NOTE

The invited lecture by A. D. Alexandrov, ‘“Uniqueness Theorem
for Surfaces in the Large,” has been enlarged by the author and is
to be published elsewhere. It is therefore not included in these

Proceedings.

FACTOR GROUPS OF THE BRAID GROUP:
H. S. M. COXETER, University of Toronto

Introduction. The relation R;R; = RyR;, or
R; 22 R.,

which says that two elements commute, has been studied ever
since 1852, when Hamilton first recognized the possibility of deny-
ing it. If Ry and Ry commute, R; transforms R, into itself; thus a
natural generalization is the relation

RiR:R;1 = RaRiRy,

which says that R.R; transforms R; into R, In 1926, Artin con-
sidered a sequence of elements Ry, Ry, . .., R,_;, in which consecu-
tive members are so related while non-consecutive members com-
mute. He observed that such elements of period 2 generate the
symmetric group ©,. The chief purpose of this paper is to con-
sider the effect of changing the period of the generators from 2 to
#. Representing the generators by unitary reflections, we find (in
§ 12) that the order is changed from #! to

(V) ul,

where V is the number of vertices of the regular polyhedron or
tessellation {p, n}.

As a by-product we obtain, for the simple group of order 25920,
the presentation 5.5 or

R°=R!{=(RR))'=E, R,2RRR,
which is more concise than that of Dickson (15, pp. 293, 296).

1. Artin’s braid group. The simplest braid, say E, consists of %
vertical strands (or strings) joining two horizontal rows of =
points (or pegs). Other n-strand braids are variants of this: the
strands remain vertical in general, but at certain levels two neigh-

1Two lectures (§1-6 and 7-12) delivered at Banff, September 5 and 6, 1957.
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96 H. S. M. CoxXETER

bouring strands interchange positions, one crossing in front of the
other (4, p. 127; 14, p. 62). Let R, denote the crossing of the jth
strand in front of the (j 4+ 1)th, and R ;™ the crossing of the jth
strand behind the (j 4+ 1)th. Figure 1 shows the effect of repeating
R, to make R 2, and the manner in which the combination of R;
and R ;™ is essentially the same as the trivial braid E, so that we
can write
R,R;' = E.
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Figure 2 illustrates the equivalence of the braids R;R:R; and RyRiRo,
and Figure 3 the equivalence of R;R; and R;R;.

Artin (1, pp. 51-54) proved that the essentially distinct #-strand
braids represent the elements of the infinite braid group generated

by Ry, Re, ..., R,_1, and that the relations
1.1 RR R = RpuRyR 1<j<n—2),
Rij=RkRj (j<k—2)

suffice for an abstract definition.

In the simple case when # = 2, there are no relations. In other
words, the 2-strand braid group (Figure 1) is the {ree group with
one generator, which is the infinite cyclic group §_ whose elements
are

..., RERLE R, R2....

For the #-strand braid group with » > 2, we may use the two
generators Ry and
R =RRs...R,y,

in terms of which Artin found the remarkably concise presentation
1.2 R® = (RRy)™, Ry« R-‘R;R/ 2 <j<in).

The element R*, which commutes with RR; and therefore with Ry,
generates the centre {6, p. 658).
In particular, the 3-strand braid group is

].3 R1R2R1 = R2R1R2

or
R1R2 = R2R0 = RORI

or (with R = R4R,, as in 1.2)
R3 = (RRy)?

or
R2 = RlRRl.

For this group (which topologists will recognize as the fundamental
group of the trefoil knot (1, pp. 69-70)) the simplest possible defini-
tion is an obvious variant of R = (RR;)?:

1.31 R? = &




98 H. S. M. CoxETER
Similarly, the 4-strand braid group is
RiR:R; = R:R4R., RuR3R: = R;3R2Rs, R}i:-') Rs

or
R* = (RRy)? Ri&2R?R;R?

or

1.4 Rt = 8% R?& SRS,
and the 5-strand braid group is

Ré = (RR1)4, Rie R—?2R;R?
or

1.5 R® = 8¢, RSRI3SR? = SRES.

2. The symmetric group. Artin (1, p. 54) observed also that
the symmetric group &, can be derived from the n-strand braid
group by allowing the strands to be broken and mended, so that
their effect is merely to indicate a one-to-one correspondence
between the two rows of # points, and there is no longer any dis-
tinction between the two parts of Figure 1. In other words, €, is a
factor group of the braid group, and an abstract definition for it is
derived from 1.1 or 1.2 by inserting the extra relation

2.1 R} = E.

Since R, = R‘R;R™, 2.1 implies R? = E for every j.

When &, is defined by 1.1 and 2.1 (cf. 15, p. 287), we may take
its generators to be the consecutive transpositions

Re= (1 2), R,=(23),....
When it is defined by 1.2 and 2.1, we use the first transposition
along with the cyclic permutation
R=Mm®...321.

Thus the relations 1.2 and 2.1 imply R* = E (1, p. 55). The direct
verification of titis result is easy when # = 3, but not quite so easy

when # > 3.

