′
r+2×5r+2×5

′
r as a representation of type

H3 (see [2] Table 8.3), we know that G contains Q3 ×Q4 ×Q5 with Q4 ∈ {SL4(q), SU4(
√
q)}

and (Q3, Q5) ∈ {(SL3(q2),SL5(q)), (SL3(q),SU5(
√
q))} embedded inside SL48(Fq(ξ + ξ−1))

via

(q3, q4, q5)↦ (q3, q̄3,t q−13 ,
t
q̄
−1
3 , q4, q4,

t
q
−1
4 ,

t
q
−1
4 , q5, q5,

t
q
−1
5 ,

t
q
−1
5 )

where x̄ = Φ(x). We also know that this subgroup normally generates G ([2] Lemma 8.2.1, p.

170). We have ∣Q3∣ ≥ max(∣SL3(19)∣, ∣SL3(19
2)∣) ≥ 1.5×10

19
, ∣Q4∣ ≥ max(∣SL4(19)∣, ∣SU4(11)∣) ≥

4× 10
15

, ∣Q5∣ ≥ max(∣SL5(19)∣, ∣SU5(11)∣) ≥ 9.7× 10
24

. We also notice that the order of the

p-Sylow subgroups of Q3, Q4, Q5 are at least q
3
,
√
q
6

or q
6
, and

√
q
10

or q
10

, respectively.
When one needs to distinguish the two cases, we excerpt again from [2] Theorem 8.1.1

that, when Fq = Fp(α) = Fp(α + α−1), then (Q3, Q5) = (SL3(q2),SL5(q)) and when Fq =

Fp(α) ≠ Fp(α + α−1) = F√
q, then (Q3, Q5) = (SL3(q),SU5(

√
q)).

Acknowledgements. I thank A. Esterle for numerous discussions, O. Brunat for a careful
reading, F. Lübeck, G. Hiss and G. Malle for references.

2. Classical Aschbacher classes

Assume G is contained in a maximal subgroup Γ of GL48(r) belonging to Aschbacher’s class
Ci with 1 ≤ i ≤ 7 as in [1]. Class C1 is excluded because G acts absolutely irreducibly ([2],
proposition 8.2.2). Similarly, classes C6 and C7 are excluded because 48 is not a non-trivial
power. We thus need to consider classes C2, C3, C4, C5.
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2.1. Class C2. We assume now that Γ lies in class C2, that is F
48
r = V = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vs

with dimV1 = ⋅ ⋅ ⋅ = dimVs = v so that 48 = vs, and Γ = GLv(r) ≀ Ss with v, s ≥ 2. Let
π ∶ Γ→ Ss denote the associated projection and consider the map πk ∶ Qk → Ss obtained by
composing π with Qk → Q3×Q4×Q5 → G. Since Qk is almost simple, either Kerπk < Z(Qk)
or Kerπk = Qk. In the first case, πk induces an embedding of the p-Sylow subgroup of Qk

inside Ss. But since p ≥ 11 and s is a proper divisor of 48, an immediate computation shows

that the orders of the p-Sylow subgroups of Ss for such s are at most p
2
, contradicting our

conditions. It follows that π(G) = {1} hence G acts non-irreducibly on V , a contradiction.

2.2. Class C3. We have Γ < SL48(Fg). If Γ belongs to the class C3, then we can write

F
48
g = F

h
s for h < 48, with Fs ⊊ Fg, and Γ < SLh(Fs).Cm for some cyclic group Cm. Since

Q3×Q4×Q5 is perfect, its image inside Cm is trivial, whence its image inside G < Γ lies inside
SLh(Fs). Since it normally generates G, we get that G < SLh(Fs). Since the 48-dimensional
representation of G is absolutely irreducible we get a contradiction.

2.3. Class C4. We want to prove that the action of G is tensor-indecomposable. For this it is
sufficient to prove that the action of Q3 < G is tensor-indecomposable. We thus consider W =

V ⊗Fr
Fp = F

48
p as a Q3-module, and assume it can be written as W1⊗W2. It is a semisimple

module, that can be decomposed as U + U + U
∗ + U

∗
+ 36.1 where U,U, U

∗
, U

∗
are four

absolutely irreducible pairwise non-isomorphic 3-dimensional representations of Q3. Since the
only prime divisors of 48 are 2 and 3 we have 48 /≡ 0 mod p hence W1 and W2 are semisimple

by [8] Theorem 2.4. We write a direct sum decomposition Wk = mk1 +∑rk
i=1 a

(k)
i F

(k)
i where

the F
(k)
i are pairwise nonisomorphic nontrivial simple modules. Since Q3 is perfect they all

have dimension at least 2. Then, the fact that the nontrivial irreductible constituents of W
appear multiplicity free implies m1,m2 ∈ {0, 1}. We have

W =W1 ⊗W2 = m1m21 +m1

r2

∑
i=1

a
(2)
i F

(2)
i +m2

r1

∑
i=1

a
(1)
i F

(1)
i +

r1

∑
i=1

r2

∑
k=1

a
(1)
i a

(2)
j F

(1)
i ⊗ F

(2)
i

and, since W contains 36.1 and F
(1)
i ⊗ F

(2)
i may contain the trivial representation at most

once by Schur’s lemma, this implies

m1m2 + (
r1

∑
i=1

a
(1)
i )(

r2

∑
i=1

a
(2)
i ) ⩾ 36

and m1m2 ≤ 1 implies (∑r1
i=1 a

(1)
i ) (∑r2

i=1 a
(2)
i ) ≥ 35. We have dimF

(k)
i ≥ 2 for all i, k since Q3

is perfect hence 1 is the only 1-dimensional representation. Then 48 = (dimW1)(dimW2) and

dimWk = mk +∑rk
i=1 a

(k)
i dimF

(k)
i ≥ 2∑rk

i=1 a
(k)
i thus 48 = dimW ≥ 4 × 35, a contradiction.