It is our purprse to generalize the symmetric group, replacing
the extra relation 2.1 by
2.2 Ry = E

1 1
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so that the period of R; is fixed at a value between 2 (which yields
&,) and « (which leaves us with the infinite braid group itself).
We shall find that this more general factor group, defined by 1.1
(or 1.2) and 2.2 is finite if and only if, the integers p and # (greater
than 1) satisfy the inequality

1
p

Since this is trivial when n = 2, the first case that awaits investi-
gation is # = 3.

2.3 —i-l > 3.
n

3. Factor groups of the three-strand braid group. For the
group

3.1 R} =E, R;R:;R; = R:R|R,
or

3.2 R} =E, R?®= (RR)’
(where R = R;Rq) or

R3 =8 (RIS =E
(where S = RR; = RiR:R; = R3R;R,), Coxeter and Moser (14,
pp. 73-78) adopted the symbols

(—2,3 | py={p,p|7/2))

To facilitate extension to greater values of # (the number of
strands), we find it convenient to invent the new symbol

pl3lp.

(The 3 in the middle refers to the number of R’s on either side of
the equation R1R2R1 = RleRz.)
Burnside (5, pp. 17-19) described seven representations of

2[3]2 = &;.
W. O. J. Moser {12, p. 166) established the isomorphism
3313 =2, 3, 3),
which means that 3{3]3 is the binary tetrahedral group of order 24:
~GBUOTHEGE ™
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P? = (® = R®* = PQR

or
3.3 Q* = R* = (QR)?

or

Q2 = RQR, R? = QRQ.
To see that the relations
3.31 QP =R*= (QR)? = Z
imply Z? = E, we observe that Q7'RQ = QR™, whence
Z = R3 = QIR*}Q = (QR™)3.
Interchanging Q and R, we have also Z = (RQ™*)%. Hence

2 =E.
Writing RyZ for Q in 3.31, we deduce
Ri=E, R’=(RR)}

which is 3.2 with p = 3.
We can easily identify this with the multiplicative group of the
24 units
ERE e

a1, i, ], kb, T

in the domain of integral quaternions (18, p. 311). We merely have
to verify that the relations 3.3 are satisfied by the quaternions

g lbititk g _Liitick
(9, p. 370), or that the relations

R} =E, RR,R; = R:RR.
(with E = 1) are satisfied by

P4k
Ry =QZ = ~ — L=,

Another way to represent 3[3]3 is as a permutation group of
degree 8. We easily verify that the permutations

R; = R{'R = — ~=1==,
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3.4 Ry =(124)(68),
Ry = (346)(782)

combine to form
R1R2R1 = (8 6 4 2) (7 5 3 ].) = R2R1R2.

The next case, 4[3]4, is a group of order 96 which was studied by
Miller (20, p. 446; 14, p. 75). The next, 5[315, is the direct product
of the binary icosahedral group and the group of order 5:

586 =(~2,3 | 5)==(2,3,5) X

(21, p. 114; 14, p. 74); thus its order is 600.
The element R®* = (RRy)? of p[3]p (see 3.2) generates the centre,
whose quotient group

R = R’= (RR))*'=E
is polyhedral. This central quotient group is of order
12p
6—12p

if p =2, 3,4, or5 (14, p. 68), and is infinite if p > 6 (20, p. 171).
Hence p[31p itself is infinite if p > 6, and the above results may
be summarized in the statement that its order, for p < 6, is

2p )2
3.5 6<—————6 iy
We deduce, by division, that the order of the centre is
2p
3.6 67
that is, the period of R = RyRy is
_6p_
3.7 -5

4, Factor groups of the four-strand braid group. By a
natural extension of p[3}p, we use the symbol

p[31p(3lp
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to denote the group
41 R =E, RRR;=R:RRy; RR;R:=R3RR; Ria2R;
or (from 1.4)
4,2 Rt=8, (R™15)? =E, R?!«=SRS.
For the octahedral group
2[312[3]2 == &,,
of order 24, Dyck (16, p. 35) gave the simpler presentation
R* = 8% = (RS)? = E.
For the group
3[313[313,
defined by 4.1 or 4.2 with p = 3, the order
3?41 = 648
can be obtained by enumerating the 27 cosets of the subgroup
{Ry, Ry} or {R™'S, SR}, which is 3[3]3 of order 24. The ten
defining relations given by Shephard and Todd (24, p. 300 “(25)"")
can be reconciled with 4.1 by writing R,™! for R, (or by writing
R.~! for By, and R;~'{or Rj).

The 27 cosets may be identified with the 27 lines on the general
cubic surface. In fact, the relations

4.3 Rt = S3, (R-1S)* = E, R?& SRS

are all satisfied by the permutations R and S—2 of (8, p. 458),
namely

R = ((1«10«20«36566165354555662363406)
. (612516136246351156450«464661562652) (614625636),
4.4 S = {@:1a2056C160305D6C230L6)

A bac1aC24C34C 35040 3C 46D 2)
: ‘(6.;,/:57161362505645636615526)-

It is interesting %o observe that the first cycle of S is derived from
the first cycle of R by omitting @s, b4, a4, and that the second cycle
of R forms a kind of zig-zag pattern in the last two cycles of S.
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We immediately deduce
R: = RIS = (ascseca6) (@aC3605) (@6C35C34)
. (51624625) (52014615) (6455612),
SR = (asasa4) (b2bsby) (612613614)
- (€23C34Ca4) (CasCasCas) {caecsscas),
Ry = RSR™? = (@1a2¢15) (@4C15C25) (@sc14624)
. (51636172) (53626616) (56623613)-

The expression for R in 4.4 shows that the relations 4.3 must

imply
4.6 R¥# = E.

Hence the centre, generated by RY, is of order 3, and its quotient
group
4.7 Rt = S* = (R7IS)? = E, R*& SRS

is of order 216. According to Shephard {23, p. 95), this central
quotient group is the Hessian group. To verify this assertion we
can use new generators S and

U =SSR = R},
in terms of which the 4-strand braid group 1.4 is
S = (SU)4, U e (SUS)?,
Shephard’s group 3[3]3[3]3 (see 4.3) is
S8 = (SU)4, Ud=E, U= (SUS)

4.5 R,

!

and the central quotient group 4.7 is
St = Ut = (SU)* = E, U < (8US)2

This agrees with a known presentation of the Hessian group
(12, p. 168), which permutes the nine inflexions of the general
plane cubic curve according to the scheme

4.8 S=075862(13), U= (142)(586).

It follows that

R SU =(0785)(6132),
R, = Ut= (124)(568),

R; = RRiIR1 = (346)(782),

R; = RR;R-1 = (142)(073).

4.9

[




104 H. S. M. CoxXETER

Comparing 4.8 with 4.4, we see that the same symbols 0, 1,...,8
represent nine triangles (or tritangent planes) which together use
up all the 27 lines on the cubic surface (2, p. 15):

0 = ai¢i6bs, 7 = @3bsCas, 5 = csebste,
8 = bicsats, 6 = ciaC35Ca0, 2 = C94a4bs,
4 = c14Ca5C30, 1 = biascis, 3 = C13C45C26.

In other words, such a set of nine tritangent planes of a real cubic
surface provides a real representation for the complex configuration
of the nine inflexions of a plane cubic curve, three collinear in-
flexions being represented by three tritangent planes forming a
Steiner trihedron. Todd has remarked that this representation is
implied in Baker's description of the Burkhardt primal (3, pp. 7, 38)
whose 45 nodes lie by sets of nine in ‘“Jacobian” planes, the nine
points in a plane being the set of inflexions of a cubic.

Comparing 4.9 with 3.4, we see that the binary tetrahedral
group 3[3]3 is a subgroup not only of 3[{3]13[3]3 but also of the
Hessian group (12, p. 169). In other words, the extra relation

(R1R2‘R3)4 = E,

which reduces 3{3]3[3]3 to the Hessian group, does not modify the
subgroup {Ri, R.}.

When p > 4, the group p[3]p[3]p is infinite, as we shall see in
§ 10.

5. Factor groups of the five-strand braid group. The 5-strand
braid group 1.5 has the factor group

p[31p[31p131p

defined by

R-},p = Ey RszRl = R2R1R2, R2R3R2 = R3R2R3,
5.1 R3R4R3; = R4R3Ry,
Ry =2 Ry, R; =2 Ry, R. 2 Ry,

or
52 R® =& (15 = E, R2SR2SR? = SRS,
For the symineiric group

2[312[3]2[13]2 = ©;
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of order 120, Burnside's presentation
R =St= (RS)2= (R*$)? = E

(5, p. 422) is perhaps preferable, although it involves four relations
instead of three.

For the group

3(313(3]3{3]3,
defined by 5.1 or 5.2 with p = 3, the order
645! = 155520

can be obtained by enumerating the 240 cosets of the subgroup
{R1, Ry, Rs} or {R71S, SR, RSR?}, which is 3[3]3[3]3, of order
648. To reconcile 5.1 with the sixteen defining relations given by
Shephard and Todd {24, p. 300 “(32)""), we merely have to re-
place R; and Ry (or, equally well, R; and Rj3) by their inverses.

The enumeration of cosets yields a representation of degree 240
which shows that the relations

5.3 R6 =84 (R-1S)? = E, RSR2SR? = SRS

must imply

54 R¥® = E,

Hence the centre, generated by R, is of order 6, and its quotient
group

5.5 Rf = St = (R™18)8 = E, R2SR2*SR? = SRS

is of order 25920. According to Shephard (23, p. 95), this central
quotient group is the simple group of that order. The neatest way

to verify this assertion is to represent the R and S of 5.5 as permu-
tations of the 27 lines on the cubic surface:

R=(12345)
= (alazasams) (5152535455) (616626636646656)
. (612623634645615) (613624635614625),
S = ((1161623625) (azbzcmcw) (0364655612) (asbs)
. (a464563656) (a6656634b4) (614616) (624626).

It is interesting to observe that the element
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Ry = RIS = (a1 b3 c13) (a4 casbe) (C14€35C20)
. (612112 51) (64554 as) (625616634)
. (52 623(1«3) (55 ag Csa) (636624615>

(and similarly R, R3; or R4} permutes the 27 lines in nine cycles
of three forming triangles (unlike the cycles in 4.5, which are
triads of skew lines). In fact, the above arrangement, in which the
nine columns likewise form nine triangles, exhibits one of the forty
triads of trihedral pairs {cf. 16a, p. 38).