Therefore it is tensor-indecomposable.

2.4. Class C5. We have Γ < SL48(Fg). If Γ belongs to the class C5, then we can write F
48
g =

F
48
s ⊗Fs

F with Fs ⊊ F, and Γ < D = SL48(Fs).(Fg)×. Since D/SL48(Fs) ≃ (Fg)×)/(Fs)×
is a cyclic group and Q3 ×Q4 ×Q5 is perfect, its image inside D/SL48(Fs) is trivial, whence
its image inside G < Γ lies inside SL48(Fs). Since it normally generates G, we get that
G < SL48(Fs).

We then distinguish two cases. First assume that Fq = Fp(α) ≠ Fp(α + α−1) = F√
q =

Fg. In that case, from [2] theorem 8.1.1 (p.166) we get that Q3 = SL3(q). Let q3 =
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diag(α, α−1, 1) ∈ Q3, q4 = 1, q5 = 1. The image of (q3, q4, q5) inside G has trace 2(α +
α
−1) + 2Φ(α + α−1) + 40 = 4(α + α−1) + 40. It follows that Fs ⊃ Fp(α + α−1) = F√

q hence
s =

√
q, contradicting Fs ⊊ F

√
q.

We then assume Fq = Fp(α) = Fp(α + α−1) = Fg. In that case, from [2] theorem 8.1.1

(p.166) we get that Q3 = SL3(q2) and Q5 = SL5(q). Letting q5 = diag(α, α−1, 1, 1, 1) and

q3 = 1, q4 = 1, we get that the image of (q3, q4, q5) inside G has trace 4(α + α−1) + 40 hence

Fs ⊃ Fp(α + α−1) = Fq, contradicting Fs ⊊ Fq.

3. Aschbacher class S

We finally exclude the groups in the S class.

3.1. Groups of Lie type in non-defining characteristic and sporadic groups. We use
[3] in this part where all the cases in small dimension have been classified.

Γ ` field ∣Γ∣
(1) 2.A8 ≠ 2 40320
(2) A9 0, 2 181440
(3) 2.A9 3 362880
(4) 2.A9 ≠ 2, 3 i6 362880
(5) A10 2 1814400
(6) 2.A10 3 3628800
(7) 2.A10 ≠ 2, 3 i6 3628800
(8) 121.L3(4) 0, 7 z12, b5 241920
(9) 122.L3(4) 0, 7 z12, b5 241920
(10) 122.L3(4) 5 z12 241920
(11) 3.U3(5) ≠ 3, 5 z3 378000
(12) 2.S6(2) ≠ 2, 7 2903040

(13) O
+
8 (2) 3 174182400

(14) 2.Sz(8) 5 c13 58240
(15) 12.M22 5 z12, b11 5322240

This table is the relevant excerpt of exceptional cases from table 3 in [3] (corrected as table 2

in [4]), completed by the order of the group. Since ∣Γ∣ ≥ ∣G∣ ≥ ∣Q3∣× ∣Q4∣× ∣Q5∣ ≥ 58×10
58

,
the computation of this order is sufficient to dismiss these cases.

The generic cases explained in [3] (table 2 there) are of two types. One of these types (cases
(b),(c),(d) in [3], table 2) is when G is either 2.PSL2(m) or PSL2(m), with m ≤ 2× 48+ 1 ≤
100. But then

∣G∣ ≤ 2 × 100 × (100
2
− 1) ≤ 2 × 10

6

contradicting ∣G∣ ≥ 58 × 10
58

. The other type (case (a) in [3], table 2) is when G = An with
n ∈ {49, 50}. Then, since p ≥ 7,

vp(∣G∣) ⩽ vp(50!) = ⌊50

p2
⌋ + ⌊50

p ⌋ ≤ 2 + 8 = 10

while Q3 ×Q4 ×Q5 has a p-Sylow of order at least p
19

, dismissing this case again.
Therefore this case is excluded, too.
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3.2. Groups of Lie type in natural characteristic. We use [5] here. In the tables there
(appendices A...) the representations of dimension 48 (except for the natural representation
of the classical groups) which appear are the following ones :

(1) case A2, p ≠ 7
(2) case A6, p ≠ 7
(3) case B3, p ≠ 7
(4) case B4, p = 2
(5) case C3, p = 2
(6) case C4, p ≠ 3
(7) case D4, p = 2

Also, it is not taken into account there the type A1, which we can rule out separately, as in
this case G would have an abelian p-Sylow subgroup which contradicts the fact that the one
of Q3 ×Q4 ×Q5 is not.

Since p ≠ 2, the only cases to consider are then (1),(2),(3),(6). In all casesQ3, Q4, Q5 have p-

Sylow subgroups of order g
6
, g

6
, g

10
. It follows that a p-Sylow subgroup of Q3×Q4×Q5 has or-

der g
22

. In cases (1),(2),(3),(6) (and p ≠ 2)G is contained inside SL3(g),SL7(g),Ω7(g),PSp8(g),
which have p-Sylow subgroups of order g

3
,g

21
,g

9
,g

16
, respectively, a contradiction.
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