The complete group of the 27 lines (of order 51840) is derived
from this simple subgroup of index two by adjoining the trans-
position of the two rows of a double-six, or the product of any odd
number of such “transpositions,” for example,

<a1 Q3 Qs €45 C2p 624) <53 bs be C24C14 C12) (612 Ca3 Cop Cop (4 b4)
Cg8 Cre C13 ba by bs Co6 C36 C35 Ax Q2 Qg C14 C34 Ca5 Cag @2 Do

= {Glbs) ([13516) (06613) (624636) (53656) (becss)

. (52625) (54645) (a2612) (0«4614) (623634) (526646)y
which transforms each R; into its inverse. Another such “‘odd”
permutation? is

T = (a 5)(1 2)(3 5),

which transforms R and S into their inverses; thus an abstract
definition for the complete group is given by 5.5 along with

5.6 T? = (RT)? = (ST)? = E.

6. Two mutually inscribed squares. The two combinatorial
schemes

752 124, 235, 346, 457, 561, 672, 713,

and
8:: 124, 235, 346, 457, 568, 671, 782, 813

represent coufigurations of seven or eight points lying by threes
on the same number of lines. The former, consisting of a complete
quadrangle 3567 whose three diagonal points 1, 2, 4 are collinear,

240dd” permutations oi the 27 lines are odd permutations (in the usual sense)

of the 45 triangles {or tritangent planes); for example, (¢ b) evidently transposes
15 pairs of triangles.
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cannot be realized geometrically in the real or complex projective
plane, but it is the whole of Fano’s finite projective plane PG (2, 2)
(25, p. 202).

The Mobius-Kantor configuration 8; can be regarded (in three
ways) as a pair of simple quadrangles, such as 1357 and 2468, each
inscribed in the other. Let us use a co-ordinate system in which
the quadrangle 2468 is (1, =1, &=1). Passing from the projective
to the affine plane by fixing the value 1 for one of the co-ordinates
and then discarding it, we have the parallelogram (=1, 1) with
points

1= (x, 1): 3= (_]-y y,>7 5 = (x’, _1)’ 7= (]-r y)

on its four sides, as in Figure 4. The desired collinearity of the
triads 235, 457, 671, 813 is imposed by the equations

@ —-DE -D=+D(-y+D=&+DH+1)
=(—x+ DO +1) =4

]

which have as their solution

—x=y=x = —y =y, ¥y = —3.

4 I 2 1,1 {(x, 1 (1,0
? 7 - ‘e a 9
{7 (LY
3z\ (=150
O o O O— PACS O
6 5 8 (1,71 4(x',-l) (-1
FI1GURE 4

Hence a geometrical realization is impossible in the real plane
(22, p. 446) but possible in the complex plane with (say)

¥ =4317=w— ? w=31(—14¢) = i/
(17, p. 101), and particularly simple in the finite plane EG(2, 3),
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with ¢ = 0 (11, p. 429). Since v’ = —x and ¥ = —y, the origin
0 lies on the lines 15 and 37 as well as on 26 and 48.

The incidences in this configuration are easily seen to be in-
variant with respect to the group 3[3]3 generated by the permuta-
tions R; and R, of 3.4. In the complex geometry, these generators
appear as homologies of period 3. In the case of

Ri= (124)(568),

the homology has for its axis the line 37, and for its centre the point
of intersection 1256 (which is the point at infinity on the liney = 0).
It cyclically permutes the triads of points 124 and 568 on lines
through its centre, and likewise permutes triads of lines through
points on its axis, namely:

15, 26, 48 through 0,
16, 28, 45 through 7,
18, 25, 46 through 3.

This holds also in the finite geometry, except that now the centres
lie on the axes, so that the homologies reduce to elations (25,
p. 72).

Since 3[3]3 is a subgroup of index 9 in the Hessian group, it is
not surprising to find that, in the complex geometry, the nine
points 6, 1, . .., 8 (namely, the vertices of the two mutually in-
scribed parallelograms along with their common centre) are the
nine inflexions of a plane cubic curve (17, p. 102). In fact, these
nine points are the inflexions of the cubic

(@ — D +9y) + 20 —DEx —y) =0
for any walue of k. This pencil of cubics can be expressed in the
more {amiliar form
%3 4+ x5 + x5 4 6mxwaxs = 0

{12, p. 166}, by means of the substitution
Xy = x4 ¢y, xy = x + 1, x3 =x — 1,
which implies
Wy bwe 4xy = P(—yYx + ),
x) -k wxy 4+ ol =Y (y 4+ 1),
Xy 'i" w2x2 + wXa == 1,0(}' - 1)
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As linear transformations of the affine co-ordinates x and y, the
homologies (or elations) R; and R, are evidently

’

Il
il

Ry: x = wx 4+ wly, y ¥,

Ro: % = x, V= —wl 4+ wy.
The equations of the four concurrent lines 15, 26, 37, 48 combine
to form the “‘relative invariant”

F=(x+yyx—yHx — &+ ),
which is transformed into wF by R; or R,. The Hessian of the
quartic form F (with a numerical factor omitted) is the absolute
invariant
H = xy(x + wy) (x — %) = xy(=® + Yxy — 7).

Also F is the Hessian of H. (This becomes obvious when we use
Klein's co-ordinates, in terms of which F and H are

214 =+ 230212222 + 224
(19, p. 55).) The group also leaves invariant the sextic form
J = (x4 ) (= + 20wy — y) (& — 20y — 37,
which is the Jacobian of F and H.
This group 3[3]3 is a subgroup of index 2 in the complete colline-
ation group of the configuration 8;, which is of order 48 (11, p.

431). In fact, the complete group is derived from 3([3]3 by adjoining

an involutory element
T=(15(28)46),

which transforms R; and R, into their respective inverses. As a
transformation of co-ordinates, this extra element is
x' = Z, y = —j.

In the complex geometry, it is not a projective collineation but an
antiprojective collineation (or “‘anticollineation’). However, in the
finite geometry it merely reverses the sign of ¥, so that it is the
ordinary reflection in the x-axis. (The new feature that makes this
possible is the concurrence of the three lines 15, 28, 46.)

For the extended group, of order 48, the three generators Ry, R,
T may be replaced by two:

R = R;R, and S=R,/ TR, =(12345678).
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In fact, R?S? = Ry, S?R? = Ry, RSR = T. The two generators
are easily seen to satisfy the relations

R% = S, (R™1S)? = E,
which define the group (—3,4 | 2)of (14, p. 75 (6.672)3).

Every finite group of linear transformations of complex co-
ordinates leaves invariant a positive definite Hermitian form (5,
p. 256). In the case of the above representation of 3{3]3 (and its
extension), this form is easily seen to be

xE 4 M IT .
14

It is natural to introduce a unitary metric into the affine plane by
regarding the Hermitian form as an expression for the square of
the distance from the origin to the point (x, ¥). Then the eight
points-of the configuration 8; are all distant +/2 from the origin.
Moreover, the distances between pairs of the four points 2468 are
such as to make this parallelogram a square, just as if the co-
ordinates were Cartesian. Thus 2468 and 1357 are two mutually
inscribed squares of side 2. If this seems paradoxical, we must
remember that each vertex of either square divides a side of the
other in the ratic 1:w.

7. The two-dimensional kaleidoscope. A reflection is a dis-
tance-preserving homology whose centre is a point at infinity. In two
dimensions, this means that a reflection is a congruent transforma-
tion which leaves invariant every point on a certain line: the
“mirror.”” In real geometry it is necessarily of period 2, but in
unitary geometry it may have any period. The generators R, and
R of 3[3]3 are unitary reflections of period 3, namely reflections in
the respective lines

Y ~v=0 and x+ ¢y =0.
The chief purposs of the present section is to prove that the ana-
logous generators of #[3]f are unitary reflections of period p.

*sThe relation 5% = [ is ¢asily seen to be superfluous. On the same page, six
lines earlier, {—4, 3, Z) is a misprint for {(—4,3 | 2), which is a synonym
for {—3,4 | 2).
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The symbols
pl3lp,  pl8Ip[3lp,  2[31p[Blp[3]p

may be regarded as printable abbreviations for the marked graphs

&—8  6©e—e——e @ &8
p P p P P p p P P

which represent the abstract definitions 3.1, 4.1, 5.1 as follows:
each node of the graph represents a generator Ry; a branch' (joining
two consecutive nodes) indicates a relation of the form

RR;1uR; = RjaRyR

and whenever two nodes are not directly joined, the corresponding
generators commute. Such graphs with p =2 (or with the 2
omitted by convention) have long been used for groups generated
by reflections of period two (7, p. 619). ,
For instance, the first graph with p = 2 represents the group
R} =E, RiR:R;=RRR,

of the classical kaleidoscope, generated by ordinary reflections in
two mirrors inclined at 60°. In this case, in terms of oblique axes
perpendicular to the mirrors (that is, inclined at 120°), the two

generators transform the point (x, y) into (y — «, y)and (x, x — ),
respectively. In other words, we have a representation by matrices

-1 0 (1 1)
R‘=<1 1)’ R2’<o ~1/"

To remove the restriction p = 2, we replace the —1 by ¥~
Thus we consider

0 _ (1 a)
Rl:(a ])’ Ry = 0 6]’
where

7.1 § = g7

and « remains to be determined. These two linear transformations
are unitary reflections of period p in the lines

0 —Dx+ay=0 ax+ (6 —1y=0.
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Equating
NEGETS b’ )
RIRZRI _<OL(202 + OLZ) 02 + OLZ
and
(0 + o a2 + a2)>
R2R1R2 = (OL02 02(02 +OL2)

we find 6° + o = 0, whence o = 10, Choosing the lower sign
for the sake of agreement with the case p = 2, we thus have

‘ o [ ¢ 0) _(1 ——ie)
"2 Rl"(—ie 1) Re=p 6/

To make sure that these unitary reflections generate the whole

group p[3]p, and not merely a factor group, we compute the period
of the transformation

X —it\? b
(RiRa)" = (RiRRy)" = (—?03 10) - ( g _9(3).
Since this multiplies both co-ordinates by

6 = o pbmi/p . ,(6—
66 = il = ol p)ri/p’

its period is 2p/(6 — p), in agreement with 3.6.

8. Regular complex polytopes. The regular complex polygon

@ —e
P P

p{3}p

is a configuration derived from the geometrical group p{3]p by
taking the transforms of a point P on the second mirror and of the
line / through this point orthogonal to the first mirror. The points
and lines are called vertices and edges (23, p. 85). The unitary
reflections R; and R, cyclically permute the p vertices on the edge
{ and the p edges through the vertex P. Thus, the edges and ver-
tices represent the cosets of the subgroups generated by R; and
R, respectively. By 3.5, there are

24p/(6 — p)*
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edges and the same number of vertices (for p = 2, 3, 4, 5). In par-
ticular, 3{3}3 is the configuration of two mutually inscribed squares,
for which Shephard (23, p. 93) used the tentative symbol 3(24)3.

There are analogous constructions for regular complex polytopes
3{3}3{3}3 and 3{3}3{3}3{3}3, which Shephard called 3(24)3(24)3
and 3(24)3(24)3(24)3.

9. The (r — 1)-dimensional kaleidoscope. In complex affine
(n — 1)-space, any finite group of linear transformations of the co-
ordinates x!, ..., x* ! leaves invariant a positive definite Her-
mitian form

X anx'i (@ = Guy)

which may be used to determine a unitary metric. An affine reflec-
tion is a homology whose centre is a point at infinity; it is called a
unitary reflection if it leaves the Hermitian form invariant.

For an (n — 1)-dimensional group generated by » — 1 unitary
reflections, it is convenient to choose such a frame of reference that
the centres of the # — 1 homologies are the points at infinity on the
co-ordinate axes, while the reflecting hyperplanes (or mirrors) all
pass through the origin. Then Ry, the kth generating reflection,
leaves invariant all the co-ordinates x’ except x*. Let us suppose
that it transforms

x* into X ¢;x’.

Since the n — 1 characteristic roots of this transformation consist
of ¢, and n — 2 ones, we have

Cp = ehi/p — 02

(in the notation of 7.1) for a reflection of period p.

Applying R; to the Hermitian form and equating coefficients of
x*F¥ we obtain f, = 1, which we knew already. Equating coeffi-
cients of x/Z*(j # k), we obtain (cf. 13, p. 245)

Qg = Az €5 Cx + Qg Cx,
whence
Gy = Qi €5+ A,

CI = ajk = - ajk.
Qrx (177
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By adjusting the units of length along the co-ordinate axes, we
may choose any real value for each @y, leaving the non-diagonal
coefficients ay, to be determined by the “angles” between the co-
ordinate axes (or between the mirrors, to which the axes are ortho-
gonal in the sense of the unitary metric). Choosing

g—6" ¢ —1

9.1 Qpr = sin% = % == %0

we obtain
c; = 210 @ 5 (] = k).

Thus Ry, of period p, leaves invariant all the co-ordinates except
x*, which it transforms into

9.2 *F 4 2403 ay !

(with summation over all the  — 1 values of j, including k). The
mirror is evidently

9.3 2 apx’ =0.

When n = 3, comparison with 7.2 shows that a2 = —3. Thus
for p{3]p, in terms of axes orthogonal to the two mirrors, the in-
variant Hermitian form is

S 131 2 -
(2" + x°% sm~————(xx + x5

For the (n — 1)-dimensional group

G—@G— o0 -—G—@
2P P P (n — 1 nodes)

or
9.4 pI31p[3]. .. pl3]p (n — 1)
defined by 1.1 and 2.2, the analogous form is
5 f= % 4 % 4.+ 2" sin E — (' + 2
3B AN — = TR R MY,

This is ]usvﬁ@d v the following considerations. The # — 1 nodes
of the graph indicaie the generators Ry, of period p, which we wish
to represent by unitary reflections. Any two adjacent nodes in-
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dicate reflections which are related like the generators of the sub-
group p[3]p; the two corresponding co-ordinate axes are inclined
at the same “angle” as in the two-dimensional case, so that

9.6 a12=a23=a34=...=——%.

On the other hand, two non-adjacent nodes indicate commutative
reflections, or orthogonal axes, so that

9.7 a13=a14=a24=...=0.

10. The criterion for finiteness. To show that the abstract
group and the geometrical group are not merely homomorphic but
isomorphic, we shall compute (in § 11) the period of the product of
the # — 1 unitary reflections. However, before doing so, we can
dispose of all the infinite cases by showing that the geometrical
group, and a fortiori the abstract group, is infinite whenever

P —-2)(n—2) >4
Doubling 9.5, and writing s for sin «/p, we obtain the Her-
mitian form
2f = 2s(! B 4 %22 ..+ &IEY) — (612 4 %7 )
—_ (.’X,‘2 jb’ + %3 x—z) — .. - (xn—z Fr—l + K1 x—n~—2)y
whose determinant (cf. 10, p. 222) is the Chebyshev polynomial
2s —1 0 6... 0 O 2s 1 0 06...0 O

-1 25 -1 0... 0 O 1 25 1 0...0 O
0 -1 2 -—-1... 0 O ¢ 1 25 1...0 O

I

0 0 0 0...~-1 2s 0 0 0O 1 2s

= Upals) = 572,

where 8 = ir — w/p, so that s = cos 8. Thus the Hermitian form
is definite if and only if #8 < =, or

1 1
}+;>%0

or
10.1 (P -2 —2) <4
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Instead of 9.2 we could just as well have used
xF + 21:9(2 @ jx %! - bk)v

where by is arbitrary; this merely means translating the kth mirror
from 9.3 to
10.2 2 apx? = b

(14, pp. 119-120). If det(ax) = 0, the arbitrary constants &, can
be so chosen that the # — 1 hyperplanes 10.2 have no common
point. The group is then infinite; for, if it were finite, there would
be an invariant point, namely the centroid of all the transforms of
an arbitrary point. In particular, if

so that the form 9.5 is semi-definite, we have the three groups
6[316, 4[(3]4[3]4, 3[313[3]3[3]3(3]3,

which are thus seen to be infinite.

One is tempted to argue that the group is a fortior: infinite when
p or n is further increased. However, the necessity of a complete
investigation is indicated by comparing the two abstract groups

At = B¢ = (AB)?= (A7'B)! = E,
A= B¢ = (AB)?’= (A"'B)*=E

(14, p. 109). The latter is of order 1092 although the former is
infinite!

If the form 9.5 is indefinite, it determines, in the affine (n — 1)-
space, a “pseudo-unitary’’ metric in terms of which the transforma-
tions 9.2 may still be regarded as reflections. Suppose, if possible,
that the group generated by these # — 1 reflections is finite. Then
it leaves invariant not only this indefinite form f but also a definite
form f" and a “pencil” of forms f/ + Nf. By allowing the real para-
meter A to increase coutinuously from zero to infinity, we see that
there must be at least one value for which the form f/ + Af is semi-
definite. It follows that the group is completely reducible (14,
p. 121): it leaves :uvariant two completely orthogonal subspaces.
The co-ordinate axes {orthogonal to the # — 1 mirrors) fall into
two sets, lying in these two subspaces respectively. Since any pair
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of orthogonal axes corresponds to a coefficient a; = 0 in f, this
contradicts 9.6 (which tells us that f is “‘connected’” in the sense
of (10, p. 175)). We have thus proved that the group cannot be
finite when f is indefinite.
To sum up, the group 9.4 is finite if and only if
p—2)(n —2) <4

It is interesting to observe that this criterion for finiteness is the
same as for the polyhedral group

A? = B* = (AB)? = E
(14, p. 54).

11. The product of the » — 1 generating reflections. To ex-
press the unitary reflection R, in terms of covariant co-ordinates «;
(13, p. 244), we transpose the matrix of the transformation 9.2,
obtaining

x;=x; + 20 ap xz’ G=1,...,n—1),
where ¢ and a; are given by 7.1, 9.6 and 9.7 (cf. 10, pp. 218-220).
Let the notation be such that R; transforms x, into x,/, R, trans-
forms x; into x,//, and so on. Then the product

R = R1R2 e e Rn—l
transforms (xi, xs, . . . , %,_1) into the point
(x]- (n_l) ’x2 (n_l) P ,xn (n——l))!
whose co-ordinates are given indirectly by the n — 1 sets of equa-
tions
x5 = x5+ 28 a1 x4,
xf = x4+ 210 a0 x¥,

9 1 . —1)
7 = &0 200, . x5S0,

With the help of 9.1, 9.6 and 9.7, we deduce

—3 —1 L (3=D)
X, == ... =z =P — 7P,
-1 2
£ = g2 4,
(7) 0 (31} (74+1) 2y _ S C S )
% + 0 275D =« = X =...=x; .
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Now, the characteristic equation for R can be obtained by
eliminating all the x’s from these equations along with Ax; = x,*~D.
Since

—1 L (il 2 (41
070 — ey = 28 4 iaelED — A (%Y — oY),

we can immediately eliminate all the x’s whose subscripts and
superscripts disagree. We are left with # — 1 equations such as

NxITY — (007 — Dl + x50 = 0
or, in terms of y; = \H x, and X = (A} — A%6-1) /2,
Vi1 = 2Xy; + ¥ =0

(with the first or last term omitted if j = 1 or » — 1). Eliminating
the ¥'s from

{

I
coo

2X}’1 -~ Y
Y1 — 22Xy, + ys
- Y2 -+ 2Xy3 — V4

?

b

1

+ Y2 F 2Xy, 1 = 0,

we obtain the single equation

2 1 0 0 ... 0 O

't 2x 1 0 ... 0 O|=0,
0 1 2x 1 0 0
0 0 0 0 ... 1 2X

'n which the determinant on the left is the Chebyshev polynomial
Up—1(X).

If the group is finite (see 10.1), let I denote the pertod of R. Then
the characteristic roots are powers of a primitive %4th root of unity,

say
N = p2mmwifh

for w — 1 values of #. Since § = "7, we have
i

Vol BT LT
: sm< A +P> cos 7,
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where
mw | w
Y= + » — -
Thus
Upr(X) = 22X
sin ¥

and the roots of the equation U,.1(X) = 0 are given by

_ = : -
Y= G=1,...,n—1).

Equating these two expressions for ¥, we see that » and the n — 1

values of m (say my, ..., m,_1) are given by
my_J_ 1.1
11.1 = n T p -+ )
j+1

j 1 1 1
" “(5+;“§)~

When z = 2, the only value for j is 1, and we have

m 1

p= Ll P’
so that £ = p and m = p — 1. When # > 2, R” generates the
centre, and therefore # is a division of k. Thus 4 is the denominator

of the fraction
1
P

when reduced to its simplest form. We recognize this fraction as
the reciprocal of the number of edges (10, p. 11; 14, p. 53) of the
regular polyhedron or spherical tessellation {p, #}. Hence % is this
number itself:

1 _4-(p—-2)n—-2)

2 2pn

e
n

- 2pn 1
T1-(p-2)n—2)" &

R -

1
27

1
11.2 h = —
b +

in agreement with 3.7 (where the polyhedron is {p, 3}), 4.6 (the
octahedron {3, 4}) and 5.4 (the icosahedron {3, 5}).
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It follows that, when z > 2, the order of the centre of the group
is
ho_ 2p
n 4= (p—2)(n—2)’
which is half the number of vertices of {p,#n}. In terms of the
complex polytope

11.3

pi3ip ... {31p
(§8), this is the number of vertices that lie on a diameter (23, p.

88).

12. The order of the group in terms of p and #. By 11.1 and
11.2,

my+1_j+1
h n
so that
12.1 ‘ m,+1=%(j+1) G=1,...,n—1).

If # > 2, the order of the centre {13, p. 255) is the greatest common
divisor
h

(m1+ly---ymn—1+]-)=n'

Shephard and Todd (24, pp. 284-8, 294) have verified that
these numbers 7, + 1 are equal to the degrees of the basic in-
variant forms. For instance, the basic invariants for 3[3]3 are the
forms H and J of §5, whos2 degrees are

’WL1+1=4:, M2+1=6

Shephard and Todd (24, p. 289) and Chevalley (5a, p. 779)
proved independently that the order of any group generated by
reflections is equal to the product of the degrees of its basic in-
variants. {Chevalley’s reflections are stated to be of period two,
but this restriction is not actually used in his proof.) To find the
order g of our {# — 1})-dimensional group 9.4, we multiply together
the degrees 12.1 of the = — 1 basic invariants, obtaining

n—1
12.2 g= <s> !,
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where %/n is half the number of vertices of the regular polyhedron
{p, n}. If 10.1 is satisfied, &/# is given by 11.3. For instance, the
symmetric group of order %! corresponds to the spherical tessella-
tion {2, n}, whose two vertices are like the north and south poles
on the geographical globe divided into lunes by meridians.

Letting V denote the number of vertices of {p, #n}, we find that
the formula

g= (V) nl

holds for all values of p and #n. (See the remark at the end of §10.)
If 10.1 is not satisfied, {p, #} is a hyperbolic tessellation (14, p. 53)
which has infinitely many vertices.
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QUELQUES PROBLEMES ACTUELS
CONCERNANT L’ENSEIGNEMENT
MATHEMATIQUE EN FRANCE

J. DIXMIER, University of Paris

Si vous aimez le changement, je vous conseille d’aller en France
et d'y devenir professeur de mathématiques. Tous les trois mois,
Porganisation de I'enseignement est modifiée. Depuis deux ans, un
nouvel examen d’entrée dans les facultés des sciences francaises a
été créé; les méthodes de travail dans les classes primaires et
Pexamen d’entrée dans les Iycées ont été changés; un nouveau cycle
d’enseignement, dit ‘‘de recherche’’ est apparu dans les facultés des
sciences; de nouveaux programmes sont appliqués dans les classes
secondaires de mathématiques spéciales; 'enseignement technique
se développe considérablement; 'an prochain, les horaires des classes
de mathématiques dans les lycées vont changer: un nouveau sys-
teéme de recrutement des professeurs séra mis en place; les pro-
grammes de licence seront réformés. Dominant tout cela, la réforme
générale de 'enseignement, qui fournit depuis dix ans et plus des
sujets de controverse, semble approcher de sa réalisation.

Avant d’examiner cette situation en détail, je crois qu'il est utile
de bien nous entendre sur le sens de certains mots qui appartien-
nent au vocabulaire scolaire frangais. Comme vous le savez sans
doute, I'enseignement comporte chez nous trois étages superposés:
I'enseignement primaire, le secondaire et le supérieur. On appelle
école (tout simplement), I'établissement ot les enfants recoivent
l'enseignement primaire; on appelle lycée (ou dans certains cas
collége), I'établissement propre & I'enseignement secondaire, et on
appelle faculté celui que fréquentent les étudiants de I'enseigne-
ment supérieur. Dans les facultés des lettres, des sciences et de droit,
on délivre aux étudiants plusieurs sortes de dipldmes, dont les
plus importants sont la licence et le doctorat. Le mot université
s’applique chez nous 4 I'ensemble administratif de tous les établisse-
ments scolaires publics.

Je disais tout & I'heure que I'enseignement des mathématiques
